21.07.2013 Views

IC Debug

IC Debug

IC Debug

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“Chirurgie Chirurgie” am Mikro Chip<br />

Christian Boit<br />

Halbleiterbauelemente<br />

Fakultät Fakult Elektrotechnik und Informatik<br />

TUB Berlin


Mikro Chips:<br />

Integrierte Schaltkreise<br />

Fachsprache Englisch: Englisch<br />

Integrated Circuits (<strong>IC</strong>s)<br />

Komponenten:<br />

Komponenten:<br />

Aktiv Aktiv schaltende Elemente: Elemente:<br />

Transistoren<br />

Transistoren (FET) in Silizium<br />

Verdrahtungen<br />

Verdrahtungen in darüberliegenden<br />

dar berliegenden Schichten<br />

aus Metallbahnen und Kontakten


Querschnitt durch <strong>IC</strong><br />

10µm = 1/100mm oder 20% der Dicke<br />

eines menschlichen Haares<br />

Transistoren<br />

(FETs)<br />

Passivierung<br />

Metall2<br />

Via<br />

Metall1<br />

Kontakt<br />

Iso-Oxid<br />

Si- Wanne<br />

Si-Volumen<br />

3


Electrical Characterization of<br />

Criteria:<br />

Failure: Test Systems<br />

• Test pattern looping<br />

• Quick Modification of Test pattern<br />

• Full Error Cycle Log<br />

4


Timing and Waveforms<br />

5


Lokale Information über ber Chip<br />

Funktionalität Funktionalit - früher fr her & heute<br />

6


Analysis Through Backside of Die<br />

New packaging techniques:<br />

Flip Chip<br />

Die<br />

Flip-chip substrate<br />

LOC ( Lead On Chip)<br />

Data taken from Fujitsu<br />

7


Static Photon Emission Failure Localization<br />

X 0.8<br />

X 5 X 25<br />

X 100<br />

Very Useful in FA:<br />

No Regular Photon Emission in Static CMOS<br />

8


Photon Emission of FET in Saturation<br />

Source Gate Drain<br />

n+ n+<br />

p-substrate<br />

Conduction Pinch-off<br />

channel<br />

region<br />

Source Drain<br />

W/L = 10 w = 1µm<br />

V D = 6V, V G = 3 V<br />

Gate<br />

10 µm<br />

9


Operating Condition of FET at Photon Emission<br />

Substrate Drain<br />

Current<br />

[µA]<br />

I sub<br />

I D<br />

[mA]<br />

Substrate<br />

Current<br />

Gate voltage [V] Gate voltage [V]<br />

Light<br />

Intensity<br />

Static CMOS: No Light Emission without Fail<br />

Dynamic CMOS: Light Emission when Inverters flip<br />

10


Time Resolved Emission TRE<br />

• timing resolution: 30 - 40 ps<br />

(measured)<br />

• spatial resolution: 500nm<br />

• frontside and backside<br />

• for backside analysis:<br />

die thickness < 100nm<br />

J.C. Tsng, IBM<br />

11


TRE in Ring Oscillator - Demonstrator<br />

Courtesy IBM / Richard Ross<br />

12


Watching the chip at work<br />

Picosecond<br />

imaging<br />

circuit<br />

analysis<br />

(P<strong>IC</strong>A)<br />


Focused Ion Beam<br />

• Local removal of<br />

material +<br />

secondary particle<br />

emission for<br />

imaging<br />

• Delayering in<br />

scanning window<br />

of ion beam<br />

• Selectivity of<br />

Metal/ ILD Glass /Si<br />

by gas addition<br />

(local RIE)<br />

• Deposition of<br />

Metal / Isolator<br />

(local PECVD)<br />

14


Previous Process<br />

Circuit Circuit Design Design<br />

Simulation Simulation<br />

Layout LayoutDesign Design<br />

Mask Mask Production Production<br />

Engineering Engineering Sample Sample<br />

Evaluation Evaluation<br />

Production Production<br />

Quality Quality Control Control<br />

Circuit Edit with FIB<br />

Probing Pads at SRAM:<br />

- for evaluation of behavior<br />

