20.07.2013 Views

The role of neutrinos in core collapse Supernova explosion - LUTh ...

The role of neutrinos in core collapse Supernova explosion - LUTh ...

The role of neutrinos in core collapse Supernova explosion - LUTh ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>neutr<strong>in</strong>os</strong> <strong>in</strong> <strong>core</strong> <strong>collapse</strong><br />

<strong>Supernova</strong> <strong>explosion</strong><br />

Alb<strong>in</strong>o Perego<br />

alb<strong>in</strong>o.perego@unibas.ch<br />

University <strong>of</strong> Basel<br />

Department <strong>of</strong> Physics<br />

Sem<strong>in</strong>ar talk at LUTH, Observatoire de Paris, Meudon<br />

10 December 2009<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 1/48


Outl<strong>in</strong>e<br />

Introduction: <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> paradigm<br />

<strong>neutr<strong>in</strong>os</strong> <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong><br />

Neutr<strong>in</strong>o transport: the Boltzmann equation<br />

results from 1D General Relativistic (GR) simulations<br />

Neutr<strong>in</strong>o transport: approximation methods for higher<br />

dimensions<br />

state-<strong>of</strong>-art <strong>of</strong> 2D simulations<br />

Isotropic Diffusion Source Approximation (IDSA)<br />

leakage scheme<br />

Conclusion and outlook<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 2/48


Introduction:<br />

<strong>core</strong> <strong>collapse</strong> <strong>Supernova</strong><br />

<strong>explosion</strong> paradigm<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 3/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

Anasazi (American <strong>in</strong>dian people) SN<br />

1054 observation<br />

Kepler SN 1572 observation <strong>in</strong> Europe<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

after telescope <strong>in</strong>troduction (s<strong>in</strong>ce 1885), . . .<br />

. . . search for previous SNe remnants<br />

. . . discovery <strong>of</strong> extra-galactic SNe<br />

Remnant <strong>of</strong> SN 1054: Crab Nebula,<br />

www.hubblesite.org<br />

Remnant <strong>of</strong> SN 1572,<br />

www.chandra.harvard.edu<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

after telescope <strong>in</strong>troduction (s<strong>in</strong>ce 1885), . . .<br />

. . . search for previous SNe remnants<br />

. . . discovery <strong>of</strong> extra-galactic SNe<br />

Optical image <strong>of</strong> SN 2001du <strong>in</strong> NGC<br />

1365, www.supernovae.net<br />

X-ray image <strong>of</strong> SN 2006gy <strong>in</strong> NGC 1260,<br />

www.chandra.harvard.edu<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

after telescope <strong>in</strong>troduction (s<strong>in</strong>ce 1885), . . .<br />

. . . search for previous SNe remnants<br />

. . . discovery <strong>of</strong> extra-galactic SNe<br />

s<strong>in</strong>ce 1941, spectral analysis led to SNe classification<br />

type I → without H l<strong>in</strong>es<br />

type II → with H l<strong>in</strong>es<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

after telescope <strong>in</strong>troduction (s<strong>in</strong>ce 1885), . . .<br />

. . . search for previous SNe remnants<br />

. . . discovery <strong>of</strong> extra-galactic SNe<br />

s<strong>in</strong>ce 1941, spectral analysis led to SNe classification<br />

type I → without H l<strong>in</strong>es<br />

type II → with H l<strong>in</strong>es<br />

after 60’s, quantitative models for SN <strong>explosion</strong><br />

SN Ia → thermonuclear <strong>explosion</strong> <strong>of</strong> a white dwarf<br />

(WD) or a neutron star (NS) <strong>in</strong> stellar b<strong>in</strong>ary systems<br />

SN II, Ib, Ic, . . . → <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> <strong>of</strong> a<br />

massive star<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


SNe history<br />

Before telescope <strong>in</strong>troduction (before 1885), naked-eye<br />

observations <strong>of</strong> some Galactic SNe<br />

after telescope <strong>in</strong>troduction (s<strong>in</strong>ce 1885), . . .<br />

. . . search for previous SNe remnants<br />

. . . discovery <strong>of</strong> extra-galactic SNe<br />

s<strong>in</strong>ce 1941, spectral analysis led to SNe classification<br />

type I → without H l<strong>in</strong>es<br />

type II → with H l<strong>in</strong>es<br />

after 60’s, quantitative models for SN <strong>explosion</strong><br />

SN Ia → thermonuclear <strong>explosion</strong> <strong>of</strong> a white dwarf<br />

(WD) or a neutron star (NS) <strong>in</strong> stellar b<strong>in</strong>ary systems<br />

SN II, Ib, Ic, . . . → <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> <strong>of</strong> a<br />

massive star<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 4/48


Life <strong>of</strong> a star<br />

www.chandra.harvard.edu<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 5/48


Core <strong>collapse</strong> SN: energetics<br />

SN energy comes from gravitational energy released by compact<br />

remnant formation<br />

(e.g. NS <strong>of</strong> MNS ∼ 1.5 M⊙ and RNS ∼ 10 km)<br />

Egrav ∼ GM2 NS<br />

RNS<br />

− GM2 NS<br />

R<strong>core</strong><br />

∼ 6 × 10 53 ergs<br />

Is all this energy necessary to explode the star? No . . .<br />

Egrav ≫ Ek<strong>in</strong> matter ∼ 10 51 ergs ≫ Eγ ∼ 10 48 ergs<br />

Most <strong>of</strong> Egrav is released by <strong>neutr<strong>in</strong>os</strong>, which escape from the star on<br />

long timescales (10 s) (estimated neutronization energy for 1.5M⊙:<br />

Eneut ∼ few 10 53 ergs)<br />

Deposition <strong>of</strong> ∼ 1% <strong>of</strong> Eν can produce <strong>explosion</strong> (Colgate & White (1966))<br />

⇒ ν driven <strong>explosion</strong> mechanism<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 6/48


Neutr<strong>in</strong>os <strong>in</strong> SN <strong>explosion</strong><br />

Neutr<strong>in</strong>os (<strong>of</strong> all flavours) are fundamental <strong>in</strong>gredients <strong>in</strong><br />

<strong>core</strong> <strong>collapse</strong> SN (Bethe (1990), Burrows (1990), Raffelt (2001));<br />

they . . .<br />

exchange energy with matter (heat<strong>in</strong>g and cool<strong>in</strong>g)<br />

release energy out <strong>of</strong> the system<br />

<strong>in</strong>fluence explosive nucleosynthesis<br />

give us important <strong>in</strong>formations about dense matter<br />

νe and ¯νe differ from νµ,τ and ¯νµ,τ<br />

orig<strong>in</strong> <strong>of</strong> the<br />

difference:<br />

me ≪ mµ ≪ mτ<br />

⇒ at the on-set <strong>of</strong> the <strong>collapse</strong>, Ye = 0<br />

while Yµ = Yτ ≈ 0<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 7/48


Neutr<strong>in</strong>o-matter <strong>in</strong>teraction<br />

Neutr<strong>in</strong>os <strong>in</strong>teract significantly by charged (CC) or neutral<br />

