25.07.2013 Views

Mycotoxins - Penn State University

Mycotoxins - Penn State University

Mycotoxins - Penn State University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mycotoxins</strong>:<br />

Managing a Unique<br />

Obstacle to Successful<br />

Dairy Production<br />

Lon W. Whitlow<br />

North Carolina <strong>State</strong> <strong>University</strong><br />

Raleigh<br />

Mycotoxin:<br />

Poison<br />

Produced By<br />

Molds<br />

(Filamentous Fungi)<br />

The Mycotoxin<br />

Blue Book<br />

Nottingham <strong>University</strong><br />

Press<br />

Edited by<br />

Dr. Duarte Diaz<br />

<strong>Mycotoxins</strong> are a diverse group of fungal metabolites<br />

(chemicals produced by a mold) that cause an<br />

undesirable effect in exposed animals.<br />

SUMMARY<br />

Contact:<br />

CAST<br />

Council for Agricultural<br />

Science and Technology<br />

4420 W. Lincoln Way<br />

Ames, Iowa 50014<br />

Telephone<br />

515-292-2125<br />

Report # 139<br />

1. <strong>Mycotoxins</strong> are prevalent in feeds<br />

2. <strong>Mycotoxins</strong> are toxic to dairy cattle<br />

3. High levels cause acute effects in cattle, including death<br />

4. Low levels cause the greatest economic loss - chronic<br />

losses in milk production & more disease<br />

5. <strong>Mycotoxins</strong> can be the root cause<br />

of health and production problems.<br />

6. Prevention is important<br />

7. Treatments are effective<br />

Primary Toxigenic Molds and <strong>Mycotoxins</strong><br />

* Those Thought Most Prevalent and Toxic to Dairy Cattle<br />

Fusarium<br />

*Deoxynivalenol<br />

*Zearalenone<br />

*T-2 Toxin<br />

*Fumonisin<br />

Moniliformin<br />

Nivalenol<br />

Diacetoxyscirpenol<br />

Butenolide<br />

Neosolaniol<br />

Fusaric Acid<br />

Fusarochromanone<br />

Wortmannin<br />

Aspergillus<br />

*Aflatoxin<br />

Ochratoxin<br />

Sterigmatocystin<br />

Fumitremorgens<br />

Fumigaclavines<br />

Fumitoxins<br />

Cyclopiazonoic Acid<br />

Gliotoxin<br />

Alternaria Claviceps<br />

Stachybotrys AAL toxin Ergots<br />

Stachybotryotoxin Lupinosis Fescue Alkaloids<br />

Penicillium<br />

Ochratoxin<br />

*PR Toxin<br />

Patulin<br />

Roquefortine C<br />

Mycophenolic Acid<br />

Penicillic Acid<br />

Citrinin<br />

Penetrem<br />

Cyclopiazonic Acid<br />

1


Primary Toxigenic Molds and <strong>Mycotoxins</strong><br />

* Those Thought Most Prevalent and Toxic to Dairy Cattle<br />

Fusarium<br />

*Deoxynivalenol<br />

*Zearalenone<br />

*T-2 Toxin<br />

*Fumonisin<br />

Moniliformin<br />

Nivalenol<br />

Diacetoxyscirpenol<br />

Butenolide<br />

Aspergillus<br />

*Aflatoxin<br />

Ochratoxin<br />

Sterigmatocystin<br />

Fumitremorgens<br />

Fumigaclavines<br />

Fumitoxins<br />

Cyclopiazonoic Acid<br />

Gliotoxin<br />

Penicillium<br />

Ochratoxin<br />

PR Toxin<br />

Patulin<br />

Penicillic Acid<br />

Citrinin<br />

Penetrem<br />

Cyclopiazonic acid<br />

Known Postulated<br />

Mold Species 1,100 1,500,000<br />

Secondary Metabolites 3,200 3,000,000<br />

Neosolaniol <strong>Mycotoxins</strong><br />

Fusaric Acid<br />

Fusarochromanone<br />

Wortmannin<br />

> 300 30,000<br />

Alternaria Claviceps<br />

