23.07.2013 Views

The TOF-USANS Instrument for Japanese SNS - Spallation Neutron ...

The TOF-USANS Instrument for Japanese SNS - Spallation Neutron ...

The TOF-USANS Instrument for Japanese SNS - Spallation Neutron ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>TOF</strong>-<strong>USANS</strong> <strong>Instrument</strong> <strong>for</strong> <strong>Japanese</strong> <strong>SNS</strong><br />

JAERI, Kazuya Aizawa


J-PARC (Japan Proton Accelerator Research Complex)<br />

J<strong>SNS</strong><br />

Joint project of JAERI and KEK<br />

Joint Project between JAERI and KEK, 2001~2006( construction period)<br />

400-600 MeV Linac<br />

(Superconducting)<br />

400 MeV Linac<br />

(Normal Conducting)<br />

R&D <strong>for</strong> Nuclear<br />

Transmutation<br />

3 GeV PS<br />

(333µA, 25Hz)<br />

・1MW, Δt


Time Averaged Intensity (n/cm 2 /eV/sr)<br />

10 16<br />

10 15<br />

10 14<br />

10 13<br />

10 12<br />

10 11<br />

Intensity of J<strong>SNS</strong> moderator<br />

J<strong>SNS</strong><br />

Joint project of JAERI and KEK<br />

Time Averaged Intensity (<strong>for</strong> CM) :1/4 of ILL’s Cold source<br />

Pulse Peak Intensity (<strong>for</strong> CM) :~100 of ILL’s Cold source<br />

ILL cold (56 MW)<br />

<strong>SNS</strong> 2 MW<br />

coupled<br />

JRR-3M cold<br />

KENS (CH4)<br />

J<strong>SNS</strong> 1 MW<br />

coupled<br />

decoupled<br />

decoupled<br />

(poison)<br />

10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1<br />

Energy (eV)<br />

Pulse Peak Intensity(n/cm 2 /s /sr/eV/pulse)<br />

10 17<br />

10 16<br />

10 15<br />

10 14<br />

10 -4<br />

10 -3<br />

Decoupled<br />

Poisoned<br />

(center)<br />

10 -2<br />

Coupled<br />

ILL cold (56 MW)<br />

10 -1<br />

Energy (eV)<br />

Hg Target<br />

Be reflector<br />

1MW 25Hz<br />

10 0<br />

10 1


Proposed J<strong>SNS</strong> low-q instruments<br />

Concept : cover wide q-range by several instruments<br />

(1) High Intensity SANS (HI-SANS)<br />

q = 0.01 - 100 nm -1<br />

pin hole collimator, magnetic, lens,<br />

converging collimator<br />

(2) High Resolution SANS (HR-SANS)<br />

merge into HI-SANS<br />

(3) Double Crystal SANS (DC-SANS)<br />

q = 0.00002 - 0.5 nm -1<br />

polymer, alloy, ceramic…


Preliminary layout of J<strong>SNS</strong><br />

Muon science facility<br />

proton<br />

Double crystal SANS (<strong>TOF</strong>-<strong>USANS</strong>)<br />

<strong>Neutron</strong> scattering facility


Feature<br />

(1) Use of harmonics (M. Agamalian et al.,SPIE’s 47 th<br />

Annual Meeting, Seattle, 2002)<br />

lower minimum q<br />

higher maximum q<br />

(2) Reduction/measurement of<br />

quasi-elastic scattering, inelastic scattering<br />

Non-dispersive<br />

symmetric Bragg case<br />

Principle of <strong>TOF</strong>-<strong>USANS</strong><br />

y = θ −θ ( B)sin2θ<br />

B −V ()E 0<br />

V( G)<br />

E ∆θn = 2 FN G ( ) ⎛ λ<br />

⎜<br />

πvcsin2θ ⎝ B n<br />

⎞<br />

Reduced angular parameter y<br />

Width of total reflection<br />

⎟<br />

⎠<br />

( )<br />

( )= 2πh2 F N G<br />

V G<br />

mvc θB : Bragg angle, E : neutron energy<br />

h = h<br />

, h : Planck's constant<br />

2π<br />

FN ( G):<br />

nuclear structure factor<br />

Extend reactor<br />

<strong>USANS</strong> q-range<br />

m : neutron mass, v c : volume of unit cell<br />

(H. Rauch and D. Petrascheck, in: <strong>Neutron</strong> Diffraction,<br />

ed., H. Dachs, Topics in Current Physics 6 (1978) 303<br />

(Springer, Heidelberg, Berlin, Göttingen))<br />

q minimum q maximum<br />

qmin,n ≈ 2π ⎛ ∆θ ⎞ n<br />

⎜ ⎟<br />

λ n⎝<br />

2 ⎠<br />

( )<br />

= 2 FN G ⎛ λ<br />

⎜<br />

vcsin2θ ⎝ B n<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

G<br />

O<br />

Dispersion surf ace<br />

Maximum scattering angle of<br />

measurement<br />

∆θmax,n = ~ 2000 µrad<br />

= const<br />

λ/ 4<br />

λ/ 3<br />

λ/ 2<br />

λ<br />

qmax,n = 2π ⎛ ∆θ ⎞ max<br />

⎜<br />

λ n ⎝ 2 ⎠<br />

= π∆θ max<br />

λ<br />

n


Schematic drawing of <strong>USANS</strong><br />

insturment at J<strong>SNS</strong><br />

(1) <strong>The</strong> instrument is located No.13 port (coupled liquid H 2 moderator).<br />

