20.07.2013 Views

Type II Supernovae: electro-weak processes and systematic ... - LUTH

Type II Supernovae: electro-weak processes and systematic ... - LUTH

Type II Supernovae: electro-weak processes and systematic ... - LUTH

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Université Paris Sud 11<br />

IPN Orsay<br />

<strong>Type</strong> <strong>II</strong> <strong>Supernovae</strong>:<br />

Università degli Studi di Milano<br />

Dipartimento di Fisica<br />

INFN, Sezione di Milano<br />

<strong>electro</strong>-<strong>weak</strong> <strong>processes</strong> <strong>and</strong><br />

<strong>systematic</strong> thermal reduction<br />

of neutronization<br />

during core-collapse<br />

Anthea F. FANTINA<br />

Dr. E. Khan & Dr. J. Margueron (IPN Orsay)<br />

Dr. P. Blottiau, Dr. Ph. Mellor (CEA, DAM, DIF)<br />

Seminar at <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Prof. P. Pizzochero & Dr. P. Donati<br />

(Univ. Milano & INFN)


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

• Simulations VS nature: what’s missing?<br />

• Nucleosynthesis of heavy elements<br />

• Neutrino physics<br />

• GW signal<br />

Microphysics Macrophysics<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

hydrodynamics<br />

nuclear physics


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


<strong>Type</strong> <strong>II</strong> SN – Overview<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

1. Infall epoch:<br />

compression of the<br />

core to nuclear<br />

density<br />

(<strong>electro</strong>n capture)<br />

1. Core bounce<br />

<strong>and</strong> formation<br />

of shock wave<br />

1. Explosion:<br />

propagation of<br />

shock wave,<br />

possible explosion


Ch<strong>and</strong>rasekhar<br />

mass<br />

shock formation<br />

at the edge of<br />

homologous core<br />

( from Janka H.-Th. et al.,<br />

Phys. Rep. 442, 38 (2007) )<br />

SN<strong>II</strong> – picture of gravitational collapse<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nuclear inputs:<br />

<strong>electro</strong>n capture rates<br />

Hydrodynamics:<br />

We investigate …<br />

… <strong>electro</strong>-<strong>weak</strong> <strong>processes</strong><br />

in core collapse supernova<br />

nucleon effective masses<br />

EoS<br />

→ one-zone code ( Fantina A.F. et al., arXiv:0811.0456 [astro-ph] )<br />

→ 1D Newtonian code ( Blottiau P., PhD thesis (1989) )<br />

→ 1D Relativistic code ( Romero J. et al., Astroph. J. 462, 839 (1996) )<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Electron capture (1/3)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

μ p<br />

on free protons<br />

on nuclei<br />

Determine lepton fraction evolution position of formation of the shock<br />

before BBAL ( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

<strong>electro</strong>n capture on free protons<br />

BBAL<br />

( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

Low Xp capture on nuclei (A = 60 – 80 )<br />

Statistical model at T = 0<br />

Δ N ≈ 3 MeV<br />

μ n


Electron capture (2/3)<br />

Fuller ( Fuller G.M., Astrophys. J. 252, 741 (1982) )<br />

FFN ( Fuller G.M. et al., Astrophys. J. 293, 1 (1982)<br />

Fuller G.M. et al., Astrophys. J. Suppl. 48, 279 (1982))<br />

Capture on free protons dominates<br />

Two-level transition at T ≠ 0<br />

IPM; Pauli blocking effects for Z < 20, N ≥ 40<br />

x γ 2<br />

matrix element!<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

on free protons<br />

on nuclei<br />

In Bruenn parametrization ( good for multigroup calculation! )<br />

( Bruenn S.W., Astrophys. J. Suppl. 58, 771 (1985) )


Electron capture (3/3)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

on free protons<br />

on nuclei<br />

Cooperstein & Wambach<br />

( Cooperstein J. <strong>and</strong> Wambach J., Nucl. Phys. A420, 591 (1984)<br />

Capture on nuclei with N ≥ 40 can compete with capture on free protons<br />

RPA calculations at finite T ( T ~ 1.5 MeV ) unblocking<br />

Langanke et al.<br />

( Langanke K. et al., Phys. Rev. C66, 45802 (2001) )<br />

Capture on nuclei dominates<br />

“Hybrid model” at T ≠ 0:<br />

- SMMC calculation (occupation number)<br />

- RPA calculation (capture rates)<br />

???<br />

… we run collapse for different capture rates (on nuclei)!