(NC) current reactions with matter at high ρ and T<br />

Major consequences:<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 8/48


Neutr<strong>in</strong>o-matter <strong>in</strong>teraction<br />

Neutr<strong>in</strong>os <strong>in</strong>teract significantly by charged (CC) or neutral<br />

(NC) current reactions with matter at high ρ and T<br />

Major consequences:<br />

opacity a<br />

κ ∼ 5 × 10−20 2 Eν 2 −1<br />

MeV cm g ⇒ 0 τν 103 for Eν ≈ 20MeV<br />

a κ → opacity, λν → ν mean free path, τν → ν optical depth<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 8/48


Neutr<strong>in</strong>o-matter <strong>in</strong>teraction<br />

Neutr<strong>in</strong>os <strong>in</strong>teract significantly by charged (CC) or neutral<br />

(NC) current reactions with matter at high ρ and T<br />

Major consequences:<br />

opacity<br />

κ ∼ 5 × 10 −20 Eν<br />

MeV<br />

energy exchange<br />

2 cm 2 g −1 ⇒ 0 τν 10 3 for Eν ≈ 20MeV<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 8/48


Neutr<strong>in</strong>o-matter <strong>in</strong>teraction<br />

Neutr<strong>in</strong>os <strong>in</strong>teract significantly by charged (CC) or neutral<br />

(NC) current reactions with matter at high ρ and T<br />

Major consequences:<br />

opacity<br />

κ ∼ 5 × 10 −20 Eν<br />

MeV<br />

energy exchange<br />

particle number variation<br />

2 cm 2 g −1 ⇒ 0 τν 10 3 for Eν ≈ 20MeV<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 8/48


Electron <strong>neutr<strong>in</strong>os</strong> reactions<br />

Reaction Current Important for . . .<br />

e − + p ↔ n + νe CC νe production, opacity and energy exchange<br />

e + + n ↔ p + ¯νe CC ¯νe production, opacity and energy exchange<br />

e − + A ↔ A ′ + νe CC νe production, opacity and energy exchange<br />

ν + N → ν ′ + N ′ NC opacity<br />

ν + A → ν ′ + A ′ NC opacity<br />

ν + e ± → ν ′ + e ±′<br />

CC&NC energy exchange<br />

e + + e − ↔ νe + ¯νe CC&NC ν production<br />

N + N ↔ N ′ + N ′ + νe + ¯νe NC secondary importance<br />

N + N + ν → N ′ + N ′ + ν ′ NC secondary importance<br />

ν stands for both νe and ¯νe<br />

Bruenn 1985, Hannestad & Raffelt 1998, Buras et al. 2002, Marek et al. 2005, Buras et al.<br />

2006<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 9/48


µ and τ <strong>neutr<strong>in</strong>os</strong> reactions<br />

Reaction Current Important for . . .<br />

ν + N → ν ′ + N ′ NC opacity<br />

ν + A → ν ′ + A ′ NC opacity<br />

ν + e ± → ν ′ + e ±′<br />

NC energy exchange<br />

e + + e − ↔ νx + ¯νx NC ν production<br />

N + N ↔ N ′ + N ′ + νx + ¯νx NC ν production and energy exchange<br />

N + N + ν → N ′ + N ′ + ν ′ NC energy exchange<br />

νe + ¯νe ↔ νx + ¯νx NC ν production<br />

νe + ν → ν ′ e + ν ′ NC secondary importance<br />

¯νe + ν → ¯ν ′ e + ν ′ NC secondary importance<br />

νx stands for both νµ and ντ<br />

ν stands for both νx and ¯νx<br />

Bruenn 1985, Hannestad & Raffelt 1998, Buras et al. 2002, Marek et al. 2005, Buras et al.<br />

2006<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 10/48


Raffelt (2001)<br />

Expected <strong>neutr<strong>in</strong>os</strong> behaviour<br />

for τ ≫ 1, νe and ¯νe ma<strong>in</strong>ly<br />

<strong>in</strong>teract by weak reactions →<br />

thermal equilibrium with matter<br />

and diffusive transport;<br />

when τ ∼ 1 (ν sphere), νe and<br />

¯νe stream out<br />

Raffelt (2001)<br />

for τ ≫ 1 and high<br />

temperature, termal processes<br />

provide νµ,τ − ¯νµ,τ production,<br />

thermalization and diffusion<br />

when thermal processes freeze<br />

out but τ ≫ 1, isoenergetic<br />

diffusion<br />

for τ ∼ 1, νµ,τ and ¯νµ,τ stream<br />

out Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 11/48


Neutr<strong>in</strong>o transport:<br />

the Boltzmann equation for<br />

1D simulations<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 12/48


Core <strong>collapse</strong> SN simulations<br />

CCSN is a complex, dynamics process, which <strong>in</strong>volves<br />

many physical topics and large calculations capabilities<br />

⇓<br />

good implementation <strong>of</strong> the fundamental physics <strong>in</strong><br />

sophisticated numerical simulations is required<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 13/48


AGILE-BOLTZTRAN<br />

AGILE-BOLTZTRAN: 1D GR ν radiation hydrodynamics<br />

parallelized code<br />

AGILE<br />

implicit GR hydrodynamics code<br />

adaptive grid technique (103 zones)<br />

BOLTZTRAN<br />

implicit 3 flavours, multigroup GR Boltzmann ν transport solver<br />

20 energy b<strong>in</strong>s (3MeV ≤ Eν ≤ 300MeV)<br />

8 ν directions<br />

actually, only 2 <strong>in</strong>dependent flavours (µ = τ)<br />

Lattimer-Swesty EOS<br />

several progenitor models tested<br />

Liebendorfer et al. 2000,2001,2004,2005 and references there<strong>in</strong><br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 14/48


Problem formulation<br />

symmetry: General Relativity (GR) + spherical symmetry (1D)<br />

coord<strong>in</strong>ates: (t, a, θ, φ)<br />

ds 2 = −α 2 dt 2 ′ r<br />

+<br />

Γ<br />

2<br />

da 2 +r 2 dΩ 2<br />

a enclosed rest mass<br />

r = r(t, a) radial radius<br />

r ′ = dr<br />

da<br />

α = α(t, a) lapse function<br />

reference frame: comov<strong>in</strong>g reference frame (Lagrangian)<br />

u = ˙r/a comov<strong>in</strong>g observer 4-velocity<br />

gravitational field source: fluid + neutr<strong>in</strong>o stress-energy tensor<br />

(fluid = baryons + γ + electrons & positrons )<br />

T tt = ρ(1 + e + J)<br />

T ta = H<br />

T aa = p + ρK<br />

T θθ = T φφ = p + 1<br />

2ρ(J − K)<br />

ρ rest mass density<br />

e specific <strong>in</strong>ternal energy<br />

J specific ν energy<br />

p isotropic fluid pressure<br />

H and K specific ν stresses<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 15/48


