25.07.2013 Views

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

29 Geometry<br />

Final: 2013/2/7<br />

17 Kotaro Kawai (Tohoku Univ.) ∗ Construction <strong>of</strong> coassociative submanifolds · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: The notion <strong>of</strong> coassociative submanifolds is defined as <strong>the</strong> special class <strong>of</strong> <strong>the</strong> minimal<br />

submanifolds in G2 manifolds. We construct coassociative submanifolds in R 7 <strong>and</strong> <strong>the</strong> anti-self-dual<br />

bundle over <strong>the</strong> 4-sphere by using <strong>the</strong> symmetry <strong>of</strong> <strong>the</strong> Lie group action.<br />

18 Kota Hattori (Univ. <strong>of</strong> Tokyo) ∗ Generalizations <strong>of</strong> Taub-NUT deformations · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: We introduce a generalizations <strong>of</strong> Taub-NUT deformations for large families <strong>of</strong> hy-<br />

perkähler quotients, which is already known to be defined for toric hyperkähler manifolds <strong>and</strong> ALE<br />

spaces <strong>of</strong> type Dk.<br />

19 Tomoyuki Hisamoto (Univ. <strong>of</strong> Tokyo) ♯ Geometry <strong>of</strong> <strong>the</strong> space <strong>of</strong> Kähler metrics, <strong>the</strong> relation between Calabitype<br />

functionals <strong>and</strong> <strong>the</strong> Donaldson–Futaki invariant. · · · · · · · · · · · · · · · 15<br />

Summary: Given a polarized Kähler manifold, we show that <strong>the</strong> algebraic norm <strong>of</strong> a test<br />

configuration equals to <strong>the</strong> norm <strong>of</strong> tangent vectors <strong>of</strong> associated weak geodesic ray in <strong>the</strong> space<br />

<strong>of</strong> Kähler metrics. Using this result, We may give a natural energy <strong>the</strong>oretic explanation for <strong>the</strong><br />

lower bound estimate on <strong>the</strong> Calabi functional by Donaldson <strong>and</strong> prove <strong>the</strong> analogous result for <strong>the</strong><br />

Kähler–Einstein metric.<br />

20 Nobuhiko Otoba (Keio Univ.) ♯ New examples <strong>of</strong> Riemannian metrics with constant scalar curvature<br />

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: We constructed a one-parameter family <strong>of</strong> Riemannian metrics on <strong>the</strong> non-trivial<br />

S 2 -bundle over S 2 . In a certain sense, <strong>the</strong>se metrics are <strong>the</strong> counterpart <strong>of</strong> <strong>the</strong> one-parameter<br />

family <strong>of</strong> natural product metrics on <strong>the</strong> trivial S 2 -bundle over S 2 . Every metric in <strong>the</strong> family has<br />

<strong>the</strong> following properties: (i) its isometry group contains <strong>the</strong> special unitary group SU(2), (ii) <strong>the</strong><br />

projection as fiber bundle is a Riemannian submersion with totally geodesic fibers onto <strong>the</strong> round<br />

2-sphere <strong>of</strong> some radius, <strong>and</strong> (iii) it has constant scalar curvature. We observe some <strong>of</strong> <strong>the</strong>se metrics<br />

are unique constant scalar curvature metrics in <strong>the</strong>ir respective conformal classes up to constant<br />

multiplication.<br />

21 Hajime Fujita (Japan Women’s Univ.) ♯ On an S 1 -equivariant index for symplectic manifold · · · · · · · · · · · · · · · · 15<br />

Summary: Using a technique developed in a joint work with M. Furuta <strong>and</strong> T. Yoshida we<br />

give a formulation <strong>of</strong> S 1 -equivariant index <strong>the</strong>ory for a prequantized symplectic manifold with a<br />

Hamiltonian S 1 -action. We explain <strong>the</strong> difference between our index <strong>and</strong> <strong>the</strong> index defined by<br />

M. Braverman.<br />

22 Masao Jinzenji (Hokkaido Univ.) ♯ 2 Multi-point virtual structure constants <strong>and</strong> mirror computation <strong>of</strong> CP -<br />

Masahide Shimizu (Hokkaido Univ.) model · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: In this talk, we introduce multi-point virtual structure constants for <strong>the</strong> mirror<br />

computation <strong>of</strong> Gromov–Witten invariants <strong>of</strong> CP 2 . These constants are defined as <strong>the</strong> intersection<br />

numbers <strong>of</strong> <strong>the</strong> compactified moduli space <strong>of</strong> quasi maps from CP 1 to CP 2 with 2 + n marked<br />

points. Some <strong>of</strong> <strong>the</strong> generating functions <strong>of</strong> <strong>the</strong>se invariants correspond to <strong>the</strong> mirror maps <strong>and</strong> <strong>the</strong><br />

o<strong>the</strong>r generating functions are translated into <strong>the</strong> generating functions <strong>of</strong> genus 0 Gromov–Witten<br />

invariants <strong>of</strong> CP 2 . We also discuss <strong>the</strong> mirror computation <strong>of</strong> <strong>the</strong> open Gromov–Witten invariants<br />

<strong>of</strong> CP 2 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!