Stachybotrys AAL toxin Ergots<br />

Stachybotryotoxin Lupinosis Fescue Alkaloids<br />

Do mycotoxins also assist fungi<br />

to infect animals?<br />

Fungal infections in animals are termed mycoses.<br />

Fungal pneumonia, abortions, mastitis and intestinal infections<br />

Animals resist mycoses unless immune suppressed.<br />

<strong>Mycotoxins</strong> produced by fungi cause immune suppression,<br />

and thus may assist fungi in infecting animals.<br />

Hemorrhagic bowel syndrome<br />

Caused by A. fumigatus<br />

Forsberg<br />

Do mycotoxins also assist fungi<br />

to infect animals?<br />

Fungal infections in animals are termed mycoses.<br />

Fungal pneumonia, abortions, mastitis and intestinal infections<br />

Animals resist mycoses unless immune suppressed.<br />

<strong>Mycotoxins</strong> produced by fungi cause immune suppression,<br />

and thus may assist fungi in infecting animals.<br />

In studies of A. fumigatus<br />

infections in ruminants,<br />

gliotoxin and/or T-2 toxin, which are<br />

both potent immune suppressing<br />

mycotoxins, were always present,<br />

when analysed.<br />

A mycotoxin binder may prevent HBS<br />

Hemorrhagic bowel syndrome<br />

Caused by A. fumigatus<br />

Forsberg<br />

Why do fungi produce mycotoxins?<br />

As a secondary metabolite, mycotoxins have no direct<br />

function in fungal metabolism.<br />

John Deere Co.<br />

Main theories for their production are:<br />

1. Protection of the fungus<br />

2. Assist the fungus in creating an<br />

environment for survival and growth.<br />

Do mycotoxins also assist fungi<br />

to infect animals?<br />

Fungal infections in animals are termed mycoses.<br />

Fungal pneumonia, abortions, mastitis and intestinal infections<br />

Animals resist mycoses unless immune suppressed.<br />

<strong>Mycotoxins</strong> produced by fungi cause immune suppression,<br />

and thus may assist fungi in infecting animals.<br />

In studies of A. fumigatus<br />

infections in ruminants,<br />

gliotoxin and/or T-2 toxin, which are<br />

both potent immune suppressing<br />

mycotoxins, were always present,<br />

when analysed.<br />

Hemorrhagic bowel syndrome<br />

Caused by A. fumigatus<br />

Forsberg<br />

Mycotoxin Occurrence and Concentrations in Feeds<br />

From North Carolina Producers Over 13 Years<br />

Aflatoxin Deoxynivalenol Fumonisin T-2 Toxin Zearalenone<br />

Number 3266 5053 822 5136 4563<br />

Total<br />

Positive, % 10 46 42 8 15<br />

Low, % 6 18 33 2 7<br />

(300 ppb)<br />

2


Mycotoxin Contamination of 1988 Corn<br />

Collected from July to December from 82<br />

Feed Manufacturers in 7 Midwestern <strong>State</strong>s<br />

Russel et al., 1991<br />

<strong>State</strong> N Aflatoxin, % T-2, %<br />

Iowa 40 5 18<br />

Nebraska 22 0 18<br />

Minnesota 27 0 15<br />

Illinois 46 13 7<br />

Indiana 5 0 7<br />

Ohio 27 7 11<br />

Michigan 9 0 33<br />

TOTAL 186 5% 13%<br />

Mold Count Interpretations*<br />

Safe Levels < 10,000 CFU/g<br />

Questionable Levels 10,000 - 100,000 CFU/g<br />

Caution Levels 100,000 - 1,000,000 CFU/g<br />

Problem Levels > 1,000,000 CFU/g<br />

Significance of mold counts are highly subjective,<br />