Boltzmann transport equation<br />

Distribution functions, f(t,a,µ,E)<br />

dN = gsf(t, a, µ, E)E2 dE dµ dV<br />

µ = cos θp<br />

θp angle between p and r, mea-<br />

Γ<br />

sured by comov<strong>in</strong>g observer<br />

Boltztrann transport equation (BTE): evolution <strong>of</strong> the distribution<br />

function <strong>in</strong> phase space<br />

D[f] = C[f]<br />

D[f] → Liouville operator: directional derivative <strong>of</strong> f along<br />

trajectories <strong>of</strong> free particles propagation<br />

α ∂<br />

D[ ] = p<br />

∂xα − Γα βγp β γ ∂<br />

p<br />

∂pα C[f] → collision <strong>in</strong>tegral: changes <strong>in</strong> f due to collision and<br />

reactions<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 16/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

particle emissivity and absorptivity<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

j(E, µ)(1 − f(E, µ)) ∝ amount <strong>of</strong> <strong>neutr<strong>in</strong>os</strong> with energy E and<br />

direction µ emitted by electron (positron) capture<br />

χ(E, µ)f(E, µ) ∝ amount <strong>of</strong> <strong>neutr<strong>in</strong>os</strong> with energy E and<br />

direction µ absorbed by <strong>in</strong>verse electron (positron) capture<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

particle emissivity and absorptivity<br />

<strong>in</strong>-scatter<strong>in</strong>g contribution<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

(1 − f(E, µ)) Rs <strong>in</strong> (E, E ′ , µ, µ ′ )f(E ′ , µ ′ )E ′2 dE ′ dµ ′ ∝ amount <strong>of</strong><br />

particles which, from any <strong>in</strong>itial configuration (E ′ , µ ′ ), goes <strong>in</strong>to<br />

(E, µ) configuration<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

particle emissivity and absorptivity<br />

<strong>in</strong>-scatter<strong>in</strong>g contribution<br />

out-scatter<strong>in</strong>g contribution<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

f(E, µ)) Rs out (E, E ′ , µ, µ ′ )(1 − f(E ′ , µ ′ ))E ′2 dE ′ dµ ′ ∝ amount <strong>of</strong><br />

particles which, from the <strong>in</strong>itial configuration (E, µ), goes <strong>in</strong>to any<br />

(E ′ , µ ′ ) configuration<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

particle emissivity and absorptivity<br />

<strong>in</strong>-scatter<strong>in</strong>g contribution<br />

out-scatter<strong>in</strong>g contribution<br />

<strong>in</strong>-com<strong>in</strong>g pair contribution<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

(1 − f(E, µ)) R <strong>in</strong> TP (E, E′ , µ, µ ′ )(1 − ¯ f ′ (E ′ , µ ′ ))E ′2 dE ′ dµ ′ ∝<br />

amount <strong>of</strong> particles with configuration (E, µ) and anti-particles ( ¯ f)<br />

with any configuration (E ′ , µ ′ ), created by pair processes<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


C[f] = j(1 − f) − χf +<br />

+ X<br />

» Z<br />

(1 − f)<br />

scat<br />

+ X<br />

pair prod<br />

Collision <strong>in</strong>tegral<br />

» Z<br />

(1 − f)<br />

R <strong>in</strong><br />

s f ′ E ′2 dE ′ dµ ′ − f<br />

particle emissivity and absorptivity<br />

<strong>in</strong>-scatter<strong>in</strong>g contribution<br />

out-scatter<strong>in</strong>g contribution<br />

<strong>in</strong>-com<strong>in</strong>g pair contribution<br />

out-com<strong>in</strong>g pair contribution<br />

R <strong>in</strong> TP (1 − ¯ f ′ )E ′2 dE ′ dµ ′ − f<br />

Z<br />

R out<br />

s (1 − f ′ ) E ′2<br />

–<br />

′ ′<br />

dE dµ +<br />

Z<br />

R out<br />

TP ¯ f ′ E ′2<br />

–<br />

′ ′<br />

dE dµ<br />

f(E, µ) R out<br />

TP (E, E′ , µ, µ ′ ) ¯ f ′ (E ′ , µ ′ )E ′2 dE ′ dµ ′ ∝ amount <strong>of</strong><br />

particles with configuration (E, µ) and anti-particles ( ¯ f) with any<br />

configuration (E ′ , µ ′ ), absorbed by pair processes<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 17/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

deleptonization and ν trapp<strong>in</strong>g<br />

T 2MeV: low pair<br />

production<br />

for 10 9 g/cm 3 → 10 12 g/cm 3 ,<br />

high e − capture and νe’s<br />

production, which escape<br />

almost freely<br />

⇒ Yl : 0.42 → 0.3<br />

for ρ 10 12 g/cm 3 , ν diffuses<br />

and tdiff > tdyn: ˙ Yl ≈ 0 ≈ ˙ S<br />

Mart<strong>in</strong>ez-P<strong>in</strong>edo et al. (2006)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

deleptonization and ν trapp<strong>in</strong>g<br />

T 2MeV: low pair<br />

production<br />

for 10 9 g/cm 3 → 10 12 g/cm 3 ,<br />

high e − capture and νe’s<br />

production, which escape<br />

almost freely<br />

⇒ Yl : 0.42 → 0.3<br />

for ρ 10 12 g/cm 3 , ν diffuses<br />

and tdiff > tdyn: ˙ Yl ≈ 0 ≈ ˙ S<br />

Mart<strong>in</strong>ez-P<strong>in</strong>edo et al. (2006)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

deleptonization and ν trapp<strong>in</strong>g<br />

T 2MeV: low pair<br />

production<br />

for 10 9 g/cm 3 → 10 12 g/cm 3 ,<br />

high e − capture and νe’s<br />

production, which escape<br />

almost freely<br />

⇒ Yl : 0.42 → 0.3<br />

for ρ 10 12 g/cm 3 , ν diffuses<br />

and tdiff > tdyn: ˙ Yl ≈ 0 ≈ ˙ S<br />

Mart<strong>in</strong>ez-P<strong>in</strong>edo et al. (2006)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: "cold" <strong>collapse</strong> phase<br />

homologous <strong>collapse</strong> and shock formation<br />

deleptonization and ν trapp<strong>in</strong>g<br />

T 2MeV: low pair<br />

production<br />

for 10 9 g/cm 3 → 10 12 g/cm 3 ,<br />

high e − capture and νe’s<br />

production, which escape<br />

almost freely<br />

⇒ Yl : 0.42 → 0.3<br />

for ρ 10 12 g/cm 3 , ν diffuses<br />

and tdiff > tdyn: ˙ Yl ≈ 0 ≈ ˙ S<br />

Mart<strong>in</strong>ez-P<strong>in</strong>edo et al. (2006)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 18/48