In order to share the port with other instrument, pre-monochromator is used.<br />

(2) Si crystals are mounted in vacuum chamber.<br />

Because, temperature control of many samples<br />

is carried out.<br />

(3) We use thin type channel cut Si crystals.<br />

~4m<br />

Const ant t emperat ure room<br />

Goniometer in<br />

vacuum chamber<br />

1st channel cut Si,<br />

3 bounce<br />

Beam stop / monitor<br />

2nd channel cut Si,<br />

3 bounce<br />

3 He detector<br />

~3m<br />

Sheild<br />

Coupled moderator<br />

Pulsed neutron<br />

T0 chopper<br />

Pre-monochromator<br />

Slit<br />

Slit<br />

Guide tube<br />

Sample goniometer,<br />

t emperat ure cont rol<br />

Goniometer in<br />

vacuum chamber<br />

Beam st op<br />

Vibration free table<br />

7.5 m<br />

20 m<br />

other instrument


Time averaged intensity (n/cm2/sr/nm)<br />

Characteristic of No. 13 port and selected wavelength<br />

Liquid H 2 coupled moderator<br />

10 14<br />

10 13<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

Calculation codes<br />

NMTC/JAERI97<br />

MCNP4a<br />

0.001 0.01 0.1 1<br />

Wavelength (nm)<br />

Si (111)<br />

0.255 nm<br />

Intensity (n/cm2/sr/nm/pulse)<br />

10 15<br />

10 13<br />

10 11<br />

10 9<br />

0.0001 0.01 1<br />

Time (msec)<br />

0.255 nm<br />

0.0283 nm<br />

λ/9<br />

0.0283 nm Pulse shape <strong>for</strong> λ and λ/9 at 25Hz, 1MW<br />

Time averaged neutron intensity<br />

FWHM (µsec)<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.001 0.01 0.1 1<br />

Wavelength (nm)<br />

FWHM of pulse shape as a function of wavelength


Width ( µrad)<br />

Calculated characteristic of <strong>TOF</strong>-<strong>USANS</strong> <strong>for</strong> J<strong>SNS</strong> -1-<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.01<br />

λ/1=0.255 nm<br />

(111)<br />

(220)<br />

λ/9<br />

λ/8<br />

λ/7<br />

λ/5<br />

λ/4<br />

2 3 4 5 6 7<br />

λ (nm)<br />

λ/3<br />

λ/3<br />

0.1<br />

λ/2<br />

2 3 4<br />

Darwin width <strong>for</strong> Si (111) and Si (220) setting.<br />

Si (111)<br />

wavelength λ λ/3 λ/4 λ/5 λ/7 λ/8 λ/9<br />

notation (111) (333) (444) (555) (777) (888) (999)<br />

λ<br />

λ<br />

q min (nm -1 )<br />

10 -4<br />

10 -5<br />

2<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0.01<br />

λ/1=0.255 nm<br />

(111)<br />

(220)<br />

Si (220)<br />

wavelength λ λ/2 λ/3λ/4 λ/5 λ/6 λ/7<br />

notation (220) (440) (660) (880) (10 10 0) (12 12 0) (14 14 0)<br />

2 3 4 5 6 7<br />

λ (nm)<br />

0.1<br />

2 3 4<br />

q min <strong>for</strong> Si (111) and Si (220) setting


Si (111)<br />

Si (220)<br />

Calculated characteristic of <strong>TOF</strong>-<strong>USANS</strong> <strong>for</strong> J<strong>SNS</strong> -2-<br />

