25.07.2013 Views

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

33 Complex Analysis<br />

9:30–12:00<br />

Complex Analysis<br />

March 22nd (Fri) Conference Room VIII<br />

Final: 2013/2/7<br />

1 Katsuyuki Nishimoto<br />

∗ 2 −3 N-fractional calculus <strong>of</strong> <strong>the</strong> function f(z) = ((z−b) −c) <strong>and</strong> identities<br />

(Descartes Press Co.) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: In this article <strong>the</strong> N-fractional calculus <strong>of</strong> <strong>the</strong> function in title is discussed by <strong>the</strong><br />

calculation in <strong>the</strong> manners (((z − b) 2 − c) −4 · (z − b) 2 − c)r <strong>and</strong> ((((z − b) 2 − c) −3 )1)r−1. Moreover<br />

some identities derived from <strong>the</strong>m are presented.<br />

One <strong>of</strong> <strong>the</strong>m is shown as follows for example, ∑ ∞<br />

2γG(k, γ, 1)+γ(γ −1)G(k, γ, 2) where G(k, γ, m) = ∑ ∞<br />

k=0<br />

[3]kΓ(2k+6+γ)<br />

k=0<br />

[4]kΓ(2k+8+γ−m)<br />

k!Γ(2k+8)<br />

k!Γ(2k+6) Sk = (1 − S)G(k, γ, 0) −<br />

Sk , (|Γ(2k +8+γ −m)| <<br />

∞) S = c<br />

(z−b) 2 , |S| < 1, Γ(· · · ); Gamma function <strong>and</strong> [λ]k = λ(λ + 1) · · · (λ + k − 1) = Γ(λ + k)/Γ(λ)<br />

with [λ0] = 1. (Notation <strong>of</strong> Pochhammer)<br />

2 Mitsuru Uchiyama (Shimane Univ.) ♯ Principal inverses <strong>of</strong> orthogonal polynomials · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: Let {pn(t)} be orthogonal polynomials with positive leading coefficients <strong>and</strong> dn <strong>the</strong><br />

maximal zero <strong>of</strong> p ′ n(t). The inverse <strong>of</strong> <strong>the</strong> restriction <strong>of</strong> pn(t) to [dn, ∞) is called <strong>the</strong> principal<br />

inverse <strong>of</strong> pn <strong>and</strong> denoted by p −1<br />

n . We show it has an analytic continuation to <strong>the</strong> upper half plane<br />

that is a Pick (or Nevanlinna) function.<br />

3 Hitoshi Shiraishi (Kinki Univ.) ♯ Coefficient estimates for Schwarz functions · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Toshio Hayami (Kinki Univ.)<br />

Summary: Let B be <strong>the</strong> class <strong>of</strong> functions w(z) <strong>of</strong> <strong>the</strong> form w(z) = ∞∑<br />

bkzk which are analytic <strong>and</strong><br />

|w(z)| < 1 in <strong>the</strong> open unit disk U = {z ∈ C : |z| < 1}. Then we call w(z) ∈ B <strong>the</strong> Schwarz function.<br />

Also, let P dnote <strong>the</strong> class <strong>of</strong> functions p(z) <strong>of</strong> <strong>the</strong> form p(z) = 1 + ∞∑<br />

ckzk which are analytic <strong>and</strong><br />

Re (p(z)) > 0 in U. In <strong>the</strong> present talk, we discuss new coefficient estimates for Schwarz functions.<br />

4 Toshio Hayami (Kinki Univ.) ♯ Coefficient estimates for a certain class concerned with arguments <strong>of</strong><br />

Shigeyoshi Owa (Kinki Univ.) f ′ (z) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: Let A denote <strong>the</strong> class <strong>of</strong> functions f(z) <strong>of</strong> <strong>the</strong> form f(z) = z + ∑ ∞<br />

n=2 anz n which are<br />

analytic in <strong>the</strong> open unit disk U = {z ∈ C : |z| < 1}, <strong>and</strong> let P be <strong>the</strong> class <strong>of</strong> functions p(z) <strong>of</strong> <strong>the</strong><br />

form p(z) = 1 + ∑ ∞<br />

k=1 ckz k which are analytic in U <strong>and</strong> satisfy <strong>the</strong> condition Re (p(z)) > 0 (z ∈ U).<br />

In <strong>the</strong> present talk, we discuss <strong>the</strong> coefficient estimates <strong>of</strong> functions f(z) ∈ A satisfying f ′ (z0) = 0<br />

for some z0 ∈ U.<br />

5 Junichi Nishiwaki (Setsunan Univ.) ♯ Notes on a certain class <strong>of</strong> analytic functions · · · · · · · · · · · · · · · · · · · · · · 15<br />

Shigeyoshi Owa (Kinki Univ.)<br />

Summary: Let A be <strong>the</strong> class <strong>of</strong> analytic functions f(z) in <strong>the</strong> open unit disk U. Fur<strong>the</strong>rmore, <strong>the</strong><br />

subclass B <strong>of</strong> A concerned with <strong>the</strong> class <strong>of</strong> uniformly convex functions or <strong>the</strong> class Sp is defined.<br />

By virtue <strong>of</strong> some properties <strong>of</strong> uniformly convex functions <strong>and</strong> <strong>the</strong> class Sp, some properties <strong>of</strong> <strong>the</strong><br />

class B are considered.<br />

k=1<br />

k=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!