20.07.2013 Views

Norm 3

Norm 3

Norm 3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Worst Case Paradigm<br />

System Gain<br />

Remarks<br />

<strong>Norm</strong>s of Linear Systems: Method II<br />

Hgain := sup<br />

w(t)=Θ<br />

H = sup<br />

w(t)∈W<br />

Hw.<br />

Hw<br />

w<br />

• The following are equivalent definitions:<br />

Hgain = sup<br />

w(t)=Θ<br />

⇒ W := {w(t) : w < ∞} .<br />

Hw<br />

w<br />

= sup Hw<br />

w≤1<br />

= sup Hw<br />

w=1<br />

• For any ¯w(t) such that ¯w < ∞, H ¯w ≤ Hgain ¯w.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 1


Definition (SISO system)<br />

Definition (MIMO system)<br />

L2 − L2 Gain<br />

H∞ := sup<br />

ω<br />

H∞ <strong>Norm</strong><br />

H∞ := sup<br />

ω<br />

|H(jω)|.<br />

H(jω), H(jω) 2 = λmaxH(jω) ∗ H(jω).<br />

HL2−L2 := sup<br />

w(t)=Θ<br />

Hw2<br />

.<br />

w2<br />

Proposition For an asymptotically stable linear system HL2−L2 = H∞.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 2


On the Frequency Domain:<br />

Compute<br />

On the Time Domain:<br />

Compute<br />

Computing the H∞ <strong>Norm</strong><br />

H 2<br />

∞<br />

= sup<br />

ω<br />

H(jω).<br />

H∞ = Hwwc2, wwc := arg sup<br />

w2=1<br />

Hw2.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 3


Bounded Real Lemma<br />

Computing the H∞ <strong>Norm</strong><br />

Consider the asymptotically stable CTLTI system with minimal realization<br />

H(s) = C (sI − A) −1 B + D and null initial conditions. There exists P ∈ Sn such that<br />

⎡<br />

⎤<br />

if, and only if, H∞ < µ.<br />

P ≻ Θ,<br />

⎢<br />

⎣<br />

A T P + P A P B C T<br />

⎥<br />

⎦ ≺ Θ<br />

C D −µI<br />

B T P −µI D T<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 4


Computing the H∞ <strong>Norm</strong><br />

Proof (Sufficiency) Define the quadratic Lyapunov function V (x) := xT P x, P ∈ Sn and<br />

its time-derivative<br />

˙V (x) = 2x T P Ax + x T ⎛<br />

P Bw = ⎝ x<br />

⎞T<br />

⎡<br />

⎠ ⎣<br />

w<br />

AT P + P A P B<br />

BT ⎤ ⎛<br />

⎦ ⎝<br />

P Θ<br />

x<br />

⎞<br />

⎠ .<br />

w<br />

Assume that the BRL holds and apply Schur complement to obtain<br />

⎡<br />

⎣ AT P + P A + µ −1 C T C P B + µ −1 C T D<br />

B T P + µ −1 D T C −µI + µ −1 D T D<br />

⎤<br />

⎦ ≺ Θ.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 5


Notice that for all w(t) ∈ L2<br />

⎡<br />

⎡<br />

Computing the H∞ <strong>Norm</strong><br />

⎣ AT P + P A + µ −1C T C P B + µ −1C T D<br />

BT P + µ −1DT C −µI + µ −1DT D<br />

⎣ AT P + P A P B<br />

B T P Θ<br />

⎤<br />

⎦ ≺ µ<br />

⎛<br />

⎝<br />

⇓<br />

x<br />

⎞T<br />

⎡<br />

⎠ ⎣<br />

w<br />

AT P + P A<br />

B<br />

P B<br />

T P<br />

⎤ ⎛<br />

⎦ ⎝<br />

Θ<br />

x<br />

⎞ ⎛<br />

⎠ < µ ⎝<br />

w<br />

<br />

˙V (x)<br />

<br />

x<br />

⎞<br />

⎠<br />

w<br />

⎡<br />

⇕<br />

⎤<br />

⎦ ≺ Θ,<br />

⎣ −µ−2C T C −µ −2C T D<br />

−µ −2DT C I − µ −2DT D<br />

T ⎡<br />

⎤<br />

⎦ ,<br />

⎣ −µ−2C T C −µ −2C T D<br />

−µ −2DT C I − µ −2DT D<br />

⎤ ⎛<br />

⎦ ⎝ x<br />

⎞<br />

⎠ .<br />

w<br />

<br />

w T w−µ −2 z T z<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 6


Integrating<br />

on both sides<br />

Computing the H∞ <strong>Norm</strong><br />

∞<br />

0<br />

˙V (x) < µ w T w − µ −2 z T z <br />

˙V (x) dt < µ<br />

V (x(∞)) − V (x(Θ)) < µ<br />

∞<br />

0<br />

∞<br />

0<br />

w T w − µ −2 z T z dt,<br />

w T w − µ −2 z T z dt.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 7


Computing the H∞ <strong>Norm</strong><br />

Since the system is asymptotically stable, the output z(t) ∈ L2 for all w(t) ∈ L2. Using the<br />