depending on mold identification, mycotoxin formation<br />

and feed deterioration.<br />

Unique Concerns about Ruminant<br />

Mycotoxicoses<br />

Consumption of a variety of feedstuffs, including grains, byproduct<br />

feeds, pasture, hay and silage, results in potential<br />

exposure of ruminants to a broad array of mycotoxins and<br />

multiple mycotoxin exposure.<br />

This array of mycotoxins includes some not normally found in<br />

grains and not routinely analyzed, and results in toxicities not<br />

seen in monogastric animals.<br />

Mycotoxin degradation and transformation in the rumen may<br />

reduce the incidence of acute toxicity, but may increase the<br />

problem of chronic, sub-clinical toxicity.<br />

Rumen transformation of mycotoxins may alter expected<br />

symptoms.<br />

60%<br />

50%<br />

40%<br />

Percent of Total 30%<br />

Dairyland Laboratories 2002 Mold Counts<br />

20%<br />

10%<br />

0%<br />

2001 - 1987 samples 2002 - 2303 samples<br />

10-10,000 44% 50%<br />

10,000-100,000 15% 14%<br />

100,000-10,000,000 37% 33%<br />

>10,000,000 4% 3%<br />

<strong>Mycotoxins</strong> &<br />

Molds Occur in<br />

Most Feeds<br />

Including Grain,<br />

Hay and Silage<br />

John Deere Co.<br />

Primary Mechanisms Through Which<br />

<strong>Mycotoxins</strong> Affect Animals<br />

• Reduction of feed intake<br />

• Reduced nutrition of the animal<br />

– reduced nutrient content of the feed,<br />

– reduced nutrient absorption and<br />

– alter/block nutrient metabolism<br />

• Suppression of immunity<br />

• Hormonal effects - primarily estrogenic<br />

• Antibiotic effects on rumen fermentation<br />

• Cellular death - various target tissues<br />

• Increased stress - interactions with other stress<br />

3


Mechanisms<br />

<strong>Mycotoxins</strong> and Immunity<br />

Aflatoxin T-2 Toxin<br />

Inhibition of Protein Synthesis +++ +++<br />

Thymus Atrophy<br />

Necrosis of Gut-<br />

+++ +++<br />

associated Lymph Tissue +++<br />

Cell Mediated Immunity +++ +++<br />

Humoral effects,<br />

Antibody production + +++<br />

+ to +++ lesser to greater effect Pier, 1994<br />

Mycotoxin Concerns Have Increased<br />

• Learned more about mycotoxins & their toxicity<br />

• Better analytical methods – cheaper & faster<br />

• High producing cows are more susceptible<br />

– More stress - more disease<br />

– Nutrient deficiencies<br />

• Low ruminal mycotoxin degradation - increases toxicity<br />

– Higher feed (and grain) consumption increases rumen turnover<br />

– Lower fiber diets - low rumen pH - fewer protozoa<br />

ERGOTS<br />

Claviceps<br />

Fescue Fungus<br />

Lameness<br />

Necrosis of extremities<br />

Reduced performance<br />

Agalactia<br />

Reduced fertility<br />

Lameness<br />

Necrosis of extremities<br />

Fescue foot<br />

Fat necrosis<br />

Agalactia<br />

Summer toxicosis<br />

FGIS<br />

Tolerance<br />

< 0.3% sclerotia<br />

NCSU<br />

Univ Nebraska<br />

Univ. Georgia<br />

Normal Immune System Function<br />

Around Parturition in the Dairy Cow as Indicated by<br />

Neutrophil and Lymphocyte Function<br />

Immune Function<br />

(% of Controls)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Calving<br />