Results: 100ms after bounce<br />

Mprog = 13M⊙: no prompt <strong>explosion</strong>! Maybe delayed . . .<br />

Liebendorfer et al. (2001)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 19/48


ν’s can cool and heat matter,<br />

accord<strong>in</strong>g to radial location:<br />

cool<strong>in</strong>g region, close to<br />

PNS surface<br />

heat<strong>in</strong>g region, between<br />

Rga<strong>in</strong> and Rshock<br />

<strong>The</strong> ga<strong>in</strong> radius<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 20/48


Results:ν lum<strong>in</strong>osity after bounce<br />

νe burst close to bounce<br />

(t ∼ 5 ms after bounce)<br />

¯νe and µ and τ ν’s<br />

lum<strong>in</strong>osities rise beh<strong>in</strong>d<br />

the shock (high T )<br />

spectra comparison at<br />

t = 100 ms after bounce:<br />

νe’s <strong>in</strong>teract more →<br />

lower energy<br />

Liebendorfer et al. (2001)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 21/48


Results: 500ms after bounce<br />

Mprog = 13M⊙<br />

Shock recession: no delayed <strong>explosion</strong>!<br />

Liebendorfer et al. (2001) Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 22/48


Neutr<strong>in</strong>o transport:<br />

approximation methods for<br />

higher dimensions<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 23/48


Motivations: climb<strong>in</strong>g up dimensions<br />

Results from 1D GR simulations with detailed Boltzmann transport:<br />

<strong>in</strong> general, no SN <strong>explosion</strong>!<br />

Suggestion:<br />

high dimensions can provide new macrophysics (convection, rotation,<br />

magnetic fields . . . ) which can help stars to explode!<br />

Problem:<br />

full Boltzmann ν transport is memory and CPU-time too expensive<br />

Avaiable solution:<br />

development <strong>of</strong> approximated methods to model ν transport<br />

computationally simpler and cheaper<br />

physically motivated and effective<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 24/48


Present state-<strong>of</strong>-art<br />

Axisymmetric (2D) hydrodynamic simulation<br />

GR effective gravitational potential<br />

GR corrections (like time dilation)<br />

approx ν transport<br />

ray by ray method<br />

multigroup flux limited diffusion (MGFLD)<br />

multi-angle, multi-group ν transport<br />

O(v/c) Boltzmann equation, GR corrections<br />

Lattimer-Swesty EOS and Shen EOS<br />

updated ν opacities and emissivities<br />

nuclear network<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 25/48


Present state-<strong>of</strong>-art<br />

Axisymmetric (2D) hydrodynamic simulation<br />

GR effective gravitational potential<br />

GR corrections (like time dilation)<br />

approx ν transport<br />

ray by ray method<br />

multigroup flux limited diffusion (MGFLD)<br />

multi-angle, multi-group ν transport<br />

O(v/c) Boltzmann equation, GR corrections<br />

Lattimer-Swesty EOS and Shen EOS<br />

updated ν opacities and emissivities<br />

nuclear network<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 25/48


2D ν transport approximations<br />

ray by ray<br />

solution <strong>of</strong> several 1D ν transport problems, <strong>in</strong> angular wedges with<br />

periodic boundary conditions<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 26/48


2D ν transport approximations<br />

ray by ray<br />

solution <strong>of</strong> several 1D ν transport problems, <strong>in</strong> angular wedges with<br />

periodic boundary conditions<br />

MGFLD<br />

solution <strong>of</strong> diffusion equations for different neutr<strong>in</strong>o species and<br />

different energy b<strong>in</strong>s; ν flux is limited <strong>in</strong> order to give consistent<br />

results <strong>in</strong> the free stream<strong>in</strong>g regime<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 26/48


2D ν transport approximations<br />

ray by ray<br />

solution <strong>of</strong> several 1D ν transport problems, <strong>in</strong> angular wedges with<br />

periodic boundary conditions<br />

MGFLD<br />

solution <strong>of</strong> diffusion equations for different neutr<strong>in</strong>o species and<br />

different energy b<strong>in</strong>s; ν flux is limited <strong>in</strong> order to give consistent<br />

results <strong>in</strong> the free stream<strong>in</strong>g regime<br />

multi-angle, multi-group ν transport<br />

solution <strong>of</strong> discretized and simplified (no special and general<br />

relativistic corrections) 2D Boltzmann equation for each ν species,<br />

with several energy b<strong>in</strong>s, with standard ν-matter <strong>in</strong>teractions<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 26/48


2D simulations results: new features<br />

Convection<br />

overturn beh<strong>in</strong>d the stall<strong>in</strong>g shock<br />

ν heat<strong>in</strong>g → dS/dr < 0<br />

effect: more efficient ν heat<strong>in</strong>g<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 27/48


2D simulations results: new features<br />

Convection<br />

overturn beh<strong>in</strong>d the stall<strong>in</strong>g shock<br />

ν heat<strong>in</strong>g → dS/dr < 0<br />

effect: more efficient ν heat<strong>in</strong>g<br />

Stand<strong>in</strong>g Accretion Shock Instability (SASI)<br />

hydro <strong>in</strong>stability <strong>of</strong> shocked accretion<br />

flows to non-radial deformation modes<br />

effect: large shock oscillations and<br />

convection<br />

effect: <strong>in</strong>crease tadvection: more time for<br />

ν heat<strong>in</strong>g!<br />

Foglizzo et al (2007), Blond<strong>in</strong> et al. (2003)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 27/48


2D simulations results: new features<br />

Convection<br />

overturn beh<strong>in</strong>d the stall<strong>in</strong>g shock<br />

ν heat<strong>in</strong>g → dS/dr < 0<br />

effect: more efficient ν heat<strong>in</strong>g<br />

Stand<strong>in</strong>g Accretion Shock Instability (SASI)<br />

hydro <strong>in</strong>stability <strong>of</strong> shocked accretion<br />

flows to non-radial deformation modes<br />

effect: large shock oscillations and<br />

convection<br />

effect: <strong>in</strong>crease tadvection: more time for<br />

ν heat<strong>in</strong>g!<br />

Foglizzo et al (2007), Blond<strong>in</strong> et al. (2003)<br />

Marek & Janka 2008<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 27/48


2D simulations results: comparison<br />

MPA-Garch<strong>in</strong>g group<br />

PROMETHEUS-VERTEX code<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 28/48