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nucleon effective mass in nuclei (1/3)<br />

Interacting particle IPM (mean field)<br />

Σ(k) : mean field (ex. Skyrme)<br />

m*(k) < m<br />

Results: ok for single-particle energy,<br />

but not for level density!<br />

beyond IPM energy dependence of Σ<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nucleon effective mass in nuclei (2/3)<br />

Beyond IPM particle-vibration coupling<br />

m* related to the group velocity<br />

m* related to level density (a from experiments!!!)<br />

k – mass<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

ω – mass T - dependence!


Physical interpretation<br />

Nucleon effective mass in nuclei (3/3)<br />

IPM: nucleon has a well defined energy<br />

spectral function S(k,ω) is a delta function<br />

beyond IPM: collisions taken into account<br />

spread in ω<br />

( Mahaux et al., Phys. Rep. 120, 1 (1985) )<br />

Ζ(k) : quasiparticle strenght<br />

probability amplitude<br />

that 1p (or 1h) excitation<br />

with momentum k<br />

propagates with energy ε(k)<br />

<strong>and</strong> lifetime τ<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


sym<br />

T-dependence of m* <strong>and</strong> E<br />

Theoretical studies on influence<br />

of T-dependence of nuclear symmetry energy<br />

on collapse trajectory:<br />

Donati P. et al, Phys. Rev. Lett. 72, 2835 (1994)<br />

study of m*(T): 98 Mo, 64 Zn, 64 Ni in the range 0 < T < 2 MeV (QRPA)<br />

decrease of m*(T) in the range 0 < T < 2 MeV<br />

increase of E sym (~ 8%)<br />

effects on gravitational collapse not negligible<br />

Dean D.J. et al, Phys. Rev. C66, 31801 (2002)<br />

study of E sym (T): A = 56-66 in the range 0.33 < T < 1.23 MeV (SMMC)<br />

increase of E sym (~ 6%) consistent with Donati et al.<br />

“not significant changes for the collapse trajectory”<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


lept,tr<br />

Effective mass Symmetry energy Y<br />

E symm (T)<br />

analogy with Fermi gas model<br />

Donati P. et al., Phys.Rev.Lett. 74 (1994)<br />

reduction of m ω with T ⇒ increase of E symm<br />

increase of<br />

less neutronization ⇒ larger values of Y lept at trapping<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Q-value!


lept,tr<br />

Y<br />

Shock wave energy<br />

Shock wave loses energy while crossing matter.<br />

dissociation energy:<br />

larger values of Y lept at trapping ⇒ less deleptonization<br />

⇒ less energy dissipated<br />

Stronger shock wave explosion<br />

m*(T) E sym Y l,tr Shock wave energy<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Brown G. et al,<br />

Nucl. Phys. A375, 481 (1982)


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Physical model – one-zone<br />

• One-zone code<br />

→ collapse of sphere with uniform density ρ<br />

• Matter made up by:<br />

- nuclei (A, Z), neutrons <strong>and</strong> free protons (C, NR)<br />

- <strong>electro</strong>ns <strong>and</strong> neutrinos (Q, UR)<br />

⇒ EoS BBP (Bethe et al., Nucl. Phys. A175, 225 (1971) )<br />

BBAL (Bethe et al., Nucl. Phys. A324, 487 (1979) )<br />

• Thermal dissociation in α particle included (Saha eq.)<br />

Entropy: translational (nuclei, protons <strong>and</strong> free neutrons),<br />

excited states of nuclei, <strong>electro</strong>ns <strong>and</strong> neutrinos (post trapping)<br />