-6 -4 -2 0 2 4 6<br />

Week Around Parturition<br />

Pasture Associated <strong>Mycotoxins</strong><br />

Neutrophil<br />

Function<br />

Lymphocyte<br />

Function<br />

Kehrli et al., 1989.<br />

Fescue fungus Ergot alkaloids<br />

Ryegrass staggers lolitrems-tremorgens<br />

Paspalum (Dalisgrass) staggers paspalitrems (ergots)<br />

Diplodiosis D. maydis toxin<br />

(Grazed corn fields)<br />

Photosensitization<br />

(Facial Eczema-NZ) sporidesmin<br />

(Geeldikkop-Africa) ?<br />

(Lupinosis - Europe) phomopsin<br />

Slobber Syndrome slaframine (red clover)<br />

Locoism swainsonine<br />

------------------------------------------------------------------<br />

Common mycotoxins such as aflatoxin, DON, ZEN, T-2,<br />

and others.<br />

Fumonisin is produced by<br />

Fusarium verticillioides, formerly moniliforme<br />

4


<strong>Penn</strong> <strong>State</strong><br />

<strong>Penn</strong> <strong>State</strong><br />

Fumonisin Induced Equine Leucoencephalomalacia<br />

<strong>Penn</strong> <strong>State</strong> <strong>University</strong><br />

Daily Milk Production of Dairy Cows (Holsteins and<br />

Jerseys) Consuming Diets With or Without Corn<br />

Naturally Contaminated With Fumonisin<br />

Diets Contained


Effect of Corn Infected by Gibberella Zeae on Dairy Cattle<br />

Diets<br />

Infected corn in diet, % 0% 20% 40%<br />

Diet Zen (ppb) 0 100 200<br />

Diet DON (ppb)* 0 2400 4800<br />

D.M. Intake (% BW) 2.90 2.85 2.79 n.s.<br />

Milk, (kg/day) 22.7 22.9 23.2 n.s.<br />

4% FCM, (kg/day) 22.1 22.2 22.6 n.s.<br />

Bodyweight Gain, (kg/d) 0.87a 0.60b 0.49b N.S. = not significant, a & b, p < .05<br />

Actual corn not analyzed, but corn form the same field which reduced intake in swine contained<br />

DON. 3x3 Latin Square. 18 cows total. Periods of 21 days.<br />

Noller, et al., 1979. J. Dairy Sci. 62:1003<br />

Effect of DON on First Lactation Dairy<br />

Cows in Mid-lactation (6 cows/group)<br />

Diet Mean Difference<br />

A B C B+C A-(B+C) P><br />

DON, ppb 36 2686 6393 4539<br />

DMI, lb 35.9 35.0 35.9 35.5 0.4 n.s.<br />

Milk, lb 50.2 47.1 47.4 47.2 3.0 .16<br />

Fat Test, % 3.9 2.8 3.3 3.0 0.9 .05<br />

4% FCM, lb 47.6 39.9 42.7 41.3 6.3 ND<br />

Statistics: Only linear and quadratic effects were tested. There was a sign. Quadratic effect for fat.<br />

Means for diet A vs B or A vs C were not tested.<br />

Means for diet A vs B+C were tested only for milk, which was not sign. at p> .16<br />

The effect on fat and FCM were much greater than on milk alone.<br />

Charmley, et al. 1993. J. Dairy Sci. 76:3580.<br />

Toxicity of Deoxynivalenol in Dairy Cattle<br />

5 ppm DON Reduces FCM 2.6 kg or 5.7 lb<br />

49<br />

48<br />

47<br />

4% FCM<br />

46<br />

lb/d<br />

45<br />

44<br />

43<br />

42<br />

41<br />

40<br />

DON Control 2.5 ppm 5.0 ppm 5.0 ppm<br />

MTB-100 0 0 0 10 g/cow/d<br />

Acosta, Mieres, and La Manna, Uruguay, Unpublished<br />

Rolling Herd average Milk, Lb.<br />

Relationship of Deoxynivalenol<br />

to Change in Rolling Herd Average Milk<br />

300 HERDS 50,000 COWS<br />

Deoxynivalenol level in Concentrate, ppb<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

-1000<br />

-1200<br />

-1400<br />

-1600<br />

-1800<br />

100<br />

300<br />

500<br />

700<br />

900<br />

Rolling Herd<br />

Ave. Milk<br />

Whitlow et al. 1991. North Carolina <strong>State</strong> <strong>University</strong>, 1982-1983<br />

