25.07.2013 Views

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

Titles and Short Summaries of the Talks

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

31 Geometry<br />

Final: 2013/2/7<br />

26 Shun Maeta (Tohoku Univ.) ♯ Biharmonic Lagrangian submanifolds in complex space forms · · · · · · · · 10<br />

Hajime Urakawa (Tohoku Univ.)<br />

Summary: We give <strong>the</strong> necessary <strong>and</strong> sufficient conditions for Lagrangian submanifolds in Kähler<br />

manifolds to be biharmonic. We classify biharmonic PNMC Lagrangian H-umbilical submanifolds<br />

in <strong>the</strong> complex space forms. Fur<strong>the</strong>rmore, we classify biharmonic PNMC Lagrangian surfaces in<br />

<strong>the</strong> 2-dimensional complex space forms.<br />

27 Yoshio Matsuyama (Chuo Univ.) ♯ Curvature pinching for complete submanifolds · · · · · · · · · · · · · · · · · · · · · 10<br />

Summary: Complete classifications for a complete Kaehler submanifold Mn with <strong>the</strong> scalar<br />

curvature ρ ≥ n 2 in a complex projective space <strong>and</strong> for a complete totally real minimal submanifold<br />

with nonnegative sectional curvature in a complex projective space are given, so that a conjecture<br />

<strong>of</strong> K. Ogiue are resolved.<br />

28 Hiroki Sako (Kyoto Univ.) ∗ Generalizations <strong>of</strong> exp<strong>and</strong>er graphs <strong>and</strong> Property A for discrete metric<br />

spaces · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15<br />

Summary: I will introduce a generalization <strong>of</strong> exp<strong>and</strong>er sequences. An exp<strong>and</strong>er sequence is finite<br />

graphs which are highly connected in some sence. A sequence <strong>of</strong> weighted weak exp<strong>and</strong>er spaces<br />

will be defined. I will also review several notions related to amenability for discrete groups <strong>and</strong><br />

metric spaces. Property A can be regarded as amenability for discrete metric spaces. It is proved<br />

that for a metric space X <strong>the</strong> following are equivalent: (i) <strong>the</strong>re exists a sequence <strong>of</strong> weighted weak<br />

exp<strong>and</strong>er spaces inside X, (ii) X does not have property A.<br />

29 Shouhei Honda (Kyushu Univ.) ∗ A Bochner type inequality on limit spaces. · · · · · · · · · · · · · · · · · · · · · · · · 20<br />

Summary: We give <strong>the</strong> definition <strong>of</strong> L p -convergence <strong>of</strong> tensor fields with respect to <strong>the</strong> Gromov–<br />

Hausdorff topology <strong>and</strong> several fundamental properties <strong>of</strong> <strong>the</strong> convergence. We apply this to<br />

establish a Bochner-type inequality which keeps <strong>the</strong> term <strong>of</strong> Hessian on <strong>the</strong> Gromov–Hausdorff limit<br />

space <strong>of</strong> a sequence <strong>of</strong> Riemannian manifolds with a lower Ricci curvature bound <strong>and</strong> to give a<br />

geometric explicit formula for <strong>the</strong> Dirichlet Laplacian on a limit space defined by Cheeger–Colding.<br />

30 Kei Kondo (Tokai Univ.) ♯ Toponogov’s comparison <strong>the</strong>orem in Finsler geometry · · · · · · · · · · · · · · · 20<br />

Shin-ichi Ohta (Kyoto Univ.)<br />

Minoru Tanaka (Tokai Univ.)<br />

Summary: We recently established a Toponogov comparison <strong>the</strong>orem for Finsler manifolds, in <strong>the</strong><br />

manner <strong>of</strong> radial curvature geometry. Here, we consider <strong>the</strong> situation that <strong>the</strong> radial flag curvature<br />

is bounded below by <strong>the</strong> radial curvature function <strong>of</strong> a non-compact surface <strong>of</strong> revolution, <strong>the</strong> edge<br />

opposite to <strong>the</strong> base point is contained in a Berwald-like region, <strong>and</strong> that <strong>the</strong> Finsler metric is<br />

convex enough in <strong>the</strong> radial directions in that region.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!