20.07.2013 Views

Type II Supernovae: electro-weak processes and systematic ... - LUTH

Type II Supernovae: electro-weak processes and systematic ... - LUTH

Type II Supernovae: electro-weak processes and systematic ... - LUTH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Université Paris Sud 11<br />

IPN Orsay<br />

<strong>Type</strong> <strong>II</strong> <strong>Supernovae</strong>:<br />

Università degli Studi di Milano<br />

Dipartimento di Fisica<br />

INFN, Sezione di Milano<br />

<strong>electro</strong>-<strong>weak</strong> <strong>processes</strong> <strong>and</strong><br />

<strong>systematic</strong> thermal reduction<br />

of neutronization<br />

during core-collapse<br />

Anthea F. FANTINA<br />

Dr. E. Khan & Dr. J. Margueron (IPN Orsay)<br />

Dr. P. Blottiau, Dr. Ph. Mellor (CEA, DAM, DIF)<br />

Seminar at <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Prof. P. Pizzochero & Dr. P. Donati<br />

(Univ. Milano & INFN)


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

• Simulations VS nature: what’s missing?<br />

• Nucleosynthesis of heavy elements<br />

• Neutrino physics<br />

• GW signal<br />

Microphysics Macrophysics<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

hydrodynamics<br />

nuclear physics


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


<strong>Type</strong> <strong>II</strong> SN – Overview<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

1. Infall epoch:<br />

compression of the<br />

core to nuclear<br />

density<br />

(<strong>electro</strong>n capture)<br />

1. Core bounce<br />

<strong>and</strong> formation<br />

of shock wave<br />

1. Explosion:<br />

propagation of<br />

shock wave,<br />

possible explosion


Ch<strong>and</strong>rasekhar<br />

mass<br />

shock formation<br />

at the edge of<br />

homologous core<br />

( from Janka H.-Th. et al.,<br />

Phys. Rep. 442, 38 (2007) )<br />

SN<strong>II</strong> – picture of gravitational collapse<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nuclear inputs:<br />

<strong>electro</strong>n capture rates<br />

Hydrodynamics:<br />

We investigate …<br />

… <strong>electro</strong>-<strong>weak</strong> <strong>processes</strong><br />

in core collapse supernova<br />

nucleon effective masses<br />

EoS<br />

→ one-zone code ( Fantina A.F. et al., arXiv:0811.0456 [astro-ph] )<br />

→ 1D Newtonian code ( Blottiau P., PhD thesis (1989) )<br />

→ 1D Relativistic code ( Romero J. et al., Astroph. J. 462, 839 (1996) )<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Electron capture (1/3)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

μ p<br />

on free protons<br />

on nuclei<br />

Determine lepton fraction evolution position of formation of the shock<br />

before BBAL ( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

<strong>electro</strong>n capture on free protons<br />

BBAL<br />

( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

Low Xp capture on nuclei (A = 60 – 80 )<br />

Statistical model at T = 0<br />

Δ N ≈ 3 MeV<br />

μ n


Electron capture (2/3)<br />

Fuller ( Fuller G.M., Astrophys. J. 252, 741 (1982) )<br />

FFN ( Fuller G.M. et al., Astrophys. J. 293, 1 (1982)<br />

Fuller G.M. et al., Astrophys. J. Suppl. 48, 279 (1982))<br />

Capture on free protons dominates<br />

Two-level transition at T ≠ 0<br />

IPM; Pauli blocking effects for Z < 20, N ≥ 40<br />

x γ 2<br />

matrix element!<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

on free protons<br />

on nuclei<br />

In Bruenn parametrization ( good for multigroup calculation! )<br />

( Bruenn S.W., Astrophys. J. Suppl. 58, 771 (1985) )


Electron capture (3/3)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

on free protons<br />

on nuclei<br />

Cooperstein & Wambach<br />

( Cooperstein J. <strong>and</strong> Wambach J., Nucl. Phys. A420, 591 (1984)<br />

Capture on nuclei with N ≥ 40 can compete with capture on free protons<br />

RPA calculations at finite T ( T ~ 1.5 MeV ) unblocking<br />

Langanke et al.<br />

( Langanke K. et al., Phys. Rev. C66, 45802 (2001) )<br />

Capture on nuclei dominates<br />

“Hybrid model” at T ≠ 0:<br />

- SMMC calculation (occupation number)<br />

- RPA calculation (capture rates)<br />

???<br />

… we run collapse for different capture rates (on nuclei)!