Effect of DON on Ruminal Protein Synthesis<br />

Danike et al., 2005 J Animal Physiol.<br />

and Animal Nutrition 89:303-315.<br />

Duodenal<br />

Flow of:<br />

Crude Protein,<br />

g/day<br />

RUP, g/day<br />

Microbial<br />

Protein, g/day<br />

Metabolizable<br />

Protein, g/day*<br />

Control<br />

1180<br />

225<br />

862<br />

1091<br />

* 20% less MP<br />

DON<br />

3.1 ppm<br />

950<br />

186<br />

680<br />

871<br />

Rumen ammonia levels post-feeding a<br />

control diet or DON contaminated diet<br />

A second study confirmed the reduced<br />

flow of metabolizable protein.<br />

Danike et al., 2006 J Animal Physiol.<br />

and Animal Nutrition 90:103-115.<br />

Milk Production (lb/d) for Dairy Cows<br />

(Holsteins and Jerseys) Consuming Diets Naturally<br />

Contaminated With 2500 ppb DON and 270 ppb ZEN,<br />

With and Without a Clay Sorbant (0.5 lb/cow daily)<br />

Average Daily Milk (lb)<br />

56<br />

55<br />

54<br />

53<br />

52<br />

51<br />

50<br />

49<br />

All Cows<br />

55.04<br />

Added<br />

51.85 Adsorbent<br />

No<br />

Adsorbent<br />

N = 83 N = 82<br />

P < 0.05<br />

3.2 lb Milk<br />

Control<br />

Sorbant<br />

North Carolina <strong>State</strong> <strong>University</strong><br />

6


Fusarium graminearum or roseum and also labeled Gibberillium<br />

Zearalenone Affected Open Heifers<br />

Showing Mammary Enlargement<br />

A Field Report of Zearalenone Toxicosis<br />

Ration Contents: Zearalenone 660 ppb<br />

Deoxynivalenol 440 ppb<br />

Aflatoxin 88 ppb<br />

Herd Effects Diarrhea in 1/3 of cows<br />

Irregular estrus cycles<br />

Pregnant cows in estrus<br />

Failure to conceive<br />

Vaginitis<br />

Low erratic milk production<br />

Mammary gland enlargement in heifers<br />

Coppock et al., 1990. Vet.<br />

Human Toxicol. 32:246<br />

Zearalenone<br />

Estrogenic effects<br />

Competes with estrogen for binding sites<br />

Reduces reproductive performance<br />

Pigs most susceptible<br />

- swollen reproductive organs<br />

Sheep - rectal prolapse<br />

Zearalenone Affected Open Heifers<br />

Showing Mammary Enlargement<br />

Conception rate for dairy heifers administered<br />

pure zearalenone at 250 mg 1 daily for one estrous<br />

cycle prior to insemination plus 45 days afterward.<br />

Control 87<br />

Zearalenone 62<br />

Conception Rate, %<br />

n = 36 P < .065<br />

Based on expected DM intake, Zen was approx. 25,000 ppb.<br />

Weaver et al., 1986. Am J. Vet Res. 47:1395.<br />

7


Zearalenone: Reproductive Effects in Dairy<br />

Heifers Fed Zearalenone Contaminated<br />

Hay (~ 500 ppb) or Clean Control Hay<br />

Services/Pregnancy Mean<br />

Location Pregnancy<br />

Unit 1 Unit 2 Mean Rate %<br />

Clean Hay 1.23 1.54 1.38 72<br />

ZEN Hay 1.90 2.00 1.95 51<br />

n = 40<br />

North Carolina <strong>State</strong> <strong>University</strong>, Unpublished<br />

