24.07.2013 Views

Sensitivity analysis for the outages of nuclear power plants - SADCO ...

Sensitivity analysis for the outages of nuclear power plants - SADCO ...

Sensitivity analysis for the outages of nuclear power plants - SADCO ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

<strong>Sensitivity</strong> <strong>analysis</strong> <strong>for</strong> <strong>the</strong> <strong>outages</strong> <strong>of</strong> <strong>nuclear</strong><br />

<strong>power</strong> <strong>plants</strong><br />

<strong>SADCO</strong>: 2 nd Industrial Workshop<br />

Laurent Pfeiffer ∗ , Frédéric Bonnans ∗ and Kengy Barty †<br />

∗ INRIA Saclay and CMAP, Ecole Polytechnique, † EDF R&D<br />

February 2, 2012


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Introduction<br />

Study <strong>of</strong> a two-level problem:<br />

optimization <strong>of</strong> <strong>the</strong> dates <strong>of</strong> <strong>the</strong> <strong>outages</strong> <strong>of</strong> <strong>nuclear</strong> <strong>power</strong><br />

<strong>plants</strong><br />

optimization <strong>of</strong> <strong>the</strong> production <strong>of</strong> electricity.<br />

Our approach:<br />

1 fix a schedule τ<br />

2 optimize <strong>the</strong> production <strong>of</strong> electricity: V (τ)<br />

3 per<strong>for</strong>m a sensitivity <strong>analysis</strong>: compute V ′ (τ)<br />

4 improve <strong>the</strong> schedule.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Introduction<br />

Study <strong>of</strong> a two-level problem:<br />

optimization <strong>of</strong> <strong>the</strong> dates <strong>of</strong> <strong>the</strong> <strong>outages</strong> <strong>of</strong> <strong>nuclear</strong> <strong>power</strong><br />

<strong>plants</strong><br />

optimization <strong>of</strong> <strong>the</strong> production <strong>of</strong> electricity.<br />

Our approach:<br />

1 fix a schedule τ<br />

2 optimize <strong>the</strong> production <strong>of</strong> electricity: V (τ)<br />

3 per<strong>for</strong>m a sensitivity <strong>analysis</strong>: compute V ′ (τ)<br />

4 improve <strong>the</strong> schedule.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

1 Study <strong>of</strong> <strong>the</strong> reference problem<br />

Model<br />

Pontryagin’s principle<br />

Structure <strong>of</strong> optimal controls<br />

2 <strong>Sensitivity</strong> <strong>analysis</strong><br />

Abstract <strong>the</strong>orem<br />

Toy example<br />

Application to <strong>the</strong> <strong>outages</strong>


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

1 Study <strong>of</strong> <strong>the</strong> reference problem<br />

Model<br />

Pontryagin’s principle<br />

Structure <strong>of</strong> optimal controls<br />

2 <strong>Sensitivity</strong> <strong>analysis</strong><br />

Abstract <strong>the</strong>orem<br />

Toy example<br />

Application to <strong>the</strong> <strong>outages</strong>


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Model<br />

General notations:<br />

S <strong>the</strong> set <strong>of</strong> <strong>plants</strong>, <strong>of</strong> cardinal n<br />

T <strong>the</strong> horizon <strong>of</strong> <strong>the</strong> problem<br />

dt <strong>the</strong> demand <strong>of</strong> electricity<br />

Control variables:<br />

u i t <strong>the</strong> rate <strong>of</strong> production <strong>of</strong> plant i<br />

0 ≤ u i t ≤ u i <strong>the</strong> bound on production<br />

U= <br />

i∈S [0, ui ]


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

State variables:<br />

s i t <strong>the</strong> level <strong>of</strong> fuel <strong>of</strong> plant i<br />

[τ i b , τ i e] <strong>the</strong> dates <strong>of</strong> <strong>the</strong> <strong>outages</strong><br />

a i <strong>the</strong> rate <strong>of</strong> refuelling<br />

Dynamic: ˙s i t = −u i t1 t /∈[τ i b ,τ i e] + ai 1 t∈[τ i b ,τ i e ]<br />

s i 0<br />

= si,0<br />

State constraints: <br />

si τ i = 0<br />

b<br />

si T ≥ 0


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Optimization criterion:<br />

where:<br />

T <br />

min c dt −<br />

0<br />

<br />

u<br />

i∈W (t)<br />

i <br />

t dt + φ(sT ),<br />

c and φ and strongly convex and smooth and φ is decreasing<br />

W (t) is <strong>the</strong> set <strong>of</strong> working <strong>plants</strong> at time t.<br />