of different SRAM cells<br />

- after parallel polishing<br />

down to via 1 level<br />

- to drive and to measure<br />

- up to 7 probing pads are<br />

generated by FIB<br />

FIB<br />

Source:<br />

Infineon<br />

15


M5<br />

M4<br />

M3<br />

M2<br />

M1<br />

FIB Editing of <strong>IC</strong>s through Si Backside<br />

2 - 5 µm<br />

Silicon<br />

Substrate<br />

appr.50 µm<br />

FIB Trench<br />

ILD1<br />

ILD0<br />

Transistor Level<br />

- Opportunity: Editing lower interconnect levels,<br />

Contacts to active device,<br />

re-assessment of frontside analysis techniques<br />

- But: Bottom Co-planarity, Endpoint Detection, Navigation<br />

16


Time to Market:<br />

Critical Factor in <strong>IC</strong> Development<br />

Time To Market<br />

Time to market reduction:<br />

High Profit Phase<br />

Ref – Steve Maher<br />

Demand<br />

0% 100%<br />

Acceleration of design, technology development, ramp up and…<br />

debug (readiness of tests & analysis techniques to new product)<br />

Capacity<br />

0% 100%<br />

17


1st Si<br />

T0<br />

<strong>IC</strong> Development Process<br />

Silicon <strong>Debug</strong><br />

T1 T2 T3 T4 T5 T6 T7 T8 T9 Tn…<br />

Product Definition<br />

Test<br />

Department<br />

FA Input<br />

FA Output<br />

Physical<br />

Analysis<br />

Department<br />

Product Design<br />

<strong>Debug</strong>ged <strong>IC</strong><br />

1 st Silicon<br />

<strong>Debug</strong><br />

Qual<br />

Ramp up<br />

Volume Production<br />

Ref – Steve Maher<br />

18


ROI of <strong>Debug</strong><br />

~80% 80% of highly innovative <strong>IC</strong> products get<br />

at least one redesign<br />

Circuit Edit is involved in each redesign<br />

Functional analysis in ~30% ~30%<br />

of redesigns<br />

Full custom products ≈ no redesign<br />

→ more than 50% of revenue is made<br />

with products that get redesign<br />

19


FIB: Principle<br />

Connection of two metal lines and cut of one metal line<br />

Pt compound Xe2F<br />

Ga(+)-Beam Ga-BeamGa(+)-Beam<br />

Xe2F + Iodine<br />

Pt<br />

Al<br />

Al<br />

SiO<br />

20


Design Modification<br />

Pt strap cuts<br />

21


Navigation through<br />

silicon with co-axial co axial<br />

IR and ion column<br />

Backside FIB<br />

22


The OptiFIB Column<br />

Photon Beam<br />

Ion Beam<br />

Coaxial Photon-Ion Microscope<br />

Photon Image<br />

Ion Editing<br />

Simultaneous<br />

Imaging & Editing<br />

23


P<strong>IC</strong>A - Picosecond Imaging Circuit Analysis<br />

example ring oscillator:<br />

t=3.876ns:<br />

t=4.080ns:<br />

t=6.800ns:<br />

Emission from a<br />

ring oscillator at<br />

various times.<br />

Three ‚optical waveforms‘ of switching<br />

induced light emission from neighbouring<br />

inverters of the ring oscillator;<br />

Vdd -> 0V: high intensity<br />

0V -> Vdd: low intensity<br />

All figures from J.C. Tsng, Picosecond imaging circuit analysis<br />

24


P<strong>IC</strong>A - Picosecond Imaging Circuit Analysis<br />

example design analysis:<br />

fail<br />

reference<br />

Time integrated image of light<br />

from a register file while<br />

running a test pattern<br />

producing a fail<br />

fail<br />

‚optical waveform‘ from normal<br />

and faulty latch pair<br />

All figures from J.C. Tsng, Picosecond<br />

imaging circuit analysis<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!