Theoretical Response of Heifer<br />

Conception Rate to Dietary Zearalenone<br />

Conception<br />

Rate, %<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0<br />

2<br />

6<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

Dietary Zearalenone, ppm<br />

T-2 Toxin Symptoms<br />

Digestive disorders<br />

-Lower intake and production<br />

-Acidosis<br />

-Ulcers<br />

-Intestinal hemorrhage<br />

-Diarrhea (Bloody)<br />

Poor fresh cow transition<br />

Increased disease (Metabolic & Infections)<br />

Reduced fertility<br />

Relationship of herd fertility with dietary “zearalenone” and<br />

urinary “zearalenone” in pastured dairy cows in New Zealand<br />

Dietary Blood<br />

Farms ZEN (est.) “ZEN”<br />

n ppb ppb<br />

Low Fertility 8 400 1.14<br />

High Fertility 6 220 0.27<br />

Low fertility = 10-30% of cows failing to conceive after multiple services<br />

Symptoms included mammary enlargement and swollen and redden vulvas<br />

“Zen” = Zearalenone and derivatives reactive to custom ELISA<br />

Sporsen and Towers 1995. Ruakura Research Center, New Zealand<br />

Fusarium sporotrichoides <strong>University</strong> of California, Davis<br />

Effect of 350 ppb Dietary T-2 Toxin on Daily Milk<br />

Production at the Randleigh Jersey Research Farm<br />

Daily Milk, Lb.<br />

46<br />

44<br />

42<br />

40<br />

38<br />

36<br />

34<br />

32<br />

30<br />

1<br />

5<br />

10<br />

14<br />

18<br />

22<br />

26<br />

30<br />

34<br />

38<br />

42<br />

46<br />

50<br />

54<br />

58<br />

Whitlow, NCSU, 1986<br />

Binder Added<br />

Days<br />

Binder Removed<br />

Binder Added<br />

8


Hemorrhagic bowel syndrome associated with T-2 toxin<br />

Example of aflatoxin effects on the liver of the<br />

guinea pig, from high to low levels of aflatoxin<br />

Richard, USDA, ARS, National Disease Center, Ames, Iowa and CAST, 1989.<br />

Mycotoxin Excretion Via Milk<br />

Excretion, % of diet conc.<br />

Aflatoxin 1.7 Range 1 – 2<br />

Deoxynivalenol < 0.02<br />

Zearalenone < 0.70<br />

T-2 toxin < 0.20<br />

Fumonisin < 0.01<br />

Ochratoxin < 0.03<br />

Aspergillus flavus produces aflatoxin<br />

Estimated Milk Production Loss in Dairy Cattle<br />

Following a One Month Exposure to Aflatoxin.<br />

Milk Loss, lb.<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 200 400 600 800 1000<br />