2D simulations results: comparison<br />

MPA-Garch<strong>in</strong>g group<br />

PROMETHEUS-VERTEX code<br />

Results:<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction<br />

1. ν driven, SASI aided <strong>explosion</strong><br />

for Mprog = 11.2M⊙ , texp ≈<br />

200ms<br />

2. ν driven, SASI aided <strong>explosion</strong><br />

for Mprog = 15M⊙<br />

texp ≈ 600ms<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 28/48


2D simulations results: comparison<br />

MPA-Garch<strong>in</strong>g group<br />

PROMETHEUS-VERTEX code<br />

Results:<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction<br />

1. ν driven, SASI aided <strong>explosion</strong><br />

for Mprog = 11.2M⊙ , texp ≈<br />

200ms<br />

2. ν driven, SASI aided <strong>explosion</strong><br />

for Mprog = 15M⊙<br />

texp ≈ 600ms<br />

Marek & Janka 2008<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 28/48


2D simulations results: comparison<br />

Oak Ridge-Florida group<br />

CHIMERA code<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction + MGFLD<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 29/48


2D simulations results: comparison<br />

Oak Ridge-Florida group<br />

CHIMERA code<br />

Results:<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction + MGFLD<br />

ν driven, SASI aided <strong>explosion</strong><br />

Mprog = 12, 15, 20, 25M⊙<br />

texp ≈ 300 − 400ms<br />

Eexp ≈ 1 × 10 51 ergs<br />

Bruenn (2009)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 29/48


2D simulations results: comparison<br />

Oak Ridge-Florida group<br />

CHIMERA code<br />

Results:<br />

2D effective GR gravitational potential<br />

ray-by-ray O(v/c) ν transport, with GR correction + MGFLD<br />

ν driven, SASI aided <strong>explosion</strong><br />

Mprog = 12, 15, 20, 25M⊙<br />

texp ≈ 300 − 400ms<br />

Eexp ≈ 1 × 10 51 ergs<br />

Bruenn (2009)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 29/48


2D simulations results: comparison<br />

Pr<strong>in</strong>ceton-Tucson group<br />

VULCAN code<br />

2D Newtonian gravitation potential<br />

2D multi-angle, multi-group ν transport + MGFLD<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 30/48


2D simulations results: comparison<br />

Pr<strong>in</strong>ceton-Tucson group<br />

VULCAN code<br />

Results:<br />

2D Newtonian gravitation potential<br />

2D multi-angle, multi-group ν transport + MGFLD<br />

1. no ν driven, SASI aided <strong>explosion</strong>!<br />

Mprog = 20M⊙<br />

vrot = 0 and vrot = π rad/s<br />

2. acoustic mechanism <strong>explosion</strong><br />

texp ∼ 1.5 s after bounce<br />

Ott et al. (2008)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 30/48


2D simulations results: comparison<br />

Pr<strong>in</strong>ceton-Tucson group<br />

VULCAN code<br />

Results:<br />

2D Newtonian gravitation potential<br />

2D multi-angle, multi-group ν transport + MGFLD<br />

1. no ν driven, SASI aided <strong>explosion</strong>!<br />

Mprog = 20M⊙<br />

vrot = 0 and vrot = π rad/s<br />

2. acoustic mechanism <strong>explosion</strong><br />

texp ∼ 1.5s after bounce Ott et al. (2008)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 30/48


IDSA: motivations<br />

IDSA = Isotropic Diffuson Source Approximation<br />

Approx ν transport for 3D simulations: accuracy . . .<br />

thermodynamics <strong>of</strong> trapped particles<br />

accurate diffusion limit<br />

explicit ν spectral dependence<br />

non local (geometric) ν propagation directions<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 31/48


IDSA: motivations<br />

IDSA = Isotropic Diffuson Source Approximation<br />

Approx ν transport for 3D simulations: accuracy . . .<br />

thermodynamics <strong>of</strong> trapped particles<br />

accurate diffusion limit<br />

explicit ν spectral dependence<br />

non local (geometric) ν propagation directions<br />

. . . and efficiency<br />

dist<strong>in</strong>ction between trapped and stream<strong>in</strong>g particles<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 31/48


IDSA: motivations<br />

IDSA = Isotropic Diffuson Source Approximation<br />

Approx ν transport for 3D simulations: accuracy . . .<br />

thermodynamics <strong>of</strong> trapped particles<br />

accurate diffusion limit<br />

explicit ν spectral dependence<br />

non local (geometric) ν propagation directions<br />

. . . and efficiency<br />

dist<strong>in</strong>ction between trapped and stream<strong>in</strong>g particles<br />

adaptive and flexible algorithom: evolution <strong>of</strong> ν distributions are<br />

guided by diffusion limit at high opacity and free stream<strong>in</strong>g limit at low<br />

opacity<br />

Liebendorfer, Whitehouse, Kappeli (2009)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 31/48


f → D[f] = C[f]<br />

IDSA: basic ideas<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 32/48


IDSA: basic ideas<br />

f → D[f] = C[f] ⇒ f = ftrapped + fstream<strong>in</strong>g<br />

D[ftrapped] = C[ftrapped] − Σ (1)<br />

D[fstream<strong>in</strong>g] = C[fstream<strong>in</strong>g] + Σ (2)<br />

Σ: Diffusion source → conversion<br />

between stream<strong>in</strong>g<br />

and trapped part<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 32/48


IDSA: basic ideas<br />

f → D[f] = C[f] ⇒ f = ftrapped + fstream<strong>in</strong>g<br />

D[ftrapped] = C[ftrapped] − Σ (1)<br />

D[fstream<strong>in</strong>g] = C[fstream<strong>in</strong>g] + Σ (2)<br />

Σ: Diffusion source → conversion<br />

between stream<strong>in</strong>g<br />

and trapped part<br />

different approximation for the 2 components:<br />

Σ is determ<strong>in</strong>ed by solv<strong>in</strong>g (1) <strong>in</strong> the<br />

diffusion limit<br />

(2) is solved assum<strong>in</strong>g stationary-state<br />

approx to calculate stream<strong>in</strong>g particle<br />

flux (Poisson equation)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 32/48


IDSA →<br />

IDSA: <strong>in</strong>gredients<br />

primarily implemented for νe and ¯νe<br />

first tested <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN model<br />

dom<strong>in</strong>ant production and absorption mechanisms<br />

p + e − ↔ n + νe<br />

n + e + ↔ p + ¯νe<br />

diffusion mechanism: isoenergetic scatter<strong>in</strong>g on nucleons and nuclei<br />