• Electron capture on free+bound protons as 2-level transition at finite T<br />

( + backward reaction after trapping ), inclusion of γ 2<br />

• Trapping as a discontinuity ⇒ Yν = 0 if ρ < ρtr ( after neutrino trapping Ylept const! )<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Numerical results of collapse simulation<br />

(one-zone code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

γ 2 = 1<br />

Langanke K. et al.,<br />

Phys. Rev. Lett. 90, 241102 (2003)<br />

γ 2 = 0.1<br />

Fuller G.M.,<br />

Astroph. J. 252, 741 (1982)


Numerical results of collapse simulation<br />

(one-zone code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

“St<strong>and</strong>ard”<br />

parameters:


Physical model – 1D Newtonian<br />

• 1D code Newtonian ( Blottiau P., PhD thesis (1989) )<br />

- sphere divided in 40 zone for core, total 100 zone<br />

- Lagrangian treatment, implicit scheme<br />

• Matter made up by:<br />

- nuclei (A, Z), neutrons <strong>and</strong> free protons (classical e non relativistic)<br />

- <strong>electro</strong>ns <strong>and</strong> neutrinos (degenerate <strong>and</strong> ultra relativistic)<br />

⇒ EoS BBAL ( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

Fuller ( Fuller G.M., Astrophys. J. 252, 741 (1982) )<br />

+ increasing of Γ to simulate stiffness of EoS<br />

• Hydro equation coupled to equation for <strong>electro</strong>n fraction evolution<br />

<strong>and</strong> capture<br />

• Neutrino transport: multigroup, inclusion of different N p * N h<br />

( Bruenn S., Astrophys. J. Suppl. 58, 771 (1985) )<br />

• Trapping comes out “automatically”<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Preliminary results of collapse simulation<br />

(1D Newtonian code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Conclusions<br />

• Influence of T-dependence of E sym on the evolution of collapse<br />

→ <strong>systematic</strong> reduction of neutronization of the core<br />

(increasing of final lepton fraction) & less energy dissipated by shock wave<br />

- one zone model -<br />

→ position of shock wave formation: bigger homologous core<br />

- 1D Newtonian code -<br />

• Gain in shock wave dissociation energy if we consider m*(T) :<br />

δ T E diss ~ 0.4 foe (estimation with one-zone code,<br />

within reasonable physical ranges of parameters)<br />

<strong>and</strong>: K ~ 1 – 1.5 foe (Bethe H.A. & Pizzochero P., Astrophys. J. 350, L33 (1990))<br />

⇒ even if no dramatic effect on dynamics of the collapse is expected<br />

(see fluid instabilities, SASI, magnetic field, …)<br />

effects are not negligible!<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Outlook<br />

Nuclear point of view: Microscopic calculation of nuclear inputs<br />

- Electron capture rates on nuclei<br />

→ γ 2<br />

- Calculation of m*(T) & E sym (T):<br />

→ <strong>systematic</strong> calculations on more nuclei<br />

→ level density parameter (experiments?!)<br />

→ dependence on ρ, A, Z, T<br />

Astrophysical point of view: Hydrodynamics<br />

- multizone / multi-D code → test in 1D<br />

- Newtonian & Relativistic<br />

- more accurate treatment of neutrinos<br />

<strong>and</strong> shock formation<br />

IPN Orsay (E.Khan)<br />

- EoS<br />

→ Lattimer & Swesty, Nucl. Phys. A535, 331 (1991), with<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Milan & IPN Orsay<br />

(P.Donati & J.Margueron)<br />

CEA Bruyères<br />

(P.Blottiau & Ph. Mellor)<br />

&<br />

<strong>LUTH</strong> Meudon<br />

(J. Novak & M.Oertel)


Thank you<br />

- Merci -<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!