Legal limit<br />

Of 20 ppb<br />

Dietary aflatoxin, ppb<br />

Relationship Between Aflatoxin B 1 Intake (mg/day) and<br />

Milk Concentration of Aflatoxin M 1 (µg/L), Van Egmond, 1989<br />

Milk aflatoxin concentration = 1.7% diet conc.<br />

Milk<br />

Aflatoxin<br />

M 1<br />

(µg/L)<br />

.<br />

. . . .<br />

. . .<br />

. .<br />

...<br />

.<br />

. .. .<br />

.<br />

.<br />

.<br />

.<br />

AFM1<br />

0 5 10 15 20 25 30 35 40<br />

.<br />

. .<br />

.<br />

Aflatoxin B 1 Intake (mg/day)<br />

.<br />

.<br />

.<br />

.<br />

Van Egmond, 1989<br />

9


Percent of<br />

Total<br />

Dairyland Laboratories 2002<br />

Mold Identification<br />

35%<br />

30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

Penicillium Aspergillus Mucor Rhizopus Fusarium<br />

2001-581 30% 6% 18% 8% 18% 17% 3%<br />

2002-665 35% 10% 20% 8%<br />

Specific Molds<br />

12% 11% 3%<br />

Cladospori<br />

um<br />

Other<br />

N=1950<br />

N=2200<br />

Managing A Mycotoxin Problem<br />

• Diagnosis<br />

– Observe for general symptoms<br />

– Process of elimination (Rule out other possible causes such as<br />

nutrition, disease, and management)<br />

– Add a mycotoxin binder (sorbant) to the diet<br />

– Test feeds for common mycotoxins<br />

(DON, T-2, ZEN, FB, AF)<br />

• Prevention<br />

– Manage feed to reduce spoilage<br />

– Use mold inhibitors<br />

– Use transition rations – reduce stress<br />

Potential Methods for Treatment &<br />

Prevention of Aflatoxin Toxicity<br />

CHEMICAL<br />

BIOLOGICAL<br />

PHYSICAL<br />

•Ammoniation<br />

•Microbial<br />

•Grain Cleaning/Seperation<br />

Commonly used on<br />

cottonseed and corn<br />

Irreversible if done<br />

properly<br />

Enzymatic<br />

degradation of specific<br />

mycotoxins<br />

Potential treatment<br />

Effective<br />

Reduces fines where<br />

concentration of aflatoxin is<br />

high<br />

Can be used in the<br />

feed mill or on the<br />

•Non-Toxic strains •Heating - peanuts<br />

farm<br />

May compete with or 40-80% reduction<br />

•Sodium Bisulfite<br />

exclude toxic strains of<br />

•Irradiation<br />

aflatoxin<br />

Decreased<br />

Exposure to UV light<br />

palatability<br />

Practical?<br />

•Adsorbents<br />

Clays, carbons, glucans,<br />

(Eaton and Groopman, 1994)<br />

inorganic polymers<br />

Selected Penicillium <strong>Mycotoxins</strong><br />

• PR Toxin - Related to reduced intake, rumen stasis,<br />

intestinal irritation, abortion and retained placenta in<br />

dairy cattle. A marker for problem silages (Seglar)<br />

• Roquefortine C - Implicated in toxic silage<br />

• Mycophenolic Acid - Implicated in toxic silage<br />

• Ochratoxin - Kidney Toxin, toxic to calves but, not<br />

toxic to functional ruminants -adults<br />

• Patulin - A common mycotoxin in silage. Effects<br />

ruminal fermentation. Has been implicated in deaths of<br />

cows (Lacey), but has received little study.<br />

Managing A Mycotoxin Problem<br />

• Treatment<br />

– Encourage feed intake<br />

– Remove or dilute contaminated feeds<br />

– Feed “CLEAN” feed to<br />

transition cows<br />

– Evaluate nutrients:<br />

Antioxidants: Vitamin E, Cu, Zn, Mn, Se<br />

Vitamin A and/or carotene<br />

Protein, Fat, Adequate Effective Fiber<br />

– Feed additives: buffers, microbials<br />

– Mycotoxin binders are shown to be effective<br />

Milk<br />

Aflatoxin,<br />

ppb<br />

Clearance and Appearance of Aflatoxin in Milk<br />

Associated With Consumption of Aflatoxin<br />

Contaminated Corn in Diets<br />

With or Without the Addition of Clay Products<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