Functional spaces:<br />

u ∈ L ∞ (0, T ; R n )<br />

s ∈ W 1,∞ (0, T ; R n )


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Pontryagin’s principle<br />

The Hamiltonian is independent on <strong>the</strong> state!<br />

H(t, u, p) = c<br />

Proposition<br />

<br />

dt − <br />

i∈W (t)<br />

u i<br />

+ <br />

i∈S<br />

p i<br />

−u i 1 t /∈[τ i b ,τ i e ] +ai 1 t∈[τ i b ,τ i e ]<br />

If (u, s) is optimal, <strong>the</strong>re exists a costate t ↦→ p(t) such that<br />

1 Each coordinate pi takes only two values over time, pi 0 on<br />

[0, τ i b ] and pi T on [τ i b , T ] such that<br />

pT ≤ Dsi φ(sT ) and p i T = Dsi φ(sT ) if s i T<br />

2 For almost all t in [0, T ],<br />

H(t, ut, pt) ≤ H(t, v, pt), ∀v ∈ U.<br />

= 0.<br />

<br />

.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Pontryagin’s principle<br />

The Hamiltonian is independent on <strong>the</strong> state!<br />

H(t, u, p) = c<br />

Proposition<br />

<br />

dt − <br />

i∈W (t)<br />

u i<br />

+ <br />

i∈S<br />

p i<br />

−u i 1 t /∈[τ i b ,τ i e ] +ai 1 t∈[τ i b ,τ i e ]<br />

If (u, s) is optimal, <strong>the</strong>re exists a costate t ↦→ p(t) such that<br />

1 Each coordinate pi takes only two values over time, pi 0 on<br />

[0, τ i b ] and pi T on [τ i b , T ] such that<br />

pT ≤ Dsi φ(sT ) and p i T = Dsi φ(sT ) if s i T<br />

2 For almost all t in [0, T ],<br />

H(t, ut, pt) ≤ H(t, v, pt), ∀v ∈ U.<br />

= 0.<br />

<br />

.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Stucture <strong>of</strong> optimal controls<br />

Each stock <strong>of</strong> fuel i has two marginal prices associated:<br />

−p i 0 ≥ 0 and − p i T<br />

≥ 0.<br />

At time t, <strong>the</strong> Hamiltonian is <strong>the</strong> sum <strong>of</strong><br />

<br />

<strong>the</strong> integral cost: c dt − <br />

i∈W (t) ui<br />

<br />

<strong>the</strong> cost associated to fuel: <br />

i∈S −pi tui .<br />

Moreover, <strong>the</strong> costate induces an ordering <strong>of</strong> <strong>the</strong> <strong>plants</strong>. If<br />

−p i t > −p j t,<br />

<strong>the</strong>n plant i is used only if plant j produces at its maximum rate.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Stucture <strong>of</strong> optimal controls<br />

Each stock <strong>of</strong> fuel i has two marginal prices associated:<br />

−p i 0 ≥ 0 and − p i T<br />

≥ 0.<br />

At time t, <strong>the</strong> Hamiltonian is <strong>the</strong> sum <strong>of</strong><br />

<br />

<strong>the</strong> integral cost: c dt − <br />

i∈W (t) ui<br />

<br />

<strong>the</strong> cost associated to fuel: <br />

i∈S −pi tui .<br />

Moreover, <strong>the</strong> costate induces an ordering <strong>of</strong> <strong>the</strong> <strong>plants</strong>. If<br />

−p i t > −p j t,<br />

<strong>the</strong>n plant i is used only if plant j produces at its maximum rate.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

<br />

Total production<br />

#<br />

#<br />

Demand<br />

<br />

The bounds / # depend on: , W(t), and p(t).


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

If some <strong>plants</strong> share <strong>the</strong> same costate, <strong>the</strong>n <strong>the</strong> optimal<br />

controls are not unique.<br />

In our model, <strong>the</strong> total production is unique.<br />

The costate has to be considered as a dual variable,<br />

characterized by (p0, pT ). It is not necessarily unique.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

1 Study <strong>of</strong> <strong>the</strong> reference problem<br />

Model<br />

Pontryagin’s principle<br />

Structure <strong>of</strong> optimal controls<br />

2 <strong>Sensitivity</strong> <strong>analysis</strong><br />

Abstract <strong>the</strong>orem<br />

Toy example<br />

Application to <strong>the</strong> <strong>outages</strong>


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Abstract <strong>the</strong>orem<br />

