25.07.2013 Views

IMPLEMENTATION OF MATRIX CONVERTER CONTROL CIRCUIT ...

IMPLEMENTATION OF MATRIX CONVERTER CONTROL CIRCUIT ...

IMPLEMENTATION OF MATRIX CONVERTER CONTROL CIRCUIT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>IMPLEMENTATION</strong> <strong>OF</strong> <strong>MATRIX</strong> <strong>CONVERTER</strong> <strong>CONTROL</strong><br />

<strong>CIRCUIT</strong> WITH DIRECT SPACE VECTOR MODULATION AND<br />

FOUR STEP COMMUTATION STRATEGY<br />

Tadra Grzegorz, University of Zielona Gora, Poland<br />

Abstract<br />

In this paper a matrix converter control circuit<br />

with implemented vector modulation and four-step<br />

commutation strategy is described. The presented<br />

control circuit consists of two DSP processors and<br />

FPGA. The matrix converter is a device build with 9<br />

bidirectional switches (18 IGBT transistors). The<br />

Control circuit in contest makes possible of the<br />

matrix converter output voltage amplitude and<br />

frequency change, in addition input power factor can<br />

be controlled. Some simulation and experimental<br />

tests results of the ca. 1 kVA matrix converter<br />

laboratory model controlled by described control<br />

circuit are shown.<br />

1. Introduction<br />

In recent years transformation and control of<br />

energy has been mostly realized with indirect AC-AC<br />

converters with DC link. An alternative for this<br />

solution is still searched for. One of the recently<br />

considered alternatives is Matrix Converter (MC).<br />

The MC is a direct energy converter (build with nine<br />

bidirectional switches) able to connect every output<br />

phase to every input phase and on this principle<br />

deliver output power with desired frequency.<br />

The main advantages of the MC are: 1- lack of<br />

the DC link energy storage device, 2- generation of<br />

the load voltages with arbitrary amplitude and<br />

frequency, 3- sinusoidal input and output currents, 4-<br />

possibility to control input power factor, 5-<br />

regeneration capability. The basic disadvantages are:<br />

1- maximum input/output voltage transfer ratio by<br />

sinusoidal current shape below 1 by most control<br />

strategies, 2- sensitivity to the disturbance of the<br />

input voltage systems.<br />

There are two main concepts of MC control<br />

strategies: the first based on low frequency transfer<br />

matrix (for example: scalar [20] control strategy or<br />

control strategy proposed by Venturini [1], [2]) and<br />

the second based on currents and voltages space<br />

vector (SV) representations (for example direct [5]-<br />

[11] or indirect [3] space vector control strategy).<br />

A direct space vector modulation (SVM) does not<br />

need fictitious DC link or addition of the third-<br />

harmonic as in other common MC control strategies.<br />

XI International PhD Workshop<br />

OWD 2009, 17–20 October 2009<br />

321<br />

Maximal voltage transfer ratio for this strategy