N + ν → N ′ + ν ′<br />

A + ν → A ′ + ν ′<br />

when treac ≪ tdiff, local thermodynamical equilibrium applies ⇒<br />

reduction <strong>of</strong> <strong>in</strong>dependent variables number<br />

details <strong>of</strong> implementations depend on the hydro code<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 33/48


dY/dE [MeV −1 ]<br />

dY/dE [MeV −1 ]<br />

dY/dE [MeV −1 ]<br />

x (a)<br />

10−4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60<br />

E [MeV]<br />

x (c)<br />

10−3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

E [MeV]<br />

x (e)<br />

10−3<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

E [MeV]<br />

IDSA: spectral results<br />

dY/dE [MeV −1 ]<br />

dY/dE [MeV −1 ]<br />

dY/dE [MeV −1 ]<br />

x (b)<br />

10−4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Boltzmann<br />

Approx.<br />

Trapped<br />

Stream<strong>in</strong>g<br />

0<br />

0 20 40 60<br />

E [MeV]<br />

x (d)<br />

10−3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

E [MeV]<br />

x (f)<br />

10−3<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

E [MeV]<br />

Comparison between Boltztran and<br />

IDSA spectra (left-νe, right-¯νe)<br />

Hydro: AGILE (1D, GR)<br />

t = 150ms after bounce<br />

progenitor M = 13M⊙ (Nomoto 88)<br />

EOS: Lattimer-Swesty<br />

1. R = 40km, trapped regime<br />

trapped particles dom<strong>in</strong>ate<br />

2. R = 80km, semi-trasparent<br />

both trapped and stream<strong>in</strong>g particles<br />

3. R = 160km, transparent regime<br />

stream<strong>in</strong>g particles dom<strong>in</strong>ate<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 34/48


Density, log 10 (ρ [g/cm 3 ])<br />

Entropy per Baryon [k B ])<br />

Electron Fraction<br />

Velocity [km/s]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

IDSA: hydrodynamical evolution<br />

x 10 4 0.1<br />

Boltzmann<br />

Approx.<br />

Spectral<br />

−5<br />

0 50 100 150 200 250 300<br />

Radius [km]<br />

Comparison between Boltztran and<br />

IDSA post-bounce evolution<br />

Hydro: AGILE (1D, GR)<br />

1. t = 30ms after bounce, where<br />

Rshock ∼ 150km<br />

2. t = 100ms after bounce, where<br />

Rshock ∼ 250km<br />

progenitor M = 13M⊙ (Nomoto 88)<br />

EOS: Lattimer-Swesty<br />

Very good agreement <strong>in</strong> the shock<br />

expand<strong>in</strong>g phase<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 35/48


Leakage scheme: motivations<br />

Present day state-<strong>of</strong>-art <strong>of</strong> <strong>core</strong> <strong>collapse</strong> SN modell<strong>in</strong>g is not the whole<br />

story; open tasks:<br />

exploration <strong>of</strong> large parameter space for <strong>in</strong>itial conditions (rotation,<br />

magnetic field,. . . )<br />

comparison <strong>of</strong> different <strong>explosion</strong> mechanisms (quark phase<br />

transition, acustic mechanism, magneto-rotational <strong>in</strong>stabilities, . . . )<br />

improvement <strong>of</strong> hydrodynamics (GR, MHD, 3D, . . . )<br />

other astrophysical contexts, where <strong>neutr<strong>in</strong>os</strong> play a major <strong>role</strong><br />

(cosmology, NS merger, BH formation . . . )<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 36/48


Leakage scheme: motivations<br />

Present day state-<strong>of</strong>-art <strong>of</strong> <strong>core</strong> <strong>collapse</strong> SN modell<strong>in</strong>g is not the whole<br />

story; open tasks:<br />

exploration <strong>of</strong> large parameter space for <strong>in</strong>itial conditions (rotation,<br />

magnetic field,. . . )<br />

comparison <strong>of</strong> different <strong>explosion</strong> mechanisms (quark phase<br />

transition, acustic mechanism, magneto-rotational <strong>in</strong>stabilities, . . . )<br />

improvement <strong>of</strong> hydrodynamics (GR, MHD, 3D, . . . )<br />

other astrophysical contexts, where <strong>neutr<strong>in</strong>os</strong> play a major <strong>role</strong><br />

(cosmology, NS merger, BH formation . . . )<br />

For those, approx ν (at least, for µ and τ flavours) treatment which<br />

catchs the very essential physics (conservative approach: ma<strong>in</strong>ly, ν<br />

cool<strong>in</strong>g effect)<br />

does not impact on the computational efficiency<br />

Ruffert et al. (1996), Rosswog & Liebendorfer (2003)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 36/48


Leakage scheme: basic idea<br />

Transparent regime (τ 1)<br />

tdiff ≈ tfree stream<br />

all the produced ν can stream<br />

out freely (label: fs)<br />

Qfs ≈ Qprod<br />

Rfs ≈ Rprod<br />

where Q → energy rate, R → particle rate<br />

How to put them togheter? <strong>in</strong>terpolation<br />

Qeff = QtrQfs<br />

Qtr + Qfs<br />

Opaque regime (τ ≫ 1)<br />

tdiff ≫ tfree stream<br />

ν’s form a Fermi gas <strong>in</strong><br />

equilibrium with matter and<br />

leak out on tdiff (label: tr)<br />

Qtr ≈ Qdiff+Qeq ∼ Eν gas<br />

tdiff<br />

Rtr ≈ Rdiff +Req ∼ Nν gas<br />

tdiff<br />

+ δE<strong>in</strong>t<br />

δt<br />

+ δNeq<br />

δt<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 37/48


Leakage scheme: test<strong>in</strong>g µ and τ cool<strong>in</strong>g<br />

Velocity, u [km/s]<br />

Entropy per Baryon, s [k B ])<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

6<br />

4<br />

2<br />

0<br />

x 10 4<br />

10 1<br />

10 1<br />

227ms After Bounce<br />

10 2<br />

Radius, r [km]<br />

10 2<br />

Radius, r [km]<br />

(c)<br />

grid po<strong>in</strong>ts<br />

10 3<br />

10 3<br />

Baryon Density, log 10 (ρ [g/cm 3 ])<br />

Electron Fraction, Y e<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1<br />

10 1<br />

10 2<br />

Radius, r [km]<br />

s15s7b2<br />

10 2<br />

Radius, r [km]<br />

(d)<br />

Boltztran<br />

leakage<br />

10 3<br />

10 3<br />

Hydro: AGILE (1D GR)<br />

νe transport: BOLTZTRAN<br />

t = 10ms post bounce<br />

νµ and ντ cool<strong>in</strong>g: Boltztran<br />

results VS leakage results<br />

Quantitatively good<br />

agreement<br />

. . . but probably because<br />

too close to bounce!<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 38/48


Leakage scheme: test<strong>in</strong>g µ and τ cool<strong>in</strong>g<br />

Velocity, u [km/s]<br />

Entropy per Baryon, s [k B ])<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 10 4<br />

10 1<br />

10 1<br />

269ms After Bounce<br />

10 2<br />

Radius, r [km]<br />

10 2<br />

Radius, r [km]<br />

(c)<br />

grid po<strong>in</strong>ts<br />

10 3<br />

10 3<br />

Baryon Density, log 10 (ρ [g/cm 3 ])<br />

Electron Fraction, Y e<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1<br />