Days<br />

Aflatoxin Aflatoxin Aflatoxin<br />

removed added<br />

removed<br />

NO CLAY<br />

CLAY<br />

ADDED<br />

(mean of 3<br />

clays)<br />

10


Effect of Feed Additives on % Reduction<br />

in Milk Aflatoxin Residues<br />

%<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

54.1<br />

67.3<br />

61.2<br />

64.6<br />

Bentonites<br />

added at 1.2%<br />

31.4<br />

58.5<br />

Mycrosorb<br />

5.4<br />

Mycosorb 0.05% Activated Carbon 0.25%<br />

Efficacy of Various Adsorbents Added to Diets at<br />

0.5% to Reduce Milk Aflatoxin Concentrations When<br />

Diets Contain 170 ppb Aflatoxin B1<br />

120<br />

100<br />

100<br />

Milk<br />

80<br />

Aflatoxin<br />

60<br />

% of<br />

40<br />

Control<br />

20<br />

0<br />

104 92 93<br />

MTB-100<br />

Control<br />

Stroud, J.S., et al. 2006. J Dairy Sci. (abstr.)<br />

87 ** * *<br />

58 65 52 55<br />

Milbond-TX<br />

Astra Ben 20<br />

Condition Ade<br />

Toxinil+<br />

Novasil+<br />

Mexsil<br />

Ultrasorb<br />

* Significant P < .05<br />

The problem of sampling a non-uniform lot of feed<br />

Protein Aflatoxin<br />

12 12 11 13<br />

12 13 12 13<br />

12 13 11 12<br />

12 11 12 13<br />

13 12 11 12<br />

Average = 12<br />

0 0 0 0 0<br />

0 0 0 0 0<br />

0 0 0 0 0<br />

0 0 8000 0 0<br />

0 0 0 0 0<br />

Average = 400<br />

46*<br />

33* 39* Efficacy of Adsorbents Added Diets at at Different Inclusion Rates<br />

(Clay at 1.2%, Glucan at 0.05% and Carbon at 0.25%) to Reduce<br />

Milk Aflatoxin Concentrations in Diets Containing 55 ppb Aflatoxin<br />

Study A<br />

95<br />

Study B<br />

69*<br />

35*<br />

41*<br />

* P < 0.05<br />

Milk Aflatoxin<br />

% of Control<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

MS FG AB-<br />

20<br />

AB-<br />

20<br />

Adsorbent Product<br />

Diaz et al., 2004,<br />

Mycopathologia 156:223-226 & 157:233-241<br />

RC MTB- AC-A<br />

100<br />

Type Amount In Vitro<br />

Product % Binding, %<br />

MS - Mycrosorb - Clay - 1.2% 98.4<br />

FG - Flowguard - Clay - 1.2% 95.1<br />

AB-20 - Clay - 1.2% 98.0<br />

RC - Red Crown- Clay - 1.2% 98.5<br />

MTB-100 - - Glucan - 0.05% 96.6<br />

AC-A - - Carbon - 0.25% 99.9<br />

Sampling &Testing Feeds for <strong>Mycotoxins</strong><br />

Mold spore count - Reflects deterioration but not mycotoxins<br />

Mold I.D. - Suggests potential mycotoxins<br />

<strong>Mycotoxins</strong> - AF, DON, ZEN, FB and T-2.<br />

Sampling - Imprecise and difficult.<br />

Occurs in unevenly distributed spots<br />

Blend feed prior to sampling<br />

Take numerous subsamples and composite<br />

Labs -Identify accurate, fast, and cost effective lab<br />

Mailing -Freeze wet samples, dry samples in paper bags<br />

-Use overnight delivery<br />

Effect of Sample Size on Estimated 95% Confidence Interval<br />

of Test Results for Cottonseed Containing 100 ppb Aflatoxin<br />

95% Confidence Interval<br />

Sample Size Sub-samples Low High<br />

lb. No. ppb ppb<br />

2 4 0 271<br />

4 9 0 222<br />

9 20 13 187<br />

18 41 37 163<br />

35 78 53 147<br />

70 159 64 136<br />

Whitaker, Dickens,Giesbrecht. 1991. In: <strong>Mycotoxins</strong> and Animal Foods. CRC Press.<br />

11


What concentrations of<br />

mycotoxins are safe?<br />

No amount of mycotoxin can be considered safe<br />

Errors in sampling and analysis may be misleading<br />

Only a few mycotoxins are analyzed<br />

Presence of one mycotoxin suggests presence of others<br />

and many mycotoxins exist<br />

<strong>Mycotoxins</strong> interact with other mycotoxins and other<br />

factors such as nutrition and stress producing<br />

variable results<br />

Mold Mushrooms Moisture<br />

Silos need to be sized to the herd for rapid feed out<br />

SUMMARY<br />

1. <strong>Mycotoxins</strong> are prevalent in feeds<br />

2. <strong>Mycotoxins</strong> are toxic to dairy cattle<br />

3. High levels cause acute effects in cattle - death<br />

4. Low levels cause the greatest economic loss - chronic<br />

effects – milk loss – greater disease<br />

5. <strong>Mycotoxins</strong> can be the root cause of various problems.<br />

6. Prevention is important<br />

7. Treatments are effective<br />

8. Adsorbents are the best treatment<br />

Conditions in Silage Leading to Deterioration,<br />

Mold Growth and Mycotoxin Formation<br />

Aeration<br />

Yeast Growth<br />

Listeria<br />

Starch and Sugars<br />

Consumption of<br />

Lactic Acid<br />

Other Aerobic<br />

Microorganisms<br />

Deterioration<br />

Ethanol<br />

Increased pH<br />

Penicillium Other Molds<br />

Mold Growth<br />

Silage Management – Summary<br />

Choose appropriate hybrids<br />

Harvest At Proper Stage of Maturity<br />

and Moisture<br />

Consider Processing<br />

Fill the Silo Fast (Not too fast)<br />

Pack for Good Density<br />

Cover Well<br />

Use Effective Fermentation Aid<br />

Manage the Feeding Face<br />

Discard the Spoilage<br />

Mycotoxin Formation<br />

Final Question:<br />

How much poison is acceptable in a dairy ration?<br />

Thanks<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!