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nucleon effective mass in nuclei (1/3)<br />

Interacting particle IPM (mean field)<br />

Σ(k) : mean field (ex. Skyrme)<br />

m*(k) < m<br />

Results: ok for single-particle energy,<br />

but not for level density!<br />

beyond IPM energy dependence of Σ<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Nucleon effective mass in nuclei (2/3)<br />

Beyond IPM particle-vibration coupling<br />

m* related to the group velocity<br />

m* related to level density (a from experiments!!!)<br />

k – mass<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

ω – mass T - dependence!


Physical interpretation<br />

Nucleon effective mass in nuclei (3/3)<br />

IPM: nucleon has a well defined energy<br />

spectral function S(k,ω) is a delta function<br />

beyond IPM: collisions taken into account<br />

spread in ω<br />

( Mahaux et al., Phys. Rep. 120, 1 (1985) )<br />

Ζ(k) : quasiparticle strenght<br />

probability amplitude<br />

that 1p (or 1h) excitation<br />

with momentum k<br />

propagates with energy ε(k)<br />

<strong>and</strong> lifetime τ<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


sym<br />

T-dependence of m* <strong>and</strong> E<br />

Theoretical studies on influence<br />

of T-dependence of nuclear symmetry energy<br />

on collapse trajectory:<br />

Donati P. et al, Phys. Rev. Lett. 72, 2835 (1994)<br />

study of m*(T): 98 Mo, 64 Zn, 64 Ni in the range 0 < T < 2 MeV (QRPA)<br />

decrease of m*(T) in the range 0 < T < 2 MeV<br />

increase of E sym (~ 8%)<br />

effects on gravitational collapse not negligible<br />

Dean D.J. et al, Phys. Rev. C66, 31801 (2002)<br />

study of E sym (T): A = 56-66 in the range 0.33 < T < 1.23 MeV (SMMC)<br />

increase of E sym (~ 6%) consistent with Donati et al.<br />

“not significant changes for the collapse trajectory”<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


lept,tr<br />

Effective mass Symmetry energy Y<br />

E symm (T)<br />

analogy with Fermi gas model<br />

Donati P. et al., Phys.Rev.Lett. 74 (1994)<br />

reduction of m ω with T ⇒ increase of E symm<br />

increase of<br />

less neutronization ⇒ larger values of Y lept at trapping<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Q-value!


lept,tr<br />

Y<br />

Shock wave energy<br />

Shock wave loses energy while crossing matter.<br />

dissociation energy:<br />

larger values of Y lept at trapping ⇒ less deleptonization<br />

⇒ less energy dissipated<br />

Stronger shock wave explosion<br />

m*(T) E sym Y l,tr Shock wave energy<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Brown G. et al,<br />

Nucl. Phys. A375, 481 (1982)


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Physical model – one-zone<br />

• One-zone code<br />

→ collapse of sphere with uniform density ρ<br />

• Matter made up by:<br />

- nuclei (A, Z), neutrons <strong>and</strong> free protons (C, NR)<br />

- <strong>electro</strong>ns <strong>and</strong> neutrinos (Q, UR)<br />

⇒ EoS BBP (Bethe et al., Nucl. Phys. A175, 225 (1971) )<br />

BBAL (Bethe et al., Nucl. Phys. A324, 487 (1979) )<br />

• Thermal dissociation in α particle included (Saha eq.)<br />

Entropy: translational (nuclei, protons <strong>and</strong> free neutrons),<br />

excited states of nuclei, <strong>electro</strong>ns <strong>and</strong> neutrinos (post trapping)<br />

• Electron capture on free+bound protons as 2-level transition at finite T<br />

( + backward reaction after trapping ), inclusion of γ 2<br />

• Trapping as a discontinuity ⇒ Yν = 0 if ρ < ρtr ( after neutrino trapping Ylept const! )<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Numerical results of collapse simulation<br />