minimality of the realization<br />

z(t) ∈ L2 ⇔ x(t) ∈ L2 ⇒ x(∞) = Θ ⇒ V (x(∞)) = 0.<br />

From the null initial conditions V (0) = 0. Hence<br />

∞<br />

0<br />

Consequently<br />

w T w − µ −2 z T z dt > 0 ⇒<br />

∞<br />

w<br />

0<br />

T w dt > µ −2<br />

∞<br />

0<br />

z2 < µw2, ∀w(t) ∈ L2 ⇒ µ > H∞<br />

since z2 = Hw2 ≤ H∞w2 for all w(t) ∈ L2.<br />

z T z dt.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 8


Theorem<br />

Small Gain Theorem<br />

PSfrag replacements<br />

If G∞ < 1 the unity feedback connection is asymptotically stable.<br />

e w z<br />

That is, z(t), w(t) ∈ L2 for all e(t) ∈ L2.<br />

H(s) G(s)<br />

Proof<br />

Hence<br />

z = Gw = G(z + e), ⇒ z2 ≤ G∞z + e2 ≤ G∞(z2 + e2)<br />

(1 − G∞)z2 ≤ G∞e2 ⇒ z2 ≤<br />

Finally, e(t), z(t) ∈ L2 ⇒ w(t) ∈ L2.<br />

G∞<br />

(1 − G∞) e2 < ∞ ⇒ z(t) ∈ L2<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 9


Theorem<br />

Small Gain Theorem<br />

PSfrag replacements<br />

If G∞ < µ and H∞ < µ −1 the feedback<br />

connection is asymptotically stable. That is,<br />

z1(t), w1(t), z2(t), w2(t) ∈ L2 for all e1(t), e2(t) ∈ L2.<br />

Remark If H(s) = ∆ then Small Gain ⇒ Robust Stability.<br />

z2 H(s)<br />

w2<br />

e1 w1 z1<br />

G(s)<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 10<br />

e2


Proof<br />

acements<br />

Introduce scalings<br />

PSfrag replacements<br />

e1<br />

and work with the modified connection<br />

µe1<br />

z2<br />

w1<br />

µ<br />

G(s)<br />

H(s)<br />

Small Gain Theorem<br />

H(s)<br />

µ µ −1<br />

PSfrag<br />

G(s)<br />

replacements<br />

µ −1<br />

w2<br />

z1<br />

e2<br />

⇔<br />

e2<br />

z2 µH(s)<br />

w2<br />

µe1 w1 z1<br />

µ −1 G(s)<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 11<br />

e2


⎛<br />

⎝ z1<br />

z2<br />

Small Gain Theorem<br />

⎞ ⎡<br />

⎠ = ⎣ µ−1 ⎤ ⎛<br />

G Θ<br />

⎦ ⎝<br />

Θ µH<br />

w1<br />

⎞ ⎡<br />

⎠ = ⎣<br />

w2<br />

µ−1 ⎤ ⎛⎛<br />

G Θ<br />

⎦ ⎝⎝<br />

Θ µH<br />

µe1<br />

⎞ ⎛<br />

⎠ + ⎝<br />

e2<br />

z2<br />

⎞⎞<br />

⎠⎠<br />

,<br />

z1<br />

⎡<br />

<br />

z1<br />

<br />

⇒ <br />

≤ ⎣<br />

<br />

z2<br />

<br />

2<br />

µ−1 ⎤<br />

⎛<br />

⎞<br />

<br />

G Θ µe1<br />

z2<br />

⎦<br />

⎝<br />

<br />

+ ⎠<br />

,<br />

Θ µH e2 z1<br />

∞<br />

2<br />

2<br />

<br />

<br />

z1<br />

⇒ <br />

≤ max{µ<br />

z2<br />

2<br />

−1 ⎛<br />

⎞<br />

<br />

µe1<br />

z1<br />

G∞, µH∞} ⎝<br />

<br />

+ ⎠<br />

,<br />

e2 z2<br />

2<br />

2<br />

<br />

<br />

z1<br />

⇒ <br />

≤<br />

<br />

max{µ−1G∞, µH∞}<br />

1 − max{µ −1 <br />

<br />

µe1<br />

<br />

G∞, µH∞}<br />

< ∞,<br />

<br />

z2<br />

2<br />

⇒ z1(t), z2(t) ∈ L2.<br />

Finally, e1(t), e2(t), z1(t), z2(t) ∈ L2 ⇒ w1(t), w2(t) ∈ L2.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 12<br />

e2<br />

2


Hp Spaces<br />

The set of (rational) matrix functionals H(s) : C → C m×n analytic in the open left semiplane<br />

of the complex plane and equipped with the norm Hp, p = 2, ∞, is a normed vector space.<br />

This space is denoted by the symbol Hp (RHp). If Hp < ∞ then H(s) ∈ Hp (RHp).<br />

Remarks<br />

• Analytic in the left part of the complex plane ⇒ continuous-time stability.<br />

• If H(s) ∈ RHp, analytic in the left part of the complex plane ⇒ no “unstable”<br />

continuous-time poles.<br />

• H(s) ∈ RH2 ⇒ H(s) is asymptotically stable and strictly proper.<br />

• H(s) ∈ RH∞ ⇒ H(s) is asymptotically stable.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 13


Hp Spaces<br />

The set of (rational) matrix functionals H(z) : C → C m×n analytic in the open unity circle and<br />

equipped with the norm Hp, p = 2, ∞, is a normed vector space. This space is denoted by<br />

the symbol Hp (RHp). If Hp < ∞ then H(z) ∈ Hp (RHp).<br />

Remarks<br />

• Analytic in the ⇒ discrete-time stability.<br />

• If H(s) ∈ RHp, analytic in the plane ⇒ no “unstable” discrete-time poles.<br />

• H(z) ∈ RH2 ⇒ H(z) is asymptotically stable.<br />

• H(z) ∈ RH∞ ⇒ H(z) is asymptotically stable.<br />

280B - Linear Control Design Maurício de Oliveira Signals and Systems III – p. 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!