23.07.2013 Views

Degree of Parabolic Quantum Groups - Dipartimento di Matematica ...

Degree of Parabolic Quantum Groups - Dipartimento di Matematica ...

Degree of Parabolic Quantum Groups - Dipartimento di Matematica ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5. <strong>Quantum</strong> universal enveloping algebras for parabolic Lie algebras 59<br />

Proposition 5.4.2. For t = 1, we have U 1 ǫ = Uǫ<br />

Pro<strong>of</strong>. For t = 1, the relations <strong>of</strong> U 1 ǫ are exactly the relation 4.2.2 that define<br />

Uǫ.<br />

Let 0 = λ ∈ C, define<br />

ϑλ(Ei) = 1<br />

λ Ei, ϑλ(Fi) = 1<br />

λ Fi, ϑλ(Li) = 1<br />

λ Li, ϑλ(K ±1<br />

i ) = K ±1<br />

i , (5.10)<br />

for i = 1, . . .,n.<br />

Proposition 5.4.3. For any 0 = λ ∈ C, ϑλ is an isomorphism <strong>of</strong> algebra<br />

between U t ǫ and U λt<br />

ǫ<br />

Pro<strong>of</strong>. Simple verification <strong>of</strong> the property.<br />

Set Sǫ := U t=0<br />

ǫ , we want to construct an explicit realization <strong>of</strong> it. Let<br />

D = Uǫ(b+) ⊗ Uǫ(b−) and define the map<br />

Σ : Sǫ → D<br />

by Σ(Ei) = Ei := Ei ⊗ 1, Σ(Fi) = Fi = 1 ⊗ Fi, and Σ(K ±1<br />

i ) = K ±1<br />

K ±1<br />

i ⊗ K±1<br />

i for i = 1, . . .,n.<br />

Lemma 5.4.4. Σ is a well defined map.<br />

i :=<br />

Pro<strong>of</strong>. We must verify that the image <strong>of</strong> Ei, Fi and Ki satisfy the relation<br />

5.6 for t = 0.<br />

±<br />

K i K ± j = K± j K± i<br />

(5.11)<br />

KiK −1<br />

= 1<br />

i<br />

<br />

KiEjK −1<br />

i = ǫaijEj KiFjK −1<br />

i = ǫ−aijFj ⎧<br />

⎪⎨<br />

⎪⎩<br />

[Ei, Fi] = 0<br />

1−aij r=0 (−1)r<br />

<br />

1 − aij<br />

1−aij<br />

r=0 (−1)r<br />

<br />

r<br />

<br />

1 − aij<br />

r<br />

ǫi<br />

ǫi<br />

E 1−aij−r<br />

i EjE r i<br />

F 1−aij−r<br />

i FjF r i<br />

= 0<br />

= 0<br />

(5.12)<br />

(5.13)<br />

Note that the relations 5.11 are obvious. We begin by demonstrating the<br />

relation 5.12<br />

KiEjK −1<br />

i<br />

= Ki ⊗ Ki (Ei ⊗ 1) K −1<br />

i<br />

= KiEiK −1<br />

i<br />

= ǫ aij Ei ⊗ 1<br />

= ǫ aij Ei<br />

⊗ 1<br />

⊗ K−1<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!