(one-zone code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

γ 2 = 1<br />

Langanke K. et al.,<br />

Phys. Rev. Lett. 90, 241102 (2003)<br />

γ 2 = 0.1<br />

Fuller G.M.,<br />

Astroph. J. 252, 741 (1982)


Numerical results of collapse simulation<br />

(one-zone code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

“St<strong>and</strong>ard”<br />

parameters:


Physical model – 1D Newtonian<br />

• 1D code Newtonian ( Blottiau P., PhD thesis (1989) )<br />

- sphere divided in 40 zone for core, total 100 zone<br />

- Lagrangian treatment, implicit scheme<br />

• Matter made up by:<br />

- nuclei (A, Z), neutrons <strong>and</strong> free protons (classical e non relativistic)<br />

- <strong>electro</strong>ns <strong>and</strong> neutrinos (degenerate <strong>and</strong> ultra relativistic)<br />

⇒ EoS BBAL ( Bethe H.A. et al., Nucl. Phys. A324, 487 (1979) )<br />

Fuller ( Fuller G.M., Astrophys. J. 252, 741 (1982) )<br />

+ increasing of Γ to simulate stiffness of EoS<br />

• Hydro equation coupled to equation for <strong>electro</strong>n fraction evolution<br />

<strong>and</strong> capture<br />

• Neutrino transport: multigroup, inclusion of different N p * N h<br />

( Bruenn S., Astrophys. J. Suppl. 58, 771 (1985) )<br />

• Trapping comes out “automatically”<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Preliminary results of collapse simulation<br />

(1D Newtonian code)<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Motivation<br />

Outline<br />

Introduction<br />

- <strong>Type</strong> <strong>II</strong> Supernova<br />

- Weak <strong>processes</strong> (Electron capture)<br />

Nucleon effective mass & symmetry energy<br />

Results<br />

- One zone code<br />

- 1D Newtonian code<br />

Conclusions & Outlook<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Conclusions<br />

• Influence of T-dependence of E sym on the evolution of collapse<br />

→ <strong>systematic</strong> reduction of neutronization of the core<br />

(increasing of final lepton fraction) & less energy dissipated by shock wave<br />

- one zone model -<br />

→ position of shock wave formation: bigger homologous core<br />

- 1D Newtonian code -<br />

• Gain in shock wave dissociation energy if we consider m*(T) :<br />

δ T E diss ~ 0.4 foe (estimation with one-zone code,<br />

within reasonable physical ranges of parameters)<br />

<strong>and</strong>: K ~ 1 – 1.5 foe (Bethe H.A. & Pizzochero P., Astrophys. J. 350, L33 (1990))<br />

⇒ even if no dramatic effect on dynamics of the collapse is expected<br />

(see fluid instabilities, SASI, magnetic field, …)<br />

effects are not negligible!<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009


Outlook<br />

Nuclear point of view: Microscopic calculation of nuclear inputs<br />

- Electron capture rates on nuclei<br />

→ γ 2<br />

- Calculation of m*(T) & E sym (T):<br />

→ <strong>systematic</strong> calculations on more nuclei<br />

→ level density parameter (experiments?!)<br />

→ dependence on ρ, A, Z, T<br />

Astrophysical point of view: Hydrodynamics<br />

- multizone / multi-D code → test in 1D<br />

- Newtonian & Relativistic<br />

- more accurate treatment of neutrinos<br />

<strong>and</strong> shock formation<br />

IPN Orsay (E.Khan)<br />

- EoS<br />

→ Lattimer & Swesty, Nucl. Phys. A535, 331 (1991), with<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009<br />

Milan & IPN Orsay<br />

(P.Donati & J.Margueron)<br />

CEA Bruyères<br />

(P.Blottiau & Ph. Mellor)<br />

&<br />

<strong>LUTH</strong> Meudon<br />

(J. Novak & M.Oertel)


Thank you<br />

- Merci -<br />

Anthea F. Fantina - Seminar @ <strong>LUTH</strong>, Meudon, 2nd April 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!