10 1<br />

10 2<br />

Radius, r [km]<br />

s15s7b2<br />

10 2<br />

Radius, r [km]<br />

(d)<br />

Boltztran<br />

leakage<br />

10 3<br />

10 3<br />

Hydro: AGILE (1D GR)<br />

νe transport: BOLTZTRAN<br />

t = 50ms post bounce<br />

νµ and ντ cool<strong>in</strong>g: Boltztran<br />

results VS leakage results<br />

Qualitatively good<br />

agreement,<br />

entropy shows some<br />

different features<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 38/48


Leakage scheme: test<strong>in</strong>g µ and τ cool<strong>in</strong>g<br />

Velocity, u [km/s]<br />

Entropy per Baryon, s [k B ])<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 10 4<br />

10 1<br />

10 1<br />

317ms After Bounce<br />

10 2<br />

Radius, r [km]<br />

10 2<br />

Radius, r [km]<br />

(c)<br />

grid po<strong>in</strong>ts<br />

10 3<br />

10 3<br />

Baryon Density, log 10 (ρ [g/cm 3 ])<br />

Electron Fraction, Y e<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1<br />

10 1<br />

10 2<br />

Radius, r [km]<br />

s15s7b2<br />

10 2<br />

Radius, r [km]<br />

(d)<br />

Boltztran<br />

leakage<br />

10 3<br />

10 3<br />

Hydro: AGILE (1D GR)<br />

νe transport: BOLTZTRAN<br />

t = 100ms post bounce<br />

νµ and ντ cool<strong>in</strong>g: Boltztran<br />

results VS leakage results<br />

Qualitatively good<br />

agreement,<br />

entropy shows some<br />

different features<br />

shock position slightly different<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 38/48


Leakage scheme: test<strong>in</strong>g µ and τ cool<strong>in</strong>g<br />

Velocity, u [km/s]<br />

Entropy per Baryon, s [k B ])<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 10 4<br />

10 1<br />

10 1<br />

417ms After Bounce<br />

10 2<br />

Radius, r [km]<br />

10 2<br />

Radius, r [km]<br />

(c)<br />

grid po<strong>in</strong>ts<br />

10 3<br />

10 3<br />

Baryon Density, log 10 (ρ [g/cm 3 ])<br />

Electron Fraction, Y e<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1<br />

10 1<br />

10 2<br />

Radius, r [km]<br />

s15s7b2<br />

10 2<br />

Radius, r [km]<br />

(d)<br />

Boltztran<br />

leakage<br />

10 3<br />

10 3<br />

Hydro: AGILE (1D GR)<br />

νe transport: BOLTZTRAN<br />

t = 200ms post bounce<br />

νµ and ντ cool<strong>in</strong>g: Boltztran<br />

results VS leakage results<br />

Qualitatively good<br />

agreement,<br />

entropy shows some<br />

different features<br />

shock position slightly different<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 38/48


Leakage scheme: test<strong>in</strong>g µ and τ cool<strong>in</strong>g<br />

Velocity, u [km/s]<br />

Entropy per Baryon, s [k B ])<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 10 4<br />

10 1<br />

10 1<br />

717ms After Bounce<br />

10 2<br />

Radius, r [km]<br />

10 2<br />

Radius, r [km]<br />

(c)<br />

grid po<strong>in</strong>ts<br />

10 3<br />

10 3<br />

Baryon Density, log 10 (ρ [g/cm 3 ])<br />

Electron Fraction, Y e<br />

14<br />

12<br />

10<br />

8<br />

6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1<br />

10 1<br />

10 2<br />

Radius, r [km]<br />

s15s7b2<br />

10 2<br />

Radius, r [km]<br />

(d)<br />

Boltztran<br />

leakage<br />

10 3<br />

10 3<br />

Hydro: AGILE (1D GR)<br />

νe transport: BOLTZTRAN<br />

t = 500ms post bounce<br />

νµ and ντ cool<strong>in</strong>g: Boltztran<br />

results VS leakage results<br />

Qualitatively good<br />

agreement,<br />

entropy shows some<br />

different features<br />

shock position slightly different<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 38/48


Work <strong>in</strong> progress @ unibas . . .<br />

ELEPHANT<br />

ELEgant Parallel Hydrodynamics with Approximate Neutr<strong>in</strong>o<br />

Transport<br />

Fusion between . . .<br />

. . . FISH: 3D MHD code for magneto-hydrodynamics<br />

Lattimer-Swesty EOS and Shen EOS available<br />

. . . IDSA: detailed approx νe and ¯νe transport<br />

. . . leakage scheme: approx νµ, ντ, ¯νµ and ¯ντ cool<strong>in</strong>g<br />

extention <strong>of</strong> leakage scheme to νe flavour<br />

Test<strong>in</strong>g phase! But . . . let’s have a look!<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 39/48


Conclusions and outlook<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 40/48


Conclusions<br />

Core <strong>collapse</strong> SN is a very <strong>in</strong>terest<strong>in</strong>g topic, which <strong>in</strong>volves deeply<br />

many different physics subjects and computational tools<br />

<strong>neutr<strong>in</strong>os</strong> play a major <strong>role</strong> <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN, where they <strong>in</strong>teract<br />

significantly with matter <strong>in</strong> extreme conditions<br />

after almost 50 years <strong>of</strong> quantitative model<strong>in</strong>g, <strong>core</strong> <strong>collapse</strong> SN<br />

<strong>explosion</strong> is not yet understood; many different mechanism have<br />

been proposed and most <strong>of</strong> them are under <strong>in</strong>vestigation<br />

multi-dimensional effects, improved neutr<strong>in</strong>o-matter <strong>in</strong>teractions,<br />

detailed nuclear physics seem to be all necessary to model <strong>core</strong><br />

<strong>collapse</strong> SN correctly<br />

approximated, but enough detailed neutr<strong>in</strong>o transport (with spectral<br />

analysis) is required<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 41/48


Outlook<br />

Development <strong>of</strong> approximated ν transport:<br />

<strong>in</strong>vestigation <strong>of</strong> wide parameter space <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN theory<br />

(rotation, magnetic field, . . . ) and prediction <strong>of</strong> their GW signatures<br />

(S. Sheidegger)<br />

verification <strong>of</strong> neutr<strong>in</strong>o driven <strong>explosion</strong> <strong>in</strong> 3D model, with reasonable<br />

computational time (M. Liebendorfer, S. Whitehouse)<br />

application <strong>of</strong> leakage schemes to other <strong>explosion</strong> mechanism<br />

quark phase transition (T. Fisher)<br />

jets formation <strong>in</strong> highly rotat<strong>in</strong>g, highly magnetized stars (R.<br />

Kappeli)<br />

<strong>in</strong>vestigation <strong>of</strong> ν transport <strong>in</strong> different astrophysics contexts (like<br />

neutron star merger, A. Perego)<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 42/48


Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 43/48


Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 44/48


Core <strong>collapse</strong> SN <strong>in</strong> a nutshell I<br />

Core <strong>collapse</strong> SN <strong>explosion</strong> is the fate <strong>of</strong> a massive star<br />

