22.07.2013 Views

Effects of whelk (Nucella lapillus (L.)) predation on mussel (Mytilus ...

Effects of whelk (Nucella lapillus (L.)) predation on mussel (Mytilus ...

Effects of whelk (Nucella lapillus (L.)) predation on mussel (Mytilus ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine Biology and Ecology,<br />

226 (1998) 87–113<br />

L<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> (<str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (L.)) <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>mussel</strong><br />

(<strong>Mytilus</strong> trossulus (Gould), M. edulis (L.)) assemblages in<br />

tidepools and <strong>on</strong> emergent rock <strong>on</strong> a wave-exposed rocky<br />

shore in Nova Scotia, Canada<br />

*<br />

Heather L. Hunt , Robert E. Scheibling<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada<br />

Received 23 December 1996; received in revised form 2 September 1997; accepted 27 September 1997<br />

Abstract<br />

The <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> is the most abundant predator <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal <strong>mussel</strong>s (<strong>Mytilus</strong><br />

trossulus and M. edulis) <strong>on</strong> rocky shores al<strong>on</strong>g the Atlantic coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Nova Scotia, Canada.<br />

Envir<strong>on</strong>mental differences am<strong>on</strong>g intertidal habitats, such as tidepools and emergent rock, may<br />

influence the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and its effect <strong>on</strong> community structure. We manipulated<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> both recruits ( , 5 mm shell length, SL) and post-recruits ( $ 5mmSL)<str<strong>on</strong>g>of</str<strong>on</strong>g>N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

in tidepools and <strong>on</strong> emergent rock to examine the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>mussel</strong><br />

assemblages <strong>on</strong> a rocky shore near Halifax, Nova Scotia. Mussels . 10 mm SL were more<br />

abundant in plots where the density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits was reduced than in c<strong>on</strong>trol plots where<br />

their density was not manipulated. Percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s remained stable where the density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits was reduced but declined in c<strong>on</strong>trol plots, more so <strong>on</strong> emergent rock than in<br />

tidepools. This between-habitat difference probably reflects differences in the density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

post-recruits since feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s enclosed in cages did not differ significantly between<br />

tidepools and emergent rock. Predati<strong>on</strong> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits could not fully account for the<br />

reducti<strong>on</strong> in <strong>mussel</strong> cover and abundance <strong>on</strong> emergent rock or in tidepools. This discrepancy is<br />

probably due to dislodgment by wave acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s killed by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s, as well as the live<br />

<strong>mussel</strong>s surrounding the empty shells. We could not detect an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

<strong>on</strong> <strong>mussel</strong> cover or size distributi<strong>on</strong>.<br />

Laboratory experiments indicated that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> could be predicted from the<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the drill hole they create when feeding <strong>on</strong> a <strong>mussel</strong>. In the laboratory, feeding rate was<br />

linearly related to body size for recruits but not for post-recruits. Mean size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s c<strong>on</strong>sumed<br />

increased with increasing <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size for both recruits and post-recruits. In the field, the size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by post-recruits differed from that <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s, but the distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by recruits was generally similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> field-collected<br />

* Corresp<strong>on</strong>ding author. E-mail: hlhunt@is2.dal.ca<br />

0022-0981/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.<br />

PII S0022-0981(97)00239-6


88 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

drilled shells indicated that <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits will prey <strong>on</strong> <strong>mussel</strong>s as small as 2 mm SL, while<br />

recent recruits can prey <strong>on</strong> <strong>mussel</strong>s as large as 22 mm SL. Given the relatively high feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recent recruits and broad size range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s they c<strong>on</strong>sume, we c<strong>on</strong>clude that these small <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

are potentially important in limiting <strong>mussel</strong> recruitment <strong>on</strong> these shores. © 1998 Elsevier<br />

Science B.V.<br />

Keywords: Intertidal z<strong>on</strong>e; <strong>Mytilus</strong>; <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>; Predati<strong>on</strong>; Tidepools<br />

1. Introducti<strong>on</strong><br />

Envir<strong>on</strong>mental factors, such as temperature and wave acti<strong>on</strong>, which influence<br />

predator–prey interacti<strong>on</strong>s may be important determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> community structure in the<br />

marine benthos. Changing envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s may alter the behaviour and/or<br />

relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> predators, resulting in variati<strong>on</strong> in feeding rate (Menge, 1978a,b,<br />

1983; Barbeau et al., 1994; Carroll and Highsmith, 1996; Pile et al., 1996; Scheibling<br />

and Hatcher, 1997), susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> prey to capture (Barbeau and Scheibling, 1994), or<br />

size selectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> predators (Richards<strong>on</strong> and Brown, 1990; Hughes and Burrows, 1991).<br />

Menge and Sutherland (1987) have proposed a model <str<strong>on</strong>g>of</str<strong>on</strong>g> community organizati<strong>on</strong> for<br />

rocky shores that predicts that increased envir<strong>on</strong>mental stress reduces the importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g>, assuming predators are more affected by these stresses than their prey. The<br />

model is based <strong>on</strong> experimental studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s (Menge, 1976, 1978a,b, 1983; Lubchenco and Menge, 1978) and grazing by<br />

littorinid snails (Lubchenco, 1986) al<strong>on</strong>g a gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> wave acti<strong>on</strong>.<br />

Predati<strong>on</strong> <strong>on</strong> <strong>mussel</strong>s, which are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the dominant sessile organisms (Menge and<br />

Farrell, 1989), can have dramatic effects <strong>on</strong> intertidal community structure <strong>on</strong> temperate<br />

rocky shores (Paine, 1966, 1974; Menge, 1976; Lubchenco and Menge, 1978; Robles,<br />

1987; Robles and Robb, 1993; Carroll and Highsmith, 1996). The <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

is a comm<strong>on</strong> predator <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s <strong>on</strong> wave-exposed rocky shores in the North Atlantic<br />

(Stephens<strong>on</strong> and Stephens<strong>on</strong>, 1972). Its <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> rate is affected by various abiotic and<br />

biotic factors which moderate the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> physical disturbance and desiccati<strong>on</strong><br />

stress, including wave forces, height <strong>on</strong> the shore, weather, substratum heterogeneity,<br />

and the presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> canopy algae (Menge, 1978a,b, 1983; Burrows and<br />

Hughes, 1989; Gosselin and Bourget, 1989; Hughes and Burrows, 1990, 1991). Previous<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <strong>on</strong> <strong>mussel</strong> assemblages have focused <strong>on</strong> adult <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

and <strong>mussel</strong>s. Newly recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s are much less visible than adults, but can be<br />

seas<strong>on</strong>ally abundant. Predati<strong>on</strong> by recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s has been examined in a few<br />

laboratory studies (Largen, 1967a; Palmer, 1990; Gosselin and Chia, 1994), but the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits <strong>on</strong> natural prey assemblages in the field are unknown.<br />

Al<strong>on</strong>g the Atlantic coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Nova Scotia, the <strong>mussel</strong>s <strong>Mytilus</strong> trossulus and M. edulis<br />

(hereafter <strong>Mytilus</strong> because they cannot be distinguished visually at small size) co-occur<br />

in the low and mid intertidal z<strong>on</strong>es (Pedersen, 1991; Mallet and Carver, 1995). The<br />

cover and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> differs am<strong>on</strong>g intertidal habitats. Mussels in<br />

tidepools generally occur in centimetre-scale patches (Hunt and Scheibling, 1995),


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 89<br />

whereas those <strong>on</strong> emergent rock tend to form more extensive beds (pers<strong>on</strong>al observati<strong>on</strong>s;<br />

Minchint<strong>on</strong> et al., 1997). Settlement and recruitment rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s do not differ<br />

between these habitats (Hunt and Scheibling, 1996), suggesting that this pattern reflects<br />

lower post-settlement mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s <strong>on</strong> emergent rock. Predati<strong>on</strong> by N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>,<br />

which is likely an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality for <strong>mussel</strong>s in both habitats, may be<br />

influenced by envir<strong>on</strong>mental differences between tidepools and emergent rock. Predators<br />

such as <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s may have more time to search for prey in tidepools, where organisms are<br />

c<strong>on</strong>tinually submerged, than <strong>on</strong> emergent rock. Also, tidepools provide a refuge from<br />

extreme fluctuati<strong>on</strong>s in envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s which may influence the feeding rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> predators (Metaxas and Scheibling, 1993).<br />

In this study, we compare <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>Mytilus</strong> by N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> between tidepools and<br />

emergent rock. During the study, we observed a large recruitment event <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s,<br />

indicating that recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s can be numerically dominant. In a field<br />

experiment, we manipulated the density <str<strong>on</strong>g>of</str<strong>on</strong>g> recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> older<br />

juveniles and adults (hereafter post-recruits) to test their relative effects <strong>on</strong> percentage<br />

cover and size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s. We compare the feeding rate and size selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recently recruited and older <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s preying <strong>on</strong> <strong>mussel</strong>s in both the field and the<br />

laboratory, and use these data to estimate the direct and indirect effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

<str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the <strong>mussel</strong> assemblage.<br />

2. Methods<br />

2.1. Laboratory experiments<br />

<str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> drills through <strong>mussel</strong> shells by scraping with its radula and secreting<br />

an erosive chemical (Hughes and Burrows, 1993), resulting in a distinctive, approximately<br />

circular drill hole (Palmer, 1990). Laboratory experiments were c<strong>on</strong>ducted to<br />

determine the relati<strong>on</strong>ship between the size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> and their drill holes, and<br />

to investigate size selective <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> by the <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s. Thirty-four <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

post-recruits 5–26 mm in shell length (SL) were used in an experiment in May 1995; 32<br />

recruits , 5 mm were used in a sec<strong>on</strong>d experiment in October 1995. In each experiment,<br />

individual <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s were presented with two <strong>mussel</strong>s from each <str<strong>on</strong>g>of</str<strong>on</strong>g> four size classes: , 5,<br />

5–9.9, 10–14.9, and 15–24.9 mm SL for post-recruits; , 2, 2–3.9, 4–5.9, and 6–<br />

7.9 mm for recruits. Whelks and <strong>mussel</strong>s were collected from our field site (see Field<br />

Experiment).<br />

Each experiment was c<strong>on</strong>ducted in a seawater table supplied with running sea water at<br />

21<br />

a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> | 3 l min . Water temperatures ranged from 5.5 to 88C in May and 9.5 to<br />

16.58C in October. Natural lighting was provided by windows in the laboratory.<br />

Post-recruits were held in cages (diameter 15 cm, height 7 cm) c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> PVC pipe<br />

and 3 mm Vexar mesh. Recruits were held in glass dishes (diameter 6.5 cm, height 5 cm)<br />

covered with cheesecloth. The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment was 26 days for post-recruits<br />

and 34 days for recruits. Whelks which did not feed during the experiments (five recruits<br />

and three post-recruits) were excluded from the analysis.<br />

The experiments were m<strong>on</strong>itored daily and dead (predated) <strong>mussel</strong>s were replaced.


90 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Dead <strong>mussel</strong>s were examined for a drill hole using a dissecting microscope. Drill hole<br />

diameter and <str<strong>on</strong>g>whelk</str<strong>on</strong>g> and <strong>mussel</strong> shell length were measured using an ocular micrometer<br />

(accuracy 60.03 mm) or vernier calipers (<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s and <strong>mussel</strong>s . 5 mm, accuracy<br />

60.05 mm). Mean drill hole diameter was related to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> shell length by n<strong>on</strong>-linear<br />

regressi<strong>on</strong> after pooling the data from the two experiments (n 5 58).<br />

2.2. Field experiment-manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> densities<br />

2.2.1. Study site and methods<br />

This study was c<strong>on</strong>ducted at an exposed rocky shore at Cranberry Cove (448289N,<br />

638569W) near Halifax, Nova Scotia, Canada. The shore is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> granite<br />

platforms and outcrops with occasi<strong>on</strong>al large boulders (glacial erratics). There are<br />

numerous tidepools scattered al<strong>on</strong>g the shore in irregular depressi<strong>on</strong>s in the rock,<br />

ranging from a few decimetres to over 10 m in maximum dimensi<strong>on</strong>. The shore is<br />

exposed to southerly swells which may reach 10 m in significant wave height (average<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> all waves measured) in fall and winter (unpublished<br />

data, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries and Oceans, Canada). For a further descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

study site, see Metaxas et al. (1994) and Hunt and Scheibling (1995).<br />

We compared the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by recruits and post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

<strong>on</strong> the percentage cover and size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> between tidepools and emergent<br />

rock. The experiment was set up in four blocks separated by at least 50 m to intersperse<br />

treatments al<strong>on</strong>g | 1 km <str<strong>on</strong>g>of</str<strong>on</strong>g> shoreline. Four plots in each block were selected: two<br />

tidepools and two areas <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent rock (Fig. 1). The boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> plots <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent<br />

rock were defined by crevices and other topographic features. Tidepool plots ranged<br />

2<br />

from 1.5 to 4 m in area and 0.2 to 0.4 m in depth. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent rock were<br />

comparable in area. Distances between plots within a block ranged from 1 to 5 m.<br />

Height <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot above chart datum (C.D.) was measured in August 1996 using a<br />

transit level: plots <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent rock were 0.7 to 1.6 m above C.D. and tidepool plots<br />

were 0.6 to 2.2 m above C.D.<br />

In June 1995, <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits ( $ 5 mm SL) were manually removed from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the two plots within each habitat (tidepool and emergent rock) in each block; the<br />

remaining plots served as c<strong>on</strong>trols (Fig. 1). In late September, about two weeks after a<br />

large recruitment event, recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s ( , 5 mm SL) were manually removed<br />

2<br />

from two 0.04 m quadrats and from a 2-cm-wide border around each <str<strong>on</strong>g>of</str<strong>on</strong>g> these quadrats<br />

2<br />

in each plot (Fig. 1). Two other 0.04 m quadrats in each plot served as c<strong>on</strong>trols in<br />

which recruits were not manipulated. Quadrats were marked in two corners with<br />

stainless steel screws. Treatments with reduced densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits or recruits were<br />

m<strong>on</strong>itored every 3 to 10 days until mid-November 1995 and invading <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s were<br />

counted and removed.<br />

Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits and post-recruits were measured in five randomly placed<br />

2<br />

0.04 m quadrats in the experimental plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were not<br />

manipulated. Whelk densities were recorded at 1–2 mo intervals from June to December<br />

1995, and in June and October 1996. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> extremely high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits in<br />

2<br />

September and December 1995, they were counted in a 0.01 m quadrat nested within<br />

2<br />

each 0.04 m quadrat. In December 1995, densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits were estimated both in


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 91<br />

Fig. 1. Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> four blocks in the field experiment in which densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits<br />

and post-recruits were manipulated at Cranberry Cove, Nova Scotia. Tidepool plots are indicated in grey and<br />

plots <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent rock (white) are indicated by a dashed line. The boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> plots <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent rock were<br />

defined by crevices, ridges, and other topographic features. Within a block, plots were separated by 1 to 5 m.<br />

Density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits (large snail symbol) was manually reduced (no snail symbol) in <strong>on</strong>e plot in each<br />

habitat (tidepool, emergent rock) and not manipulated (snail symbol present) in the sec<strong>on</strong>d plot in each habitat.<br />

2<br />

Within each plot, density <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits (small snail symbol) was manually reduced in two 0.04 m quadrats (no<br />

2<br />

snail symbol in quadrat) and not manipulated (snail symbol in quadrat) in two other 0.04 m quadrats.<br />

plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were not manipulated and in plots where they were<br />

reduced. In September and December, the sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in the sample quadrats were<br />

measured with vernier calipers (accuracy 60.1 mm). Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits and<br />

post-recruits were recorded in a similar manner in <strong>on</strong>e tidepool plot and <strong>on</strong>e plot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

emergent rock in each <str<strong>on</strong>g>of</str<strong>on</strong>g> four other blocks <strong>on</strong> the shore (which did not corresp<strong>on</strong>d to the<br />

experimental blocks) at 1–2 mo intervals from July 1994 to October 1995 and in June<br />

and October 1996.<br />

Percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> was estimated in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the four permanently marked<br />

2<br />

0.04 m quadrats in each plot in June (before manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> postrecruits)<br />

and in August, October, and November 1995. A plexiglass panel with 60<br />

random points was placed over a quadrat and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> points overlying <strong>mussel</strong>s<br />

were counted and expressed as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the total. The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong><br />

2<br />

was determined from samples collected in random 12 cm quadrats in late September<br />

(three from each plot where post-recruits were not manipulated) and in late November or<br />

2<br />

early December (from all permanently marked 0.04 m quadrats). Empty shells with drill<br />

holes also were measured. Predator size was determined from the drill hole diameter<br />

using the relati<strong>on</strong>ship determined in the laboratory (see Results). Drill holes less than


92 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

0.34 mm were c<strong>on</strong>sidered to have been made by recently recruited ( , 5 mm) <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s.<br />

Whelks experienced with feeding <strong>on</strong> <strong>mussel</strong>s will sometimes attack small individuals<br />

between the posterior margins <str<strong>on</strong>g>of</str<strong>on</strong>g> the shell (Hughes and Burrows, 1993). We were able to<br />

detect these attacks and estimate the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the predator from the semi-circular mark left<br />

<strong>on</strong> the shell margin.<br />

2.2.2. Statistical analysis<br />

ANOVA was used to examine spatial and temporal patterns in <str<strong>on</strong>g>whelk</str<strong>on</strong>g> abundance and<br />

to test the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental factors <strong>on</strong> <strong>mussel</strong> cover and size structure. All<br />

analyses were c<strong>on</strong>ducted as randomized block designs. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong><br />

within blocks, the full model including interacti<strong>on</strong>s with block could not be tested.<br />

However, Tukey’s test for n<strong>on</strong>-additivity (a 5 0.05) indicated that additive models (i.e.,<br />

interacti<strong>on</strong>s with block pooled as the residual error) were appropriate (Kirk, 1995) for all<br />

analyses. Prior to ANOVA, Cochran’s test was used to ensure that the data satisfied the<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variances (a 5 0.05). Where necessary, raw data were<br />

transformed to satisfy this assumpti<strong>on</strong>.<br />

Peak densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits and post-recruits were compared between habitats<br />

(tidepool, emergent rock), years (a fixed factor with two or three levels), and blocks<br />

using three-way ANOVA. Post-recruit and recruit density was ln(x) or ln(x 1 1)<br />

transformed to remove heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Cochran’s C test, a 5 0.05).<br />

Due to preexisting differences in <strong>Mytilus</strong> cover between habitats, change in percentage<br />

cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s was used as the dependent variable in ANOVA to examine the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density <strong>on</strong> <strong>mussel</strong> cover. Mussel cover was<br />

2<br />

averaged for the four 0.04 m quadrats in each plot. Change in cover between June and<br />

August and between August and October 1995 was analysed by three-way ANOVA.<br />

Habitat (tidepool, emergent rock) and Post-Recruit Density (reduced, natural density)<br />

were fixed factors, each with two levels, and Block was a random factor with four levels.<br />

Change in <strong>mussel</strong> cover from October to November 1995, when density <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits<br />

was manipulated, was analysed by four-way ANOVA using a split plot design (Dam<strong>on</strong><br />

and Harvey, 1987). Each plot existed in <strong>on</strong>e habitat (tidepool or emergent rock) and <strong>on</strong>e<br />

block and received <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits, but received both<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the recruit density treatment (the split plot factor). To minimize the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial variability within plots, replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> recruit density treatments were<br />

randomly located within plots rather than assigned to opposite sides <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot (Fig.<br />

2<br />

1). Before analysis, <strong>mussel</strong> cover was averaged for the 0.04 m quadrats with and<br />

without recruits respectively for each plot. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Block, Habitat, Post-Recruit<br />

Density, and Habitat 3 Post-Recruit Density were tested am<strong>on</strong>g plots. The interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Habitat and Post-Recruit Density with Block were pooled as the error term. Recruit<br />

Density (a fixed factor with two levels: reduced, natural density), Recruit Density 3<br />

Post-Recruit Density, Recruit Density 3 Habitat, and Recruit Density 3 Habitat 3 Post-<br />

Recruit Density were tested within plots. Interacti<strong>on</strong>s c<strong>on</strong>taining both Block and Recruit<br />

Density were pooled as the within-plot error term.<br />

Three-way ANOVA was used to compare the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s , 2mm SL<br />

(recruits) between September and December, with M<strong>on</strong>th and Habitat as fixed factors<br />

(each with two levels), and Block as a random factor with four levels. For samples


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 93<br />

collected in December, four-way split plot ANOVA (as described above) was used to<br />

compare the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong> recruits between blocks, habitats, and recruit and<br />

post-recruit density treatments.<br />

Kolmogorov–Smirnov tests (Seigel and Castellan, 1988) were used to compare the<br />

size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s, live <strong>mussel</strong>s, and empty <strong>mussel</strong> shells drilled by recruits or<br />

post-recruits between dates (September and December 1995) and habitats for plots<br />

where post-recruits were not manipulated. Due to low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> drilled shells in<br />

December, shells drilled by recruits were pooled across recruit density treatments.<br />

Kolmogorov–Smirnov tests also were used to compare size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> live and<br />

drilled <strong>mussel</strong>s in September and December 1995 and to compare size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

live <strong>mussel</strong>s between habitats and <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatments (recruits and post-recruits) in<br />

December 1995.<br />

2.3. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits in tidepools and <strong>on</strong> emergent<br />

rock<br />

The feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> <strong>on</strong> artificially c<strong>on</strong>structed <strong>mussel</strong> patches with a<br />

specific compositi<strong>on</strong> (number and size distributi<strong>on</strong>) was examined in tidepools and <strong>on</strong><br />

emergent rock using cage enclosures in September and October 1995 and June 1997.<br />

Mussel patches were c<strong>on</strong>structed in the laboratory. Each patch c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 <strong>mussel</strong>s<br />

(109 , 5 mm, 23 5–9.9 mm, 14 10–14.9 mm, and four 15–24.9 mm) which were placed<br />

<strong>on</strong> a 12.5 3 12.5 cm piece <str<strong>on</strong>g>of</str<strong>on</strong>g> fiberglass window screen (mesh size 2 mm). This size<br />

distributi<strong>on</strong> is the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s in tidepools (Hunt and<br />

Scheibling, 1995) and <strong>on</strong> emergent rock (unpublished data) at Cranberry Cove. Patches<br />

were held in running sea water in the laboratory for two weeks before transplantati<strong>on</strong> to<br />

the field. During this time, patches were placed <strong>on</strong> rings <str<strong>on</strong>g>of</str<strong>on</strong>g> PVC pipe to prevent <strong>mussel</strong>s<br />

from attaching through the mesh to the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the tank. While in the laboratory,<br />

patches were placed in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the tank inflow for several days to stimulate str<strong>on</strong>ger<br />

byssal attachment to the mesh and were removed from the water <strong>on</strong>ce a day for several<br />

hours to acclimate to emersi<strong>on</strong>.<br />

<strong>Mytilus</strong> patches for the first caging experiment were transplanted to the field <strong>on</strong> June<br />

25, 1995. The mesh base <str<strong>on</strong>g>of</str<strong>on</strong>g> each patch was fastened to the substratum with marine<br />

epoxy putty (Z-Spar Splash Z<strong>on</strong>e Compound). Patches were covered with another piece<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fiberglass window screen for several days to reduce wave stress while the <strong>mussel</strong>s<br />

attached to the substratum. Three <strong>mussel</strong> patches <strong>on</strong> emergent rock and two in tidepools<br />

were selected to examine feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s from August 26 to November 2, 1995.<br />

Any dead <strong>mussel</strong>s were removed from the patches before each was enclosed in a round<br />

cage c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> PVC pipe (height 7 cm, diameter 15 cm, three 4 3 13 cm holes cut<br />

in the sides) and covered with 3 mm Vexar mesh. The cages were fastened to the<br />

substratum with epoxy putty and <strong>on</strong>e <str<strong>on</strong>g>whelk</str<strong>on</strong>g> (15.5 to 16.5 mm SL) was enclosed in each<br />

cage. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> the patches <strong>on</strong> emergent rock were exposed to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> for 36 and<br />

52 days (because damage to cages by storms and the death <str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosed <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

interrupted the experiment); the other patches were exposed to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> for<br />

68 days. A sec<strong>on</strong>d caging experiment was set up <strong>on</strong> June 13, 1997. Three <strong>mussel</strong> patches<br />

in each habitat were enclosed for 10 days in cages c<strong>on</strong>taining two adult <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s (15 to


94 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

17.5 mm). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s eaten by each <str<strong>on</strong>g>whelk</str<strong>on</strong>g> was determined from the number<br />

with drill holes. Any empty <strong>mussel</strong> shells with drill holes too small (based <strong>on</strong> the<br />

regressi<strong>on</strong> equati<strong>on</strong> from the laboratory experiment) to have been created by the<br />

enclosed <str<strong>on</strong>g>whelk</str<strong>on</strong>g> were c<strong>on</strong>sidered to have been c<strong>on</strong>sumed by invading <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits and<br />

were excluded from the analysis.<br />

3. Results<br />

3.1. Laboratory experiments<br />

Drill hole diameter (D) was positively related to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> length (L) (Fig. 2) as given by<br />

the regressi<strong>on</strong> equati<strong>on</strong>:<br />

0.576 2<br />

D (mm) 5 0.135 3 L (mm) (r 5 0.986).<br />

This equati<strong>on</strong> predicts that <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits (,5 mm) create drill holes ,0.34 mm in<br />

diameter. To determine if <strong>mussel</strong> size affected drill hole size, drill hole diameters in two<br />

size classes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s (5–9.9 and 15–24.9 mm SL for post-recruits, n57; 2–3.9 and<br />

4–5.9 mm for recruits, n513) were compared using paired t-tests for <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s which<br />

c<strong>on</strong>sumed individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> both size classes. There was no significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong> size<br />

<strong>on</strong> drill hole diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits (T12520.106, P50.918) or post-recruits (T650.640, P50.419). A significant relati<strong>on</strong>ship between drill hole size and gastropod size also has<br />

Fig. 2. Relati<strong>on</strong>ship between the mean diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> drill holes made in <strong>Mytilus</strong> and shell length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g><br />

<str<strong>on</strong>g>lapillus</str<strong>on</strong>g>. Sample size 58.


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 95<br />

been reported for adult (.5mmSL)Ocenebra lurida feeding <strong>on</strong> limpets (Palmer, 1988)<br />

and for juvenile (,7mm SL) N. emarginata feeding <strong>on</strong> barnacles (Palmer, 1990).<br />

The feeding rate (FR) <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> recruits in October was significantly related to<br />

mean body size (L, average <str<strong>on</strong>g>of</str<strong>on</strong>g> initial and final length):<br />

21 2<br />

FR (<strong>mussel</strong>s week ) 5 2.32 1 0.992 3 L (mm) (r 5 0.403, F 5 16.8,<br />

1,25<br />

P 5 0.0004) (Fig. 3).<br />

Whelk recruits (mean SL6S.E.53.560.2 mm) c<strong>on</strong>sumed an average (6S.E.) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

21<br />

1.260.2 <strong>mussel</strong>s week . In c<strong>on</strong>trast, the feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits in May was not<br />

2<br />

linearly related to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size (r 50.08, F 52.65, P50.11) (Fig. 3). On average,<br />

post-recruits (mean size 15.461.1 mm) c<strong>on</strong>sumed 0.760.1 <strong>mussel</strong>s week .<br />

There was a significant positive relati<strong>on</strong>ship between mean size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s (M)<br />

c<strong>on</strong>sumed and mean size (L, average <str<strong>on</strong>g>of</str<strong>on</strong>g> initial and final length) <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits<br />

and post-recruits (Fig. 4):<br />

Recruits M (mm) 5 2.594 1 0.546<br />

1,29<br />

2<br />

3 L (mm) (r 5 0.371, F 5 14.77, P 5 0.001)<br />

1,25<br />

2<br />

Post 2 recruits M (mm) 5 8.485 1 0.312 3 L (mm) (r 5 0.254, F 5 9.88,<br />

1,29<br />

P 5 0.004).<br />

Although large recruits (.3 mm SL) rarely c<strong>on</strong>sumed <strong>mussel</strong>s ,2 mm SL and postrecruits<br />

rarely c<strong>on</strong>sumed <strong>mussel</strong>s ,5 mm SL, both recruits and post-recruits were<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>suming the full size range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s presented to them.<br />

21<br />

Fig. 3. Mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> week c<strong>on</strong>sumed by <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mean <str<strong>on</strong>g>whelk</str<strong>on</strong>g> shell<br />

length (mm, average <str<strong>on</strong>g>of</str<strong>on</strong>g> initial and final length): recruits (,5 mm SL) <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <strong>mussel</strong>s 0.2–8 mm SL in<br />

October (n527) and post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <strong>mussel</strong>s 1–25 mm SL in May (n531).<br />

21


96 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Fig. 4. Mean size (mm) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> c<strong>on</strong>sumed by <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mean <str<strong>on</strong>g>whelk</str<strong>on</strong>g> shell length<br />

(mm, average <str<strong>on</strong>g>of</str<strong>on</strong>g> initial and final length): recruits (,5 mm SL) <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <strong>mussel</strong>s 0.2–8 mm SL (n527) and<br />

post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <strong>mussel</strong>s 1–25 mm SL (n531). The stippled curves indicate the 95% CI.<br />

3.2. Whelk manipulati<strong>on</strong> experiments<br />

3.2.1. Whelk density and size distributi<strong>on</strong><br />

Peak densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> in both experimental plots (1995–96) and<br />

in plots in adjacent areas (1994–1996) varied significantly between habitats and am<strong>on</strong>g<br />

blocks al<strong>on</strong>g the shore but not between years, and there was no significant interacti<strong>on</strong><br />

between habitat and year (Table 1, Fig. 5). During our field experiment in 1995,<br />

post-recruits were three times more abundant <strong>on</strong> emergent rock than in tidepools. Peak<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits varied significantly between each <str<strong>on</strong>g>of</str<strong>on</strong>g> the years (Student–<br />

Newman–Keuls Test, P,0.05): densities in 1995 were 40 times higher than in 1994 and<br />

10 times higher than in 1996 (Fig. 5, Table 1). Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits also differed<br />

significantly am<strong>on</strong>g blocks, but there was no significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and no<br />

significant interacti<strong>on</strong> between habitat and year. Manual removal was an effective<br />

technique for reducing densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> at this site, resulting in<br />

densities 10–12% <str<strong>on</strong>g>of</str<strong>on</strong>g> initial values from July to November (Fig. 6). Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits<br />

reduced densities to 15–27% <str<strong>on</strong>g>of</str<strong>on</strong>g> initial densities during October and November (Fig. 6).<br />

However, because <str<strong>on</strong>g>whelk</str<strong>on</strong>g> densities were declining naturally in the fall, densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recruits in particular did not differ greatly between treatment and c<strong>on</strong>trol quadrats.<br />

After the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruitment in September, recruits were numerically the<br />

dominant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the populati<strong>on</strong> (Fig. 7). The size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in<br />

unmanipulated c<strong>on</strong>trol plots did not differ between emergent rock and tidepools in<br />

September (D 50.04, P.0.10) or December (D 50.18, P.0.10). However,<br />

819,620 47,70<br />

the size distributi<strong>on</strong>s differed significantly between m<strong>on</strong>ths (habitats pooled, D 5<br />

1439,117<br />

0.41, P,0.01) as <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s ,3 mm SL were less abundant in December than in<br />

September (Fig. 7). When post-recruits ($5 mm SL) were analysed separately, the size<br />

distributi<strong>on</strong>s differed between tidepools and emergent rock in September (D 50.25,<br />

119,92<br />

P,0.01), when post-recruits were larger in tidepools than <strong>on</strong> emergent rock, but not in<br />

December (D 50.11, P.0.10).<br />

20,23


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 97<br />

Table 1<br />

22<br />

Three-way ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> peak density (No. m ) <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits and post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> in experimental plots<br />

where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were unmanipulated and in other plots <strong>on</strong> the shore at Cranberry Cove, Nova<br />

Scotia. Peak density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits was recorded in June or July and that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits in<br />

September or October. Factors are Block, Habitat (tidepool, emergent rock), and Year (1995, 1996 or 1994,<br />

1995, 1996). Tukey’s test for n<strong>on</strong>-additivity was n<strong>on</strong>-significant: experimental plots F 1,2,0.02,<br />

P.0.25, other<br />

plots F ,1.4, P.0.25. *** P,0.001; ** P,0.01; * P,0.05<br />

1,5<br />

Source df MS F P<br />

Experimental plots<br />

Whelk post-recruits<br />

Block 3 3.1 6.4 0.013*<br />

Habitat 1 12.3 25.1 0.0007***<br />

Year 1 0.7 1.4 0.272<br />

Habitat3Year 1 1.0 2.0 0.194<br />

Residual<br />

Whelk recruits<br />

9 0.5<br />

Block 3 2.7 5.7 0.018*<br />

Habitat 1 0.3 0.7 0.416<br />

Year 1 23.5 50.8 0.0001***<br />

Habitat3Year 1 0.03 0.07 0.791<br />

Residual 9 0.5<br />

Other plots<br />

Whelk post-recruits<br />

Block 3 2.2 3.9 0.031*<br />

Habitat 1 6.6 11.5 0.004**<br />

Year 2 0.7 1.3 0.306<br />

Habitat3Year 2 0.8 1.4 0.284<br />

Residual<br />

Whelk recruits<br />

15 0.6<br />

Block 3 2.3 3.8 0.033*<br />

Habitat 1 0.001 0.002 0.967<br />

Year 2 24.4 39.6 0.0001***<br />

Habitat3Year 2 0.2 0.3 0.768<br />

Residual 15 0.6<br />

3.2.2. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> <strong>mussel</strong> cover<br />

In the field experiment, <strong>mussel</strong> cover generally remained stable where densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits were reduced and decreased, particularly <strong>on</strong> emergent rock, where<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> density was not manipulated. However, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

density varied over the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment. Before <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density was manipulated<br />

in June 1995, percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> (averaged over plots in both habitats) was<br />

significantly greater <strong>on</strong> emergent rock than in tidepools, but did not differ significantly<br />

am<strong>on</strong>g blocks al<strong>on</strong>g the shore or between plots assigned to the different post-recruit<br />

density treatments, and there was no significant interacti<strong>on</strong> between habitat and postrecruit<br />

density treatment (Fig. 8, Table 2). Between June and August 1995, <strong>mussel</strong> cover<br />

decreased by 5% in unmanipulated c<strong>on</strong>trol plots and increased by 6% where densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post-recruits were reduced (Fig. 8). Change in percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s varied<br />

significantly am<strong>on</strong>g blocks and differed significantly between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatments,


98 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

22<br />

Fig. 5. Mean (6SE) densities (No. m ) <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits ($5 mm SL) and recruits (,5mmSL)<str<strong>on</strong>g>of</str<strong>on</strong>g>N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

in tidepools and <strong>on</strong> emergent rock (averaged for four blocks per habitat) between July 1994 and October 1996<br />

at Cranberry Cove, Nova Scotia.<br />

but did not vary between habitats, and there was no significant interacti<strong>on</strong> between<br />

habitat and post-recruit density (Table 2). Between August and October, percentage<br />

cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s declined by 43% <strong>on</strong> emergent rock and by 9% in tidepools in<br />

unmanipulated c<strong>on</strong>trol plots (Fig. 8). In plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were<br />

reduced, percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s remained relatively c<strong>on</strong>stant (Fig. 8). Change in<br />

percentage cover was significantly greater <strong>on</strong> emergent rock than in tidepools and<br />

greater in c<strong>on</strong>trol plots than in plots where post-recruit densities were reduced; there was<br />

no significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> block and no significant interacti<strong>on</strong> between habitat and<br />

post-recruit density (Table 2).<br />

Following a large recruitment event <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in September 1995, manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s was added as a factor in the experiment. Between<br />

October and November, <strong>mussel</strong> cover changed by less than 7% in any combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatment and habitat (Fig. 8) and did not vary significantly am<strong>on</strong>g blocks,<br />

between habitats, or between treatments with reduced or unmanipulated densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits or post-recruits; there were no significant interacti<strong>on</strong>s between any <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

factors (Table 2).


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 99<br />

22<br />

Fig. 6. Mean (6SE) densities (No. m ) <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits ($5 mm SL) and recruits (,5mmSL)<str<strong>on</strong>g>of</str<strong>on</strong>g>N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

in <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatments in tidepools and <strong>on</strong> emergent rock (averaged for four blocks per habitat) between<br />

June and December 1995 at Cranberry Cove, Nova Scotia. Where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were reduced,<br />

pre-manipulati<strong>on</strong> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits were recorded <strong>on</strong>ly for quadrats from which juveniles were removed.<br />

The dashed lines indicate the start <str<strong>on</strong>g>of</str<strong>on</strong>g> manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recently recruited or post-recruit <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s.<br />

3.2.3. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s<br />

Size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s differed significantly between tidepools and<br />

emergent rock in September for the c<strong>on</strong>trol treatment where post-recruit density was not<br />

manipulated (D 50.215, P,0.001), and in December for each post-recruit<br />

2080,2895<br />

density treatment (reduced: D 50.13, P,0.001; not manipulated: D 5<br />

2629,2709 3101,2961<br />

0.19, P,0.001; data pooled across recruit density treatments, which were not significantly<br />

different) (Fig. 9). In December, size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s also differed<br />

significantly between post-recruit density treatments in each habitat (tidepools:<br />

D 50.05, P,0.01; emergent rock: D 50.09, P,0.001) (Fig. 9). ANOVA<br />

2961,2709 3101,2629<br />

indicated that the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong> recruits (,2 mm SL) in December was<br />

significantly greater in tidepools than <strong>on</strong> emergent rock, but did not differ significantly


100 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Fig. 7. Size frequency distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> in September and December 1995 in tidepools and <strong>on</strong><br />

emergent rock in plots where density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruit N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> was not manipulated. Whelks were pooled over<br />

quadrats and blocks (n520) within a habitat (September for tidepools and emergent rock respectively: n5620,<br />

819; December: n570, 47).<br />

am<strong>on</strong>g blocks or between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatments, and there were no significant<br />

interacti<strong>on</strong>s (Table 3, Fig. 9). Size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s in the c<strong>on</strong>trol treatment<br />

where density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits was not manipulated differed significantly between<br />

September and December both in tidepools (D 50.05, P,0.01) and <strong>on</strong> emergent<br />

2080,2961<br />

rock (D 50.13, P,0.01) (Fig. 9). ANOVA indicated that the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2895,3101<br />

<strong>mussel</strong> recruits in the c<strong>on</strong>trol treatment was significantly higher in tidepools than <strong>on</strong><br />

emergent rock, but did not differ significantly between blocks or between m<strong>on</strong>ths, and<br />

there was no significant interacti<strong>on</strong> between habitat and m<strong>on</strong>th (Table 3, Fig. 9).<br />

3.3. Drill hole analysis<br />

The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drilled <strong>mussel</strong>s indicated that the percentage drilled by <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

recruits was greater than that drilled by post-recruits in c<strong>on</strong>trol plots in both September<br />

and December (Fig. 10). Although <strong>on</strong>ly 2–10% .10 mm SL were drilled by <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

recruits, <strong>mussel</strong>s as large as 22 mm SL were drilled (estimated <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size 3.8 mm SL).


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 101<br />

Fig. 8. Mean (6SE) percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> in <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density treatments in tidepools and <strong>on</strong> emergent<br />

rock (averaged for four blocks per habitat) from June to November 1995 at Cranberry Cove, Nova Scotia. The<br />

dashed line indicates the start <str<strong>on</strong>g>of</str<strong>on</strong>g> manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits.<br />

In September, the size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits differed sig-<br />

nificantly from the size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s in tidepools (D 50.23,<br />

64,2080<br />

P,0.01), where the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells ,1 mm SL was lower for drilled than for live<br />

<strong>mussel</strong>s, but not <strong>on</strong> emergent rock (D 50.10, P.0.10) (Figs. 9 and 10). In<br />

146,2985<br />

December, the size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> drilled and live <strong>mussel</strong>s did not differ significantly in<br />

either habitat (tidepools: D 50.25, 0.05,P,0.10; emergent rock: D 50.17,<br />

30,2961 42,3101<br />

P.0.10). In c<strong>on</strong>trol plots where post-recruits were not manipulated, the size distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by recruits did not differ significantly between tidepools and emergent<br />

rock in September (D 50.20, P.0.10) or December (D 50.10, 0.05,P.0.10),<br />

64,146 30,42<br />

and did not differ significantly between m<strong>on</strong>ths when habitats were pooled (D 5<br />

210,72<br />

0.12, P.0.10) (Fig. 10).<br />

The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits indicated that they<br />

c<strong>on</strong>sumed mainly the largest <strong>mussel</strong>s, although small post-recruits (estimated <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size<br />

6 mm SL) drilled <strong>mussel</strong>s as small as 1–2 mm SL (Fig. 10). In September, the size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by post-recruits in c<strong>on</strong>trol plots differed from the size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s both in tidepools (D 50.94, P,0.001) and <strong>on</strong><br />

20,2080<br />

emergent rock (D 50.64, P,0.001) (Figs. 9 and 10). The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

31,2895<br />

shells drilled by post-recruits differed between tidepools and emergent rock (D 5<br />

20,31<br />

0.52, P,0.01): <strong>mussel</strong>s ,10 mm SL comprised 74% <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by post-recruits<br />

<strong>on</strong> emergent rock but <strong>on</strong>ly 35% <str<strong>on</strong>g>of</str<strong>on</strong>g> those in tidepools (Fig. 10). In December, low sample<br />

sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by post-recruits precluded further analysis.


102 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Table 2<br />

Three-way ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> in June 1995, before density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits was<br />

manipulated, and <str<strong>on</strong>g>of</str<strong>on</strong>g> change in percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> between June and August and August and October<br />

1995, and four-way split plot ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <strong>Mytilus</strong> cover from October to November 1995, at<br />

Cranberry Cove, Nova Scotia. Factors are Block, Habitat (tidepool, emergent rock), Post-recruit Density and<br />

Recruit Density (October–November <strong>on</strong>ly). Tukey’s test for n<strong>on</strong>-additivity was n<strong>on</strong>-significant: June F1,25 0.98, P.0.25, June–August F1,250.02, P.0.25, August–October F1,2516.2, 0.05,P.0.10, October–<br />

November within plots F 50.32, P.0.25, am<strong>on</strong>g plots F 50.01, P.0.25. *** p,0.001; **<br />

1,2 1,2<br />

P,0.01;<br />

*P,0.05<br />

Source df MS F P<br />

June (pre-manipulati<strong>on</strong>)<br />

Block 3 431 2.92 0.09<br />

Habitat 1 762 5.15 0.049*<br />

Post-recruit density 1 12 0.08 0.78<br />

Habitat3Post-recruit density 1 261 1.76 0.22<br />

Residual<br />

June to August<br />

9 148<br />

Block 3 270 4.36 0.04*<br />

Habitat 1 123 1.98 0.19<br />

Post-recruit density 1 486 7.86 0.02*<br />

Habitat3Post-recruit density 1 45 0.73 0.42<br />

Residual<br />

August to October<br />

9 62<br />

Block 3 47 0.56 0.65<br />

Habitat 1 927 10.96 0.009**<br />

Post-recruit density 1 1342 15.87 0.003**<br />

Habitat3Post-recruit density 1 226 2.67 0.137<br />

Residual<br />

October to November<br />

Am<strong>on</strong>g plot<br />

9 85<br />

Block 3 43.8 1.52 P.0.25<br />

Habitat 1 1.1 0.04 P.0.25<br />

Post-recruit density 1 70.5 2.44 0.10,P.0.25<br />

Habitat3Post-recruit density 1 97.4 3.37 0.10,P.0.25<br />

Whole plot error<br />

Within plot<br />

9 28.9<br />

Recruit density 1 29.7 1.21 P.0.25<br />

Habitat3Recruit density 1 0.5 0.02 P.0.25<br />

Post-recruit density3Recruit density 1 2.6 0.11 P.0.25<br />

Habitat3Post-recruit density3Recruit density 1 1.1 0.04 P.0.25<br />

Split plot error 12 24.5<br />

3.4. Estimated mortality due to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g><br />

The mean feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruit N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> enclosed in cages did not differ<br />

significantly between tidepools and emergent rock in fall 1995 (0.82 and<br />

21<br />

0.77 <strong>Mytilus</strong> week respectively; T2 52.15, P50.165) or June 1997 (0.58 and<br />

21<br />

1.4 <strong>Mytilus</strong> week respectively; T2 52.21, P50.157). The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s c<strong>on</strong>sumed<br />

did not differ significantly between habitats in fall 1995 (mean SL, emergent rock:


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 103<br />

Fig. 9. Size frequency distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> in September and December 1995 in tidepools and <strong>on</strong> emergent<br />

rock in plots where density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruit N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> was not manipulated (September and December) and<br />

where it was reduced (December <strong>on</strong>ly). Mussels were pooled over quadrats and blocks (September: n512;<br />

December: n516) within a habitat, including treatments with reduced and unmanipulated recruit density<br />

(n52629–3101). Mussels in the last bar are 10.05–33.7 mm SL.


104 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Table 3<br />

Three-way ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>Mytilus</strong> ,2 mm SL in September and December 1995 in plots where<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits were unmanipulated and four-way split plot ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> ,2mmSL<br />

in December 1995 in all plots. Factors are Block, Habitat (tidepool, emergent rock), M<strong>on</strong>th, Post-recruit<br />

Density (December <strong>on</strong>ly) and Recruit Density (December <strong>on</strong>ly). Tukey’s test for n<strong>on</strong>-additivity was<br />

n<strong>on</strong>-significant: September vs. December F1,250.015, P.0.25, December within plots F1,251.14, P.0.25,<br />

am<strong>on</strong>g plots F 50.09, P.0.25. *** P,0.001; ** P,0.01; * P,0.05.<br />

1,2<br />

Source df MS F P<br />

September vs. December<br />

Block 3 42 0.4 0.78<br />

Habitat 1 1848 15.7 0.003**<br />

M<strong>on</strong>th 1 21 0.2 0.68<br />

Habitat3M<strong>on</strong>th 1 12 0.1 0.76<br />

Residual<br />

December<br />

Am<strong>on</strong>g plot<br />

9 117<br />

Block 3 248 1.4 P.0.25<br />

Habitat 1 2539 14.2 P,0.005**<br />

Post-recruit density 1 26 0.1 P.0.25<br />

Habitat3Post-recruit density 1 234 1.3 P.0.25<br />

Whole plot error<br />

Within plot<br />

9 179<br />

Recruit density 1 0.2 0.002 P.0.25<br />

Habitat3Recruit density 1 18 0.3 P.0.25<br />

Post-recruit density3Recruit density 1 5 0.07 P.0.25<br />

Habitat3Post-recruit density3Recruit density 1 2 0.03 P.0.25<br />

Split plot error 12 68<br />

13.1 mm; tidepool: 13.5 mm; T 50.554, P50.618) or June 1997 (mean SL, emergent<br />

2<br />

rock: 11.0 mm; tidepool: 12.5 mm; T 50.633, P50.599).<br />

2<br />

To estimate the reducti<strong>on</strong> in <strong>mussel</strong> density due to <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by post-recruits between<br />

June and October 1995 (115 days), we multiplied the maximum density <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

22<br />

(115 and 320 <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s m in tidepools and <strong>on</strong> emergent rock respectively) by the<br />

21<br />

estimated mean feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s (0.70 and 1.09 <strong>mussel</strong>s week based<br />

<strong>on</strong> the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage experiments) during this period. According to this calculati<strong>on</strong>,<br />

22<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> accounted for the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 1326 <strong>mussel</strong>s m in tidepools and 5701<br />

22<br />

<strong>mussel</strong>s m <strong>on</strong> emergent rock. For comparis<strong>on</strong>, we estimated the reducti<strong>on</strong> in <strong>mussel</strong><br />

density represented by the decrease in percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s over the same period<br />

(40% and 10% <strong>on</strong> emergent rock and in tidepools respectively). We assumed that the<br />

mean densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s in December in plots where post-recruit density was reduced<br />

(all sizes for tidepools and emergent rock respectively: 121 836 and 126 663<br />

22 22<br />

<strong>mussel</strong>s m ; .10 mm SL: 5714 and 7776 <strong>mussel</strong>s m <strong>on</strong> emergent rock and in<br />

tidepools respectively) were representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the densities at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment.<br />

According to this calculati<strong>on</strong>, the decrease in <strong>mussel</strong> cover represented a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 798<br />

22 22<br />

<strong>mussel</strong>s m in tidepools and 49 242 <strong>mussel</strong>s m <strong>on</strong> emergent rock. Assuming that the<br />

size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s .10 mm SL in December in the plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post-recruits were reduced was representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the size distributi<strong>on</strong> during the summer


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 105<br />

Fig. 10. Size frequency distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> empty <strong>Mytilus</strong> shells drilled by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in September and December<br />

1995 in tidepools and <strong>on</strong> emergent rock in plots where density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruit N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> was not manipulated.<br />

Mussels were pooled over quadrats and blocks (September: n512; December: n516) within a habitat,<br />

including treatments with reduced and unmanipulated recruit density (September for tidepools and emergent<br />

rock respectively: 64, 146 drilled by recruits, 20, 31 drilled by post-recruits; December: 30, 42 drilled by<br />

recruits, 5, 13 drilled by post-recruits).<br />

in plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were not manipulated, the estimated loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

22 22<br />

large <strong>mussel</strong>s was 786 <strong>mussel</strong>s m in tidepools and 3361 <strong>mussel</strong>s m <strong>on</strong> emergent<br />

rock. Thus, although our estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong>ly accounted for |1% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

estimated reducti<strong>on</strong> in the total density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s, it could account for all <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

estimated reducti<strong>on</strong> in the density <str<strong>on</strong>g>of</str<strong>on</strong>g> large <strong>mussel</strong>s if <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s selectively preyed <strong>on</strong><br />

<strong>mussel</strong>s .10 mm SL.<br />

Predati<strong>on</strong> by post-recruits probably has greater effects <strong>on</strong> <strong>mussel</strong> cover than <strong>on</strong> <strong>mussel</strong><br />

density because post-recruits selectively prey <strong>on</strong> large <strong>mussel</strong>s. We estimated the<br />

reducti<strong>on</strong> in percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s due to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> between June and<br />

October. We assumed, based <strong>on</strong> our laboratory study (Fig. 5), that post-recruits<br />

c<strong>on</strong>sumed <strong>on</strong>ly <strong>mussel</strong>s .10 mm SL, but that they selected <strong>mussel</strong>s within this size<br />

range in proporti<strong>on</strong> to their abundance. We assumed that the size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s<br />

.10 mm SL in December in the plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were reduced was<br />

representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the size distributi<strong>on</strong> during the summer in plots where densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post-recruits were not manipulated. We used a n<strong>on</strong>-linear regressi<strong>on</strong> equati<strong>on</strong> based <strong>on</strong> a


106 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 33 <strong>mussel</strong>s in December to relate <strong>mussel</strong> shell length (SL) to cross secti<strong>on</strong>al<br />

area (A, for an ellipsoid):<br />

2 1.833 2<br />

A (cm ) 5 0.003 3 SL (mm) (r 5 0.987).<br />

For <strong>mussel</strong>s in each 1 mm size interval .10 mm SL, we calculated the estimated loss in<br />

<strong>mussel</strong> cover which could be attributed to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by multiplying the estimated<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong> density (the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s c<strong>on</strong>sumed by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s multiplied by the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s in that size class) by the estimated cross-secti<strong>on</strong>al area. We then<br />

summed these decreases in <strong>mussel</strong> cover across size classes. The estimated losses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2 22 2 22<br />

<strong>mussel</strong> cover due to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> were 635 cm m in tidepools and 2028 cm m<br />

<strong>on</strong> emergent rock. These estimated losses due to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> accounted for 63% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2 22<br />

the reducti<strong>on</strong> in <strong>mussel</strong> cover in tidepools (1010 cm m ) and 51% <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <strong>on</strong><br />

2 22<br />

emergent rock (4042 cm m ) between June and October 1995.<br />

<str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> were the <strong>on</strong>ly abundant predators <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s at our field site. Sea<br />

stars (Asterias vulgaris) were never observed in the experimental plots (although a few<br />

new recruits were observed in adjacent tidepools). Green crabs (Carcinus maenus) were<br />

observed <strong>on</strong>ly <strong>on</strong> two occasi<strong>on</strong>s, <strong>on</strong>ce in a tidepool plot and <strong>on</strong>ce <strong>on</strong> a plot <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent<br />

rock.<br />

4. Discussi<strong>on</strong><br />

4.1. Predati<strong>on</strong> by post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> had a significant effect <strong>on</strong> percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Mytilus</strong> during our experiment. Cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s between June and October remained<br />

relatively stable where the density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits was reduced but declined where<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s were not manipulated. The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s also differed at the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the experiment between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> removal treatments and c<strong>on</strong>trols. From October to<br />

November, <strong>mussel</strong> cover remained relatively stable and no effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat or density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were detected. During this period, however, densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in the<br />

intertidal z<strong>on</strong>e declined markedly as they migrated to the subtidal z<strong>on</strong>e for winter.<br />

Furthermore, decreasing temperatures probably depressed the feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

(Largen, 1967b; Bayne and Scullard, 1978; Stickle et al., 1985) which would lessen their<br />

impact <strong>on</strong> <strong>mussel</strong> abundance.<br />

Manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits also has been shown to affect <strong>Mytilus</strong><br />

cover <strong>on</strong> temperate rocky shores in other regi<strong>on</strong>s. In New England, USA, Menge (1976)<br />

and Lubchenco and Menge (1978) found that exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> from cleared plots<br />

resulted in the eventual replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> Semibalanus balanoides by M. edulis in the mid<br />

and low (where other predators also were excluded) intertidal z<strong>on</strong>es at moderately wave<br />

protected sites but not at wave exposed sites. In c<strong>on</strong>trast, at a sheltered shore in Maine,<br />

Petraitis (1990) found no effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> <strong>on</strong> recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> M. edulis when<br />

barnacles were provided as alternative prey. Petraitis (1990) suggested that the<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> M. edulis is c<strong>on</strong>trolled by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> barnacles which provide a


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 107<br />

settlement site for <strong>mussel</strong>s and are the preferred prey <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>. However, Menge<br />

(1991) reanalyzed Menge and Lubchenco’s data, c<strong>on</strong>trolling for initial barnacle cover,<br />

and found that <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> still had a str<strong>on</strong>g effect <strong>on</strong> <strong>mussel</strong>s at wave-sheltered sites. In<br />

Oreg<strong>on</strong>, USA, Navarette (1996) found that exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N. emarginata and N.<br />

canaliculata in the mid intertidal z<strong>on</strong>e resulted in increased cover <str<strong>on</strong>g>of</str<strong>on</strong>g> M. trossulus and M.<br />

californianus, but that varying the intensity and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> had<br />

unpredictable effects <strong>on</strong> <strong>mussel</strong> cover. In the mid-low z<strong>on</strong>e where the sea star Pisaster<br />

ochraceus is abundant, <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s significantly affected the survival <str<strong>on</strong>g>of</str<strong>on</strong>g> transplanted M.<br />

trossulus in the absence but not in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisaster (Navarette and Menge,<br />

1996). In Alaska, Carroll and Highsmith (1996) observed that, after a severe freeze<br />

greatly reduced the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> M. trossulus, <strong>mussel</strong>s did not recover spatial<br />

dominance at sites with high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>whelk</str<strong>on</strong>g> N. lima. In field experiments, they<br />

recorded significant decreases in <strong>mussel</strong> cover within two weeks in cages with average<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> N. lima compared to exclusi<strong>on</strong> cages without <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s (Carroll and<br />

Highsmith, 1996). In c<strong>on</strong>trast, Woott<strong>on</strong> (1994) found that manually reducing densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s had no significant effects <strong>on</strong> cover <str<strong>on</strong>g>of</str<strong>on</strong>g> any sessile species, including M.<br />

californianus, in the mid intertidal z<strong>on</strong>e in Washingt<strong>on</strong> State.<br />

In our study, the reducti<strong>on</strong> in <strong>Mytilus</strong> cover attributed to <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> was greater<br />

<strong>on</strong> emergent rock than in tidepools. This probably reflects differences between habitats<br />

in <str<strong>on</strong>g>whelk</str<strong>on</strong>g> densities, since feeding rates and sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s c<strong>on</strong>sumed by post-recruits<br />

enclosed in cages in the two habitats were similar. However, we did not assess cage<br />

artifacts and must assume that any effects <str<strong>on</strong>g>of</str<strong>on</strong>g> caging <strong>on</strong> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> behaviour did not differ<br />

between emergent rock and tidepools. The greater reducti<strong>on</strong> in <strong>mussel</strong> cover <strong>on</strong><br />

emergent rock than in tidepools is c<strong>on</strong>trary to predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the model <str<strong>on</strong>g>of</str<strong>on</strong>g> Menge and<br />

Sutherland (1987) that the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> should diminish al<strong>on</strong>g a<br />

gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing envir<strong>on</strong>mental stress. However, this model may be more<br />

applicable to habitats where stress gradients are large and c<strong>on</strong>diti<strong>on</strong>s are relatively<br />

severe (Menge and Ols<strong>on</strong>, 1990), and may be less appropriate for c<strong>on</strong>trasts between<br />

tidepools and emergent substrata <strong>on</strong> the same shore.<br />

Our calculati<strong>on</strong>s indicate that <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits accounts for |63% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the reducti<strong>on</strong> in <strong>mussel</strong> cover in tidepools, and |51% <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <strong>on</strong> emergent rock.<br />

We attribute this between-habitat difference to an interacti<strong>on</strong> between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g><br />

and wave acti<strong>on</strong>. Dislodgment <str<strong>on</strong>g>of</str<strong>on</strong>g> the shells <str<strong>on</strong>g>of</str<strong>on</strong>g> predated <strong>mussel</strong>s by waves would remove<br />

small <strong>mussel</strong>s associated with the empty shells and weaken the surrounding <strong>mussel</strong><br />

matrix. Because <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> is more intense <strong>on</strong> emergent rock than in tidepools,<br />

losses due to this interacti<strong>on</strong> between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and wave acti<strong>on</strong> were probably<br />

greater <strong>on</strong> emergent rock, particularly in August 1995 due to the passage <str<strong>on</strong>g>of</str<strong>on</strong>g> Hurricane<br />

Felix. During each m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment, significant wave heights recorded at a<br />

stati<strong>on</strong> |40 km from the study site (unpublished data, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries and<br />

Oceans, Canada) were larger in 1995 than in a pooled data set from 1970–1995 (Fig.<br />

11). In August 1995, 16% <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> significant wave heights were $3m<br />

compared to 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s in the l<strong>on</strong>g term record (Fig. 11). This study suggests<br />

that <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <strong>on</strong> exposed rocky shores may have a greater impact than would<br />

be predicted from <str<strong>on</strong>g>whelk</str<strong>on</strong>g> density and feeding rate because <str<strong>on</strong>g>of</str<strong>on</strong>g> the indirect effects <str<strong>on</strong>g>of</str<strong>on</strong>g> wave<br />

acti<strong>on</strong>.


108 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Fig. 11. Frequency distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> significant wave heights recorded from June to November 1995 and from<br />

1970 to 1995 at the mouth <str<strong>on</strong>g>of</str<strong>on</strong>g> Halifax Harbour, Nova Scotia (448509N, 638259W).<br />

Size selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s by post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> in the laboratory has been well<br />

documented (for a review see Hughes and Burrows, 1993). However, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>mussel</strong>s collected in the field suggests that post-recruits may have a greater impact <strong>on</strong><br />

juvenile <strong>mussel</strong>s than predicted from laboratory studies. In our laboratory feeding<br />

experiment, post-recruits appeared to avoid preying <strong>on</strong> <strong>mussel</strong>s ,5 mm SL. Similar<br />

results were reported for adult N. emarginata preying <strong>on</strong> M. trossulus and/or M.<br />

californianus (Gosselin and Chia, 1994). The mean size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s c<strong>on</strong>sumed in the<br />

laboratory increased with increasing <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size (for both recruits and post-recruits),<br />

although individual <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s c<strong>on</strong>sumed a broad size range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s. In the field, <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

post-recruits were size selective, but small post-recruits would c<strong>on</strong>sume <strong>Mytilus</strong> as small<br />

as 2 mm SL and .35% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s drilled by post-recruits were ,10 mm SL. Shells<br />

drilled by post-recruits were larger in tidepools than <strong>on</strong> emergent rock, perhaps because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the between-habitat difference in size <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits in September. Although wave<br />

acti<strong>on</strong> may remove large shells more rapidly than small shells, potentially biasing these


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 109<br />

estimates, these results dem<strong>on</strong>strate that <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits <strong>on</strong> <strong>mussel</strong>s<br />

,5 mm SL is not unusual in the field. In c<strong>on</strong>trast, Hughes and Burrows (1990; 1991),<br />

who recorded the diets <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in Yorkshire, UK, found that <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s<br />

c<strong>on</strong>sumed few to no <strong>mussel</strong>s ,5 mm SL, primarily preying <strong>on</strong> individuals 10–20 mm<br />

SL. Size selecti<strong>on</strong> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s at our field site may be influenced by the relatively small<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits (cf. Hughes, 1972; Hughes et al., 1992) and by the highly skewed<br />

size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s (Fig. 9; see also Hunt and Scheibling, 1995).<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have shown that the feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> is str<strong>on</strong>gly<br />

temperature dependent (Largen, 1967b; Bayne and Scullard, 1978; Stickle et al., 1985).<br />

However, the feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits in our field enclosures in September and<br />

21<br />

October (0.8 <strong>mussel</strong>s week ) was similar to the feeding rate in our laboratory study in<br />

21<br />

May (0.7 <strong>mussel</strong>s week ), despite large differences in temperatures (5.5–88C inthe<br />

laboratory in May and |158C in the field in October). Bayne and Scullard (1978)<br />

measured drilling and ingesti<strong>on</strong> time as well as time between meals for N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

preying <strong>on</strong> <strong>mussel</strong>s at various temperatures in the laboratory. Using their data, we have<br />

21<br />

calculated a feeding rate (2.4 <strong>mussel</strong>s week ) for <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 mm SL (the size used in<br />

our cage enclosures) at 168C in October which is three times higher than that measured<br />

in our field enclosures. The relatively low feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits in the cage<br />

enclosures is presumably due to c<strong>on</strong>straints <strong>on</strong> foraging in the field by factors such as<br />

desiccati<strong>on</strong> and wave acti<strong>on</strong> (Burrows and Hughes, 1989; Hughes and Burrows, 1990,<br />

1991). The feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits in the laboratory in May at 5.5–88C is higher<br />

21<br />

than the feeding rate (0.16 <strong>mussel</strong>s week ) reported by Largen at 78C (m<strong>on</strong>th and size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s not reported) but is similar to the feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 mm SL at 98C<br />

21<br />

in March (0.8 <strong>mussel</strong>s week ) calculated from Bayne and Scullard’s data.<br />

4.2. Predati<strong>on</strong> by recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

Our laboratory studies showed that feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> is directly related to<br />

body size for recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s but not for post-recruits. Bayne and Scullard<br />

(1978) found that time spent drilling and ingesting M. edulis did not vary with body size<br />

for <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s 8.5–34 mm SL (probably because smaller <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s drilled smaller <strong>mussel</strong>s)<br />

but that time between meals decreased with increasing body size. The feeding rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

21<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits in our study at 9.5–16.58C in October (1.2 <strong>mussel</strong>s week ) is 50% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

that which we calculated from the data <str<strong>on</strong>g>of</str<strong>on</strong>g> Bayne and Scullard (1978) for <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

16 mm SL at 168C in October (see previous paragraph). Extrapolating the data <str<strong>on</strong>g>of</str<strong>on</strong>g> Bayne<br />

and Scullard (1978) to a <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 mm SL (the mean size <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits in our laboratory<br />

21<br />

experiment) gives a predicted feeding rate (1.4 <strong>mussel</strong>s week ) similar to that<br />

measured for recruits in our laboratory study.<br />

Although size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> c<strong>on</strong>sumed generally increases with <str<strong>on</strong>g>whelk</str<strong>on</strong>g> size, <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

recruits are not c<strong>on</strong>strained to preying <strong>on</strong> recently recruited <strong>mussel</strong>s. In the laboratory,<br />

recruits were able to c<strong>on</strong>sume the largest <strong>mussel</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>fered to them (8 mm SL).<br />

Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> empty shells collected from the field indicated that recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>suming even larger <strong>mussel</strong>s than those <str<strong>on</strong>g>of</str<strong>on</strong>g>fered in the laboratory study,<br />

up to 22 mm SL. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits to c<strong>on</strong>sume prey much larger than themselves<br />

has been reported in other laboratory studies (N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>, Largen, 1967a; N. emarginata,


110 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Palmer, 1990). The size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shells drilled by recruits was similar to the size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> live <strong>mussel</strong>s except in tidepools in September where <strong>mussel</strong>s ,1mmSL<br />

were proporti<strong>on</strong>ally less abundant as drilled shells than as live <strong>mussel</strong>s.<br />

In c<strong>on</strong>trast to the marked effect <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits <str<strong>on</strong>g>of</str<strong>on</strong>g> N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> <strong>on</strong> <strong>mussel</strong> assemblages<br />

in our field experiment, reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s had no<br />

effect <strong>on</strong> either cover or size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong>. Manual removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits<br />

was less effective than removal <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits because the high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits<br />

necessitated a smaller spatial scale <str<strong>on</strong>g>of</str<strong>on</strong>g> manipulati<strong>on</strong> which was harder to maintain.<br />

Furthermore, although densities <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits were reduced to 15–20% <str<strong>on</strong>g>of</str<strong>on</strong>g> initial values,<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> abundance was declining naturally during this period due to mortality and<br />

migrati<strong>on</strong> to the subtidal z<strong>on</strong>e. Therefore, the difference in density between recruit<br />

treatments was small (Fig. 6). However, examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drilled shells suggests that<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits c<strong>on</strong>sumed large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s during this period. In both September<br />

and December, the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s which had been drilled by recruits was greater<br />

than that drilled by post-recruits, although differential removal <str<strong>on</strong>g>of</str<strong>on</strong>g> large empty shells by<br />

wave acti<strong>on</strong> may bias this comparis<strong>on</strong>. The empty <strong>mussel</strong> shells in these samples likely<br />

reflect <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> which occurred after August 1995 when waves from Hurricane Felix<br />

probably removed the large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> empty shells which had accumulated during the<br />

summer due to intense <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by post-recruits. Although we were unable to detect a<br />

significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> recruits <strong>on</strong> <strong>mussel</strong> assemblages in our experiment, the high<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> recruits following a large recruitment event in September 1995, their high<br />

feeding rate relative to their body size, and their ability to c<strong>on</strong>sume <strong>mussel</strong>s larger than<br />

themselves all suggest they can have an important impact <strong>on</strong> <strong>mussel</strong> assemblages. This<br />

is the first study to attempt to examine the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by recently recruited<br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in the field, and more research is necessary.<br />

4.3. Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s and the role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g><br />

<str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g><br />

Predati<strong>on</strong> by N. <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>, particularly post-recruits, affects <strong>mussel</strong> assemblages both in<br />

tidepools and <strong>on</strong> emergent rock, but does not fully explain the differences between<br />

habitats in the patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s. In our field experiment,<br />

the reducti<strong>on</strong> in <strong>mussel</strong> cover was greater <strong>on</strong> emergent rock, where <strong>mussel</strong> patches are<br />

larger and more c<strong>on</strong>tinuous, than in tidepools. This disparity between the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s may have resulted, in large<br />

part, from the interacti<strong>on</strong> between <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and unusual wave acti<strong>on</strong> in August<br />

1995 which may not be typical <str<strong>on</strong>g>of</str<strong>on</strong>g> this shore. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment in December<br />

1995, <strong>mussel</strong> cover in c<strong>on</strong>trol plots (where density <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits was not manipulated)<br />

was lower <strong>on</strong> emergent rock than in tidepools, in c<strong>on</strong>trast to the more typical pattern<br />

observed at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment in June. However, densities <str<strong>on</strong>g>of</str<strong>on</strong>g> post-recruits were<br />

greater <strong>on</strong> emergent rock than in tidepools each summer between 1994 and 1996,<br />

although the difference between habitats was greatest in 1995. Because feeding rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>whelk</str<strong>on</strong>g> post-recruits are similar in tidepools and <strong>on</strong> emergent rock, <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> at<br />

this site is probably usually at least as intense <strong>on</strong> emergent rock as in tidepools. The l<strong>on</strong>g<br />

term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>mussel</strong> assemblages will depend <strong>on</strong> the balance


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 111<br />

between rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> by <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s and rates <str<strong>on</strong>g>of</str<strong>on</strong>g> growth and recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong>s<br />

(Petraitis, 1995). Recently recruited <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s may have l<strong>on</strong>g term effects <strong>on</strong> <strong>mussel</strong> cover<br />

by limiting recruitment and preying <strong>on</strong> faster growing juvenile <strong>mussel</strong>s.<br />

Acknowledgements<br />

We thank Susanne Meidel, Boris Worm, Anna Metaxas, and the 1997 Coastal Ecology<br />

class for assistance in the field. Drs. A.R.O. Chapman and S.J. Walde critically read<br />

earlier drafts <str<strong>on</strong>g>of</str<strong>on</strong>g> this manuscript. Bruce Bradshaw at the Marine Envir<strong>on</strong>mental Data<br />

Services Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries and Oceans in Ottawa, Canada, provided data <strong>on</strong> significant<br />

wave heights. H.L.H. was supported by a Natural Science and Engineering Research<br />

Council (NSERC) Postgraduate Award and an Izaak Walt<strong>on</strong> Killam Memorial Scholarship<br />

from Dalhousie University and the research was supported by an NSERC Research<br />

Grant to R.E.S.<br />

References<br />

Barbeau, M.A., Scheibling, R.E., 1994. Temperature effects <strong>on</strong> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile sea scallops [Placopecten<br />

magellanicus (Gmelin)] by sea stars (Asterias vulgaris Verrill) and crabs (Cancer irroratus Say). J. Exp.<br />

Mar. Biol. Ecol. 182, 27–47.<br />

Barbeau, M.A., Scheibling, R.E., Hatcher, B.G., Taylor, L.H., Hennigar, A.W., 1994. Survival analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tethered juvenile sea scallops Placopecten magellanicus in field experiments: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> predators, scallop<br />

size and density, site and seas<strong>on</strong>. Mar. Ecol. Prog. Ser. 115, 243–256.<br />

Bayne, B.L., Scullard, C., 1978. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding by Thais (<str<strong>on</strong>g>Nucella</str<strong>on</strong>g>) <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (L.). J. Exp. Mar. Biol. Ecol. 32,<br />

113–129.<br />

Burrows, M.T., Hughes, R.N., 1989. Natural foraging <str<strong>on</strong>g>of</str<strong>on</strong>g> the dog<str<strong>on</strong>g>whelk</str<strong>on</strong>g>, <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (Linnaeus); the<br />

weather and whether to feed. J. Moll. Stud. 55, 285–295.<br />

Carroll, M.L., Highsmith, R.C., 1996. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> catastrophic disturbance in mediating <str<strong>on</strong>g>Nucella</str<strong>on</strong>g>–<strong>Mytilus</strong><br />

interacti<strong>on</strong>s in the Alaskan rocky intertidal. Mar. Ecol. Prog. Ser. 138, 125–133.<br />

Dam<strong>on</strong>, R.A., Harvey, W.R., 1987. Experimental Design, ANOVA, and Regressi<strong>on</strong>. Harper and Row, New<br />

York.<br />

Gosselin, L.A., Bourget, E., 1989. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> an intertidal predator, Thais <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>, in relati<strong>on</strong> to<br />

structural heterogeneity. J. Anim. Ecol. 58, 287–303.<br />

Gosselin, L.A., Chia, F., 1994. Feeding habits <str<strong>on</strong>g>of</str<strong>on</strong>g> newly hatched juveniles <str<strong>on</strong>g>of</str<strong>on</strong>g> an intertidal predatory gastropod,<br />

<str<strong>on</strong>g>Nucella</str<strong>on</strong>g> emarginata (Deshayes). J. Exp. Mar. Biol. Ecol. 176, 1–13.<br />

Hughes, R.N., 1972. Animal producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two Nova Scotian populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (L.). Oecologia 8,<br />

356–370.<br />

Hughes, R.N., Burrows, M.T., 1990. Energy maximizati<strong>on</strong> in the natural foraging behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the dog<str<strong>on</strong>g>whelk</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>. In: Barnes, M., Gibs<strong>on</strong>, R.N. (Eds.), Tropic Relati<strong>on</strong>ships in the Marine Envir<strong>on</strong>ment.<br />

Aberdeen University Press, pp. 517–527.<br />

Hughes, R.N., Burrows, M.T., 1991. Diet selecti<strong>on</strong> by dog<str<strong>on</strong>g>whelk</str<strong>on</strong>g>s in the field: An example <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>strained<br />

optimizati<strong>on</strong>. Anim. Behav. 42, 47–55.<br />

Hughes, R.N., Burrow, M.T., 1993. Predatory behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the intertidal snail, <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g>, and its effect<br />

<strong>on</strong> community structure. In: Kawanabe, H., Cohen, J.E., Iwasaki, K. (Eds.), Mutualism and Community<br />

Organizati<strong>on</strong>: Behavioural, Theoretical and Food-web Approaches. Oxford University Press, pp. 63–83.<br />

Hughes, R.N., Burrows, M.T., Rogers, S.E.B., 1992. Ontogenetic changes in foraging behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

dog<str<strong>on</strong>g>whelk</str<strong>on</strong>g> <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (L.). J. Exp. Mar. Biol. Ecol. 155, 199–212.


112 H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113<br />

Hunt, H.L., Scheibling, R.E., 1995. Structure and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mussel</strong> patches in tidepools <strong>on</strong> a rocky shore in<br />

Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 124, 105–115.<br />

Hunt, H.L., Scheibling, R.E., 1996. Physical and biological factors influencing <strong>mussel</strong> (<strong>Mytilus</strong> trossulus, M.<br />

edulis) settlement <strong>on</strong> a wave-exposed rocky shore. Mar. Ecol. Prog. Ser. 142, 135–145.<br />

Kirk, R.E., 1995. Experimental Design: Procedures for the Behavioral Sciences. Brooks/Cole, Pacific Grove,<br />

CA.<br />

Largen, M.J., 1967a. The diet <str<strong>on</strong>g>of</str<strong>on</strong>g> the dog-<str<strong>on</strong>g>whelk</str<strong>on</strong>g>, <str<strong>on</strong>g>Nucella</str<strong>on</strong>g> <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (Gastropoda Prosobranchia). J. Zool. L<strong>on</strong>d<strong>on</strong><br />

151, 123–127.<br />

Largen, M.J., 1967b. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> water temperature up<strong>on</strong> the life <str<strong>on</strong>g>of</str<strong>on</strong>g> the dog-<str<strong>on</strong>g>whelk</str<strong>on</strong>g> Thais <str<strong>on</strong>g>lapillus</str<strong>on</strong>g><br />

(Gastropoda Prosobranchia). J. Anim. Ecol. 36, 207–214.<br />

Lubchenco, J., 1986. Relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g>: Early col<strong>on</strong>izati<strong>on</strong> by seaweeds in<br />

New England. In: Diam<strong>on</strong>d, J., Case, T.J. (Eds.), Community Ecology. Harper and Row, New York, pp.<br />

537–555.<br />

Lubchenco, J., Menge, B.A., 1978. Community development and persistence in a low rocky intertidal z<strong>on</strong>e.<br />

Ecol. M<strong>on</strong>ogr. 48, 67–94.<br />

Mallet, A.L., Carver, C.E., 1995. Comparative growth and survival patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> trossulus and <strong>Mytilus</strong><br />

edulis in Atlantic Canada. Can. J. Fish. Aquat. Sci. 52, 1873–1880.<br />

Menge, B.A., 1976. Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the New England rocky intertidal community: Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g>,<br />

competiti<strong>on</strong>, and envir<strong>on</strong>mental heterogeneity. Ecol. M<strong>on</strong>ogr. 46, 355–393.<br />

Menge, B.A., 1978a. Predati<strong>on</strong> intensity in a rocky intertidal community. Relati<strong>on</strong> between predator foraging<br />

activity and envir<strong>on</strong>mental harshness. Oecologia 34, 1–16.<br />

Menge, B.A., 1978b. Predator intensity in a rocky intertidal community. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> an algal canopy, wave acti<strong>on</strong><br />

and desiccati<strong>on</strong> <strong>on</strong> predator feeding rates. Oecologia 34, 17–35.<br />

Menge, B.A., 1983. Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> intensity in the low z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the New England rocky intertidal<br />

regi<strong>on</strong>. Oecologia 58, 141–155.<br />

Menge, B.A., 1991. Generalizing from experiments: Is <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> str<strong>on</strong>g or weak in the New England rocky<br />

intertidal? Oecologia 88, 1–8.<br />

Menge, B.A., Farrell, T.M., 1989. Community structure and interacti<strong>on</strong>s webs in shallow marine hard-bottom<br />

communities: Tests <str<strong>on</strong>g>of</str<strong>on</strong>g> an envir<strong>on</strong>mental stress model. In: Beg<strong>on</strong>, M., Fitter, A.H., Ford, E.D., MacFadigan,<br />

A. (Eds.), Advances in Ecological Research. Academic Press, L<strong>on</strong>d<strong>on</strong>, pp. 189–262.<br />

Menge, B.A., Ols<strong>on</strong>, A.M., 1990. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> scale and envir<strong>on</strong>mental factors in regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> community<br />

structure. Trends Ecol. Evol. 5, 52–57.<br />

Menge, B.A., Sutherland, J.P., 1987. Community regulati<strong>on</strong>: Variati<strong>on</strong> in disturbance, competiti<strong>on</strong>, and<br />

<str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> in relati<strong>on</strong> to envir<strong>on</strong>mental stress and recruitment. Am. Nat. 130, 730–757.<br />

Metaxas, A., Hunt, H.L., Scheibling, R.E., 1994. Spatial and temporal variability <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthic communities<br />

in tidepools <strong>on</strong> a rocky shore in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 105, 89–103.<br />

Metaxas, A., Scheibling, R.E., 1993. Community structure and organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidepools. Mar. Ecol. Prog. Ser.<br />

98, 187–198.<br />

Minchint<strong>on</strong>, T.E., Scheibling, R.E., Hunt, H.L., 1997. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> an intertidal assemblage following massive<br />

ice scour in Nova Scotia, Canada. Bot. Mar. 40, 139–148.<br />

Navarette, S.A., Menge, B.A., 1996. Keyst<strong>on</strong>e <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and interacti<strong>on</strong> strength: Interactive effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

predators <strong>on</strong> their main prey. Ecol. M<strong>on</strong>ogr. 66, 409–429.<br />

Navarette, S.A., 1996. Variable <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g>: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>whelk</str<strong>on</strong>g>s <strong>on</strong> a mid-intertidal successi<strong>on</strong>al community. Ecol.<br />

M<strong>on</strong>ogr. 66, 301–321.<br />

Paine, R.T., 1966. Food web complexity and species diversity. Am. Nat. 100, 65–75.<br />

Paine, R.T., 1974. Intertidal community structure: Experimental studies <strong>on</strong> the relati<strong>on</strong>ship between a dominant<br />

competitor and its principal predator. Oecologia 15, 93–120.<br />

Palmer, A.R., 1988. Feeding biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocenebralurida (Prosobranchia: Muricacea): Diet, predator–prey size<br />

relati<strong>on</strong>s, and attack behavior. Veliger 31, 192–203.<br />

Palmer, A.R., 1990. Predator size, prey size, and the scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> vulnerability: Hatching gastropods vs.<br />

barnacles. Ecology 71, 759–775.<br />

Pedersen, E.M., 1991. Populati<strong>on</strong> genetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mytilus</strong> from a developing intertidal community in Nova Scotia,<br />

Canada. MSc thesis, Dalhousie University, Halifax, Nova Scotia, Canada.


H.L. Hunt, R.E. Scheibling / J. Exp. Mar. Biol. Ecol. 226 (1998) 87 –113 113<br />

Petraitis, P.S., 1990. Direct and indirect effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g>, herbivory and surface rugosity <strong>on</strong> <strong>mussel</strong><br />

recruitment. Oecologia 83, 405–413.<br />

Petraitis, P.S., 1995. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> growth in maintaining spatial dominance by <strong>mussel</strong>s (<strong>Mytilus</strong> edulis). Ecology<br />

76, 1337–1346.<br />

Pile, A.J., Lipcius, R.N., van M<strong>on</strong>tfrans, J., Orth, R.J., 1996. Density-dependent settler–recruit–juvenile<br />

relati<strong>on</strong>ship in blue crabs. Ecol. M<strong>on</strong>ogr. 66, 277–300.<br />

Richards<strong>on</strong>, T.D., Brown, K.M., 1990. Wave exposure and prey size selecti<strong>on</strong> in an intertidal predator. J. Exp.<br />

Mar. Biol. Ecol. 142, 105–120.<br />

Robles, C., Robb, J., 1993. Varied carnivore effects and the prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal algal turfs. J. Exp. Mar.<br />

Biol. Ecol. 166, 65–91.<br />

Robles, C.A., 1987. Predator foraging characteristics and prey populati<strong>on</strong> structure <strong>on</strong> a sheltered shore.<br />

Ecology 68, 1502–1514.<br />

Scheibling, R.E., Hatcher, B.G., 1997. Microhabitat refuges and risk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> for two species <str<strong>on</strong>g>of</str<strong>on</strong>g> trochid<br />

gastropod (Trochus histrio and Tectus pyramis) at the Houtman Abrolhos, Western Australia. In: Wells, F.E.<br />

(Ed.), The Marine Flora and Fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> the Houtman Abrolhos Islands, Western Australia. Western Australian<br />

Museum, Perth, Australia, pp. 159–176.<br />

Seigel, S., Castellan, Jr., N.J., 1988. N<strong>on</strong>parametric Statistics for the Behavioral Sciences. McGraw-Hill, New<br />

York.<br />

Stephens<strong>on</strong>, T.A., Stephens<strong>on</strong>, A., 1972. Life Between Tidemarks <strong>on</strong> Rocky Shores. W.H. Freeman, San<br />

Francisco.<br />

Stickle, W.B., Moore, M.N., Bayne, B.L., 1985. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature, salinity and aerial exposure <strong>on</strong><br />

<str<strong>on</strong>g>predati<strong>on</strong></str<strong>on</strong>g> and lysosomal stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the dog<str<strong>on</strong>g>whelk</str<strong>on</strong>g> Thais (<str<strong>on</strong>g>Nucella</str<strong>on</strong>g>) <str<strong>on</strong>g>lapillus</str<strong>on</strong>g> (L.). J. Exp. Mar. Biol. Ecol. 93,<br />

235–258.<br />

Woott<strong>on</strong>, J.T., 1994. Predicting direct and indirect effects: An integrated approach using experiments and path<br />

analysis. Ecology 75, 151–165.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!