Consider <strong>the</strong> abstract family <strong>of</strong> optimization problems Py<br />

and its Lagrangian<br />

V (y) = min f (x, y), s.t. g(x, y) ≤ 0,<br />

x<br />

L(x, y, λ) = f (x, y) + 〈λ, g(x, y)〉.<br />

The functions f and g are continuously differentiable.<br />

For a reference value y0, suppose that Py0 is convex and denote by<br />

S(y0), <strong>the</strong> set <strong>of</strong> solutions <strong>of</strong> Py0<br />

Λ(y0), <strong>the</strong> set <strong>of</strong> Lagrange multipliers.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Abstract <strong>the</strong>orem<br />

Consider <strong>the</strong> abstract family <strong>of</strong> optimization problems Py<br />

and its Lagrangian<br />

V (y) = min f (x, y), s.t. g(x, y) ≤ 0,<br />

x<br />

L(x, y, λ) = f (x, y) + 〈λ, g(x, y)〉.<br />

The functions f and g are continuously differentiable.<br />

For a reference value y0, suppose that Py0 is convex and denote by<br />

S(y0), <strong>the</strong> set <strong>of</strong> solutions <strong>of</strong> Py0<br />

Λ(y0), <strong>the</strong> set <strong>of</strong> Lagrange multipliers.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Theorem<br />

Suppose that<br />

1 problem Py0<br />

2 problem Py0<br />

has solutions<br />

is qualified, at all <strong>the</strong> solutions<br />

3 <strong>for</strong> all sequence yn → y0, Pyn has a solution xn such that<br />

(xn)n has a limit point x in S(y0)<br />

Then, V is directionally differentiable at y0 in all direction h and<br />

V ′ (y0, h) = inf sup Dy L(x, λ, y0)h.<br />

x∈S(y0) λ∈Λ(y0)<br />

Our goal: applying this result to V (τb, τe).


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Theorem<br />

Suppose that<br />

1 problem Py0<br />

2 problem Py0<br />

has solutions<br />

is qualified, at all <strong>the</strong> solutions<br />

3 <strong>for</strong> all sequence yn → y0, Pyn has a solution xn such that<br />

(xn)n has a limit point x in S(y0)<br />

Then, V is directionally differentiable at y0 in all direction h and<br />

V ′ (y0, h) = inf sup Dy L(x, λ, y0)h.<br />

x∈S(y0) λ∈Λ(y0)<br />

Our goal: applying this result to V (τb, τe).


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

An example <strong>of</strong> a directionally differentiable function:<br />

f : x ∈ R ↦→ |x|. At 0, we have:<br />

f ′ <br />

h if h ≥ 0,<br />

(0, h) =<br />

−h if h ≤ 0.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Toy example<br />

We consider a simplified problem with parameter τ.<br />

τ<br />

1<br />

V (τ) = min c1(t, xt, ut) dt + c2(t, xt, ut) dt<br />

⎧<br />

⎪⎨ ˙xt =<br />

0<br />

f1(t, xt, ut),<br />

τ<br />

t ∈ [0, τ],<br />

s.t. ˙xt =<br />

⎪⎩<br />

f2(t, xt, ut), t ∈ [τ, 1],<br />

x0 = x 0 .<br />

In this framework, impossible to apply <strong>the</strong> general result and<br />

compute V ′ (τ)!


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

A piecewise affine change <strong>of</strong> variables θ τ enables us to fix <strong>the</strong> date<br />