(8M⊙ M∗ 90M⊙) before becom<strong>in</strong>g a NS or a BH<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 45/48


Core <strong>collapse</strong> SN <strong>in</strong> a nutshell I<br />

Core <strong>collapse</strong> SN <strong>explosion</strong> is the fate <strong>of</strong> a massive star<br />

(8M⊙ M∗ 90M⊙) before becom<strong>in</strong>g a NS or a BH<br />

dynamics:<br />

Collapse phase at the end <strong>of</strong> the nuclear burn<strong>in</strong>g<br />

phases, Fe <strong>core</strong> <strong>of</strong> a star <strong>collapse</strong>s due to gravity<br />

<strong>in</strong>itial Fe <strong>core</strong> properties for Mprog = 15M⊙:<br />

Rc ∼ 3000 km & M(Rc) ∼ MCh 106 ρ(g/cm3 ) 10 10<br />

0.2 kBT(MeV) 0.7 0.42 Ye 0.5<br />

Pressure: relativistic degenerate e − gas<br />

tcol ∼ tff ∼ 1/ √ G¯ρ ∼ 200ms<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 45/48


Core <strong>collapse</strong> SN <strong>in</strong> a nutshell I<br />

Core <strong>collapse</strong> SN <strong>explosion</strong> is the fate <strong>of</strong> a massive star<br />

(8M⊙ M∗ 90M⊙) before becom<strong>in</strong>g a NS or a BH<br />

dynamics:<br />

Collapse phase<br />

Bounce phase when ρ(R = 0) ∼ ρnucl, the <strong>core</strong><br />

bounces because <strong>of</strong> nuclear short range repulsive<br />

<strong>in</strong>teraction;<br />

<strong>core</strong> properties at bounce:<br />

10 6 ρ(g/cm 3 ) 5 × 10 14 0.2 kBT(MeV) 13.7<br />

0.32 Ye 0.5<br />

shock wave formation at the sonic po<strong>in</strong>t<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 45/48


Core <strong>collapse</strong> SN <strong>in</strong> a nutshell I<br />

Core <strong>collapse</strong> SN <strong>explosion</strong> is the fate <strong>of</strong> a massive star<br />

(8M⊙ M∗ 90M⊙) before becom<strong>in</strong>g a NS or a BH<br />

dynamics:<br />

Collapse phase<br />

Bounce phase<br />

Post-bounce phase the outgo<strong>in</strong>g shock wave expands<br />

and stops, because it loses energy dissociat<strong>in</strong>g Fe<br />

matter and emitt<strong>in</strong>g ν’s; later, the wave is somehow<br />

revived and the star is destroyed<br />

several proposed mechanisms: neutr<strong>in</strong>o heat<strong>in</strong>g, sound<br />

mechanism, 3D MHD effects, jets, neutr<strong>in</strong>o oscillations . . .<br />

texpl ∼ 300ms − 1.5s<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 45/48


Simulation build<strong>in</strong>g blocks<br />

Computational doma<strong>in</strong><br />

EOS<br />

symmetry degree <strong>of</strong> the system and doma<strong>in</strong> extension<br />

for every po<strong>in</strong>t <strong>of</strong> the doma<strong>in</strong>, a vector with hydrodynamics,<br />

thermodynamics and neutr<strong>in</strong>o variables is def<strong>in</strong>ed<br />

it describes the termodynamics state <strong>of</strong> baryonic matter and<br />

electromagnetic radiation<br />

whenever hydrodynamics or neutr<strong>in</strong>o transport change one <strong>of</strong> the<br />

thermodynamics variables, the EOS accunts for all the other<br />

variables changes, assum<strong>in</strong>g equilibrium<br />

Hydrodynamics (HD)<br />

Solution <strong>of</strong> hydrodynamics equations, with Newtonian gravity (NR) or<br />

<strong>in</strong> General Relativity (GR), eventually <strong>in</strong>clud<strong>in</strong>g magnetic field (MHD).<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 46/48


Mass and sp<strong>in</strong> coevolution dur<strong>in</strong>g the alignment <strong>of</strong> a BH]Mass<br />

and sp<strong>in</strong> coevolution dur<strong>in</strong>g the alignment <strong>of</strong> a black hole <strong>in</strong> a<br />

warped accretion disc A. Perego et al.]A. Perego 11 , M. Dotti 2 ,<br />

M. Colpi 3 , M. Volonteri 2<br />

1 Department <strong>of</strong> Physics, University <strong>of</strong> Basel, Kl<strong>in</strong>gerbergstr.<br />

82, 4056 Basel, Switzerland<br />

2 Department <strong>of</strong> Astronomy, University <strong>of</strong> Michigan, Ann Arbor,<br />

MI 48109, USA<br />

3 Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,<br />

Piazza Della Scienza 3, 20126 Milano, Italy<br />

46-1


ILE-BOLTZTRAN fundamental equatio<br />

E<strong>in</strong>ste<strong>in</strong> eqs (conservative formulation) + Boltzmann eqs<br />

∇νT µν = 0 D[fi] = C[fi] with i = νe, νµ, ντ, ¯νe, . . .<br />

E<strong>in</strong>ste<strong>in</strong> eqs. and conservation eqs. give evolution equations for<br />

global quantities (total energy, total momentum, total <strong>in</strong>ternal energy,<br />

. . . )<br />

<strong>in</strong>tegration <strong>of</strong> Boltzmann equations over momentum space (E, µ)<br />

gives local conservation laws for neutr<strong>in</strong>o numbers and neutr<strong>in</strong>o<br />

energies, and neutr<strong>in</strong>o contributions to general equations<br />

consistent equations for hydrodynamical evolution can be found by<br />

subtraction <strong>of</strong> neutr<strong>in</strong>o contributions from global equations<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 47/48


Leakage scheme: <strong>in</strong>gredients<br />

Production mechanisms: pair production, e ± capture<br />

e + + e − ↔ ν + ¯ν p + e − ↔ n + νe n + e + ↔ p + ¯νe<br />

Rprod = Rprod(ρ, T, Ye) Qprod = Qprod(ρ, T, Ye) ⇒ local<br />

Diffusion mechanism: elastic scatter<strong>in</strong>g on nucleons and nuclei<br />

N + ν → N ′ + ν ′ A + ν → A ′ + ν ′<br />

Rdiff = Rdiff(T, λν, τν) Qdiff = Qdiff(T, λν, τν) ⇒ local + global<br />

Equilibrium conditions: local thermodynamical equilibrium<br />

for ρ 10 13 g/cm 3 , local equilibrium conditions apply<br />

for 10 11 g/cm 3 ρ 10 13 g/cm 3 , smooth approach to equilibrium<br />

Neutr<strong>in</strong>os <strong>in</strong> <strong>core</strong> <strong>collapse</strong> SN <strong>explosion</strong> - Paris, 10 September 2009 – p. 48/48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!