25.07.2013 Views

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 Algebra<br />

9:00–12:00<br />

March 21st (Thu) Conference Room I<br />

Final: 2013/2/7<br />

21 Noriko Zaitsu (Eigakuin) The field highter dimension over R than <strong>the</strong> sedenions does not exist<br />

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: The field in which <strong>the</strong> solution <strong>of</strong> x 2 = −1 is added to a real number field is a<br />

complex number field. It is two dimensional expansion. Similarly if one origin which fills x 2 = −1<br />

which is not ±i is attached to a complex number, in addition this is set to j, it means that it<br />

was added automatically ij = k will also be two-dimensional expansion <strong>and</strong> will be <strong>the</strong> number <strong>of</strong><br />

Hamiltonians. Why its number <strong>of</strong> Hamiltonians is non-commutative field is shown by a diagram.<br />

(figure.1k) Similarly, <strong>the</strong> number <strong>of</strong> Cayley can also be defined <strong>and</strong> it becomes a nonassociative<br />

field. If <strong>the</strong> definition is given similarly, since <strong>the</strong> origin in which <strong>the</strong> direction <strong>of</strong> <strong>the</strong> sedenions does<br />

not become settled, addition cannot be defined, it is not <strong>the</strong> field. (figure.2k)<br />

22 Shinichi Tajima (Univ. <strong>of</strong> Tsukuba) ♯ Efficient symbolic computation <strong>of</strong> matrix polynomials with an extended<br />

Katsuyoshi Ohara (Kanazawa Univ.)<br />

Akira Terui (Univ. <strong>of</strong> Tsukuba)<br />

Horner’s rule · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: The Horner’s Rule is well-known method for evaluating univariate polynomials ef-<br />

ficiently. For calculating “matrix polynomials” by evaluating <strong>the</strong> polynomial with matrices, we<br />

propose an efficient method by extending naive Horner’s rule. Our key idea is dividing computation<br />

<strong>of</strong> <strong>the</strong> Horner’s rule into parts to reduce <strong>the</strong> number <strong>of</strong> matrix multiplications which dominates<br />

<strong>the</strong> computing time <strong>of</strong> matrix polynomials with naive Horner’s rule. We have implemented our<br />

new algorithm into computer algebra system Risa/Asir, <strong>and</strong> show that, with proper settings on<br />

<strong>the</strong> degree <strong>of</strong> division <strong>of</strong> <strong>the</strong> Horner’s rule, not only <strong>the</strong> computing time but also <strong>the</strong> amount <strong>of</strong><br />

memory used for <strong>the</strong> computation have been decreased, compared to <strong>the</strong> calculation with naive<br />

Horner’s rule. We also show an attempt for even more efficient computation <strong>of</strong> our new algorithm<br />

with distributed/parallel computing facility <strong>of</strong> Risa/Asir.<br />

23 Shinichi Tajima (Univ. <strong>of</strong> Tsukuba) ♯<br />

Katsuyoshi Ohara (Kanazawa Univ.)<br />

On structure <strong>of</strong> invariant subspaces for square matrix · · · · · · · · · · · · · · · 10<br />

Summary: We discuss structure <strong>of</strong> invariant subspaces <strong>of</strong> square matrix. It is an application <strong>of</strong><br />

minimal annihilating polynomials <strong>of</strong> matrix.<br />

24 Katsuyoshi Ohara (Kanazawa Univ.) ♯ A r<strong>and</strong>omized algorithm for computing minimal annihilating polynomi-<br />

Shinichi Tajima (Univ. <strong>of</strong> Tsukuba) als <strong>of</strong> square matrix · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: A fast method for computing minimal annihilating polynomials <strong>of</strong> square matrix is<br />

developed. The method uses a r<strong>and</strong>omized algorithm.<br />

25 Shuzo Izumi (Kinki Univ.) ♯ A family <strong>of</strong> Artinian rings associated to a finite-dimensional vector<br />

space <strong>of</strong> holomorphic functions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: Let Z ⊂ O(U) be a finite-dimensional vector space <strong>of</strong> holomorphic functions on an<br />

open subset Ω ⊂ C n . Let fb ↓ denote <strong>the</strong> homogeneous term <strong>of</strong> <strong>the</strong> minimal degree <strong>of</strong> <strong>the</strong> Taylor<br />

expansion <strong>of</strong> f ∈ Z centred at b ∈ Ω <strong>and</strong> put Zb ↓= Span C{fb ↓: f ∈ Z}. Then <strong>the</strong> natural<br />

sesquilinear form on Zb ↓ ×Z is a non-degenerate one (de Boor–Ron). It is also known that Zb<br />

is D-invariant i.e. closed with respect to partial differentiation on a non-empty analytically open<br />

subset U ⊂ Ω. These imply that Zb has a natural structure <strong>of</strong> a ring such that π : Ob −→ Zb is a<br />

retraction homomorphism. Thus we have associated a deformation <strong>of</strong> graded Artinian local rings<br />

{Zb : b ∈ U} to Z. We make a remark on <strong>the</strong> types <strong>of</strong> such rings.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!