<strong>of</strong> <strong>the</strong> perturbation.<br />

1<br />

<br />

0<br />

<br />

<br />

0 1


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

We obtain:<br />

τ0<br />

V (τ) = min<br />

s.t.<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

0<br />

˙θ τ s c1(θ τ 1<br />

s , xs, us) ds +<br />

˙xs = ˙ θ τ s f1(θ τ s , xs, us), s ∈ [0, τ0],<br />

˙xs = ˙ θ τ s f2(θ τ s , xs, us), s ∈ [τ0, 1],<br />

x0 = x 0 .<br />

The Lagrangian is<br />

τ0<br />

L(x, u, τ, p)=<br />

0<br />

+<br />

τ0<br />

˙θ τ s H1(θ τ s , xs, us, ps) ds<br />

˙θ τ s c2(θ τ s , xs, us) ds,<br />

1<br />

˙θ<br />

τ0<br />

τ s H2(θ τ 1<br />

s , xs, us, ps) ds −<br />

0<br />

where H1(t, x, u, p) = c1(t, x, u) + 〈p, f1(t, x, u)〉.<br />

ps ˙xs ds,


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

We obtain:<br />

τ0<br />

V (τ) = min<br />

s.t.<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

0<br />

˙θ τ s c1(θ τ 1<br />

s , xs, us) ds +<br />

˙xs = ˙ θ τ s f1(θ τ s , xs, us), s ∈ [0, τ0],<br />

˙xs = ˙ θ τ s f2(θ τ s , xs, us), s ∈ [τ0, 1],<br />

x0 = x 0 .<br />

The Lagrangian is<br />

τ0<br />

L(x, u, τ, p)=<br />

0<br />

+<br />

τ0<br />

˙θ τ s H1(θ τ s , xs, us, ps) ds<br />

˙θ τ s c2(θ τ s , xs, us) ds,<br />

1<br />

˙θ<br />

τ0<br />

τ s H2(θ τ 1<br />

s , xs, us, ps) ds −<br />

0<br />

where H1(t, x, u, p) = c1(t, x, u) + 〈p, f1(t, x, u)〉.<br />

ps ˙xs ds,


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

For <strong>the</strong> reference problem with τ = τ0, we set<br />

by a classical property,<br />

h1[p]t = min<br />

v∈U H1(t, x t, v, pt), <strong>for</strong> t ∈ [0, τ0],<br />

˙h1[p]t = DtH1(t, x t, ut, pt).<br />

We define similarly h2. These functions are called <strong>the</strong> true<br />

Hamiltonians.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

We obtain<br />

Dτ L(x, u, τ0, p)<br />

= 1<br />

τ0<br />

h1[p]t + t ˙h1[p]t dt +<br />

τ0 0<br />

1<br />

1 − τ0<br />

= 1<br />

τ0 th1[p]t<br />

τ0<br />

0 +<br />

1<br />

<br />

(1 − t)h2[p]t<br />

1 − τ0<br />

= −(h2[p]τ0 − h1[p]τ0 ).<br />

1<br />

τ0<br />

1 τ0<br />

−h2[p]t + (1 − t) ˙h2[p]t dt


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Application to <strong>the</strong> <strong>outages</strong><br />

For our application problem, we set<br />

∆h i b [p] and ∆hi e[p], <strong>the</strong> jump <strong>of</strong> <strong>the</strong> true Hamiltonian at<br />

times τ i b and τ i e, resp.<br />

Π <strong>the</strong> set <strong>of</strong> costates<br />

About <strong>the</strong> costates Π:<br />

in ”most cases”, a singleton<br />

described by a set <strong>of</strong> inequalities<br />

<strong>for</strong> example, if p i 0 is not unique, <strong>the</strong>n ui is bang-bang on<br />

[0, τ i b ].


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Application to <strong>the</strong> <strong>outages</strong><br />

For our application problem, we set<br />

∆h i b [p] and ∆hi e[p], <strong>the</strong> jump <strong>of</strong> <strong>the</strong> true Hamiltonian at<br />

times τ i b and τ i e, resp.<br />

Π <strong>the</strong> set <strong>of</strong> costates<br />

About <strong>the</strong> costates Π:<br />

in ”most cases”, a singleton<br />

described by a set <strong>of</strong> inequalities<br />

<strong>for</strong> example, if p i 0 is not unique, <strong>the</strong>n ui is bang-bang on<br />

[0, τ i b ].


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Theorem<br />

If all <strong>the</strong> dates are different, <strong>the</strong> value function is directionally<br />

differentiable and<br />

V ′ (τb, τe), (δτb, δτe) = sup<br />

(p0,pT )∈Π<br />

<br />

−δτ i b∆hi b [p] − δτ i e∆h i e[p].<br />

i∈S<br />

The result does not depend on <strong>the</strong> optimal solution.<br />

A different change <strong>of</strong> variable is needed if some dates are<br />

equal.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Theorem<br />

If all <strong>the</strong> dates are different, <strong>the</strong> value function is directionally<br />

differentiable and<br />

V ′ (τb, τe), (δτb, δτe) = sup<br />

(p0,pT )∈Π<br />

<br />

−δτ i b∆hi b [p] − δτ i e∆h i e[p].<br />

i∈S<br />

The result does not depend on <strong>the</strong> optimal solution.<br />

A different change <strong>of</strong> variable is needed if some dates are<br />

equal.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Conclusion<br />

Our study provides a local approximation <strong>of</strong> <strong>the</strong> value<br />

function, as long as <strong>the</strong> perturbation <strong>of</strong> <strong>the</strong> dates does not<br />

modify <strong>the</strong> initial order <strong>of</strong> <strong>the</strong> dates.<br />

An extension to a stochastic framework should be possible.<br />

Reference: J.F. Bonnans and A. Shapiro, Perturbation Analysis <strong>of</strong><br />

Optimization Problems, Springer-Verlag, New-York, 2000.


Introduction Study <strong>of</strong> <strong>the</strong> reference problem <strong>Sensitivity</strong> <strong>analysis</strong><br />

Thank you <strong>for</strong> your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!