Intensity (arb. units)<br />

Intensity (arb. units)<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

-10<br />

-10<br />

Central part of 2nd Si rocking curve<br />

-5<br />

-5<br />

0<br />

0<br />

5<br />

10<br />

θ−θΒ (µrad)<br />

5<br />

10<br />

θ−θΒ (µrad)<br />

λ/1=0.255 nm<br />

15<br />

(111)<br />

(333)<br />

(444)<br />

(555)<br />

(777)<br />

(888)<br />

(999)<br />

20<br />

λ/1=0.255 nm<br />

15<br />

(220)<br />

(440)<br />

(660)<br />

(880)<br />

(10 10 0)<br />

(12 12 0)<br />

(14 14 0)<br />

20<br />

25<br />

25<br />

Intensity (arb. units)<br />

Intensity (arb. units)<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

Central part of 2nd Si rocking curve in q-scale<br />

10 -6<br />

10 -6<br />

10 -5<br />

10 -5<br />

10 -4<br />

q (nm -1 )<br />

10 -4<br />

q (nm -1 )<br />

λ/1=0.255 nm<br />

10 -3<br />

10 -3<br />

(111)<br />

(333)<br />

(444)<br />

(555)<br />

(777)<br />

(888)<br />

(999)<br />

λ/1=0.255 nm<br />

(220)<br />

(440)<br />

(660)<br />

(880)<br />

(10 10 0)<br />

(12 12 0)<br />

(14 14 0)<br />

We assumed that the reflectivity of the pre-monochrometer to the neutron which diffracts dynamically on Si crystals was equal.<br />

10 -2<br />

10 -2


Intensity (arb. units)<br />

10 13<br />

10 11<br />

10 9<br />

10 7<br />

10 5<br />

Measurement diagram<br />

~ -2000 µrad step scan<br />

~2000 µrad<br />

first frame<br />

elastic scattering<br />

(444)<br />

(555)<br />

(777)<br />

(888)<br />

(999)<br />

-100 -50 0 50 100<br />

θ−θ Β (µrad)<br />

(333)<br />

(111)<br />

fine step<br />

inelastic scattering<br />

Central part of step scan <strong>for</strong> 2nd Si rocking curve<br />

1<br />

larger step<br />

Flight distance (m)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0<br />

40<br />

<strong>TOF</strong> (msec)<br />

10<br />

10<br />

20<br />

<strong>TOF</strong> (msec)<br />

25 Hz<br />

λ/1=0.255 nm<br />

30<br />

(111)<br />

(333)<br />

(444)<br />

(555)<br />

(777)<br />

(888)<br />

(999)<br />

Flight distance - <strong>TOF</strong> diagram<br />

detector<br />

sample<br />

T0 chopper<br />

moderator<br />

40


10 -5<br />

pulse<br />

Per<strong>for</strong>mance of <strong>TOF</strong>-<strong>USANS</strong><br />

case of Si (111) setting<br />

10 -4<br />

reactor<br />

10 -3<br />

q (nm -1 )<br />

10 -2<br />

λ=0.255nm<br />

(111)<br />

10 -1<br />

(333)<br />

(999)<br />

(555)<br />

(444)<br />

(888)<br />

(777)<br />

λ/1=0.255nm<br />

10 0<br />

Calculated q-range of <strong>TOF</strong>-<strong>USANS</strong> and reactor-<strong>USANS</strong><br />

<strong>TOF</strong>-<strong>USANS</strong><br />

q =~ 2×10 −5 − 0.5 nm −1<br />

Gain ~<br />

( )<br />

m Ip n<br />

∑ =~12,<br />

n=1<br />

I r<br />

n =1,3,4,5,7,8,9<br />

Ip n<br />

I r<br />

() : neutron flux <strong>for</strong> nth order reflection<br />

at pulsed source<br />

: neutron flux at reactor source<br />

Reactor-<strong>USANS</strong><br />

q =~ 2×10 −4 − 0.05 nm −1


Intensity (cps)<br />

1000<br />

100<br />

10<br />

0.001<br />

1<br />

0.1<br />

0.01<br />

10 -5<br />

Per<strong>for</strong>mance of Reactor <strong>USANS</strong> at JRR-3<br />

B.G level<br />

10 -4<br />

10 -3<br />

q (nm -1 )<br />

λ = 0.2 nm<br />

Rocking curve<br />

Ewald curve<br />

10 -2<br />

10 -1<br />

Rocking curve of 2nd channel cut Si-crystal of thin type<br />

Thin type channel cut Si<br />

effective <strong>for</strong> background reduction<br />

S/N ratio : 2 ~ 2.6 ×10 5<br />

neut ron<br />

Thick type<br />

0.25 nm<br />

10 110<br />

10<br />

5 bounce<br />

Thick - thin type<br />

Cd<br />

130<br />

<br />

Cd<br />

2 15 2<br />

19<br />

unit mm


Moderator<br />

Repetition<br />

T0 chopper<br />

L1<br />

(L2)<br />

Pre-monochromator<br />

Crystal<br />

Temperature control<br />

Table<br />

Detector<br />

DC-SANS parameters<br />

Coupled liquid H 2<br />

25 Hz<br />

~7.5m<br />

~21 m<br />

(~1.0m)<br />

Bent PG/Bent Si<br />

Si 111, Si 220,triple-triple bounce<br />

Constant temp. room + chamber<br />

Vibration free table<br />

3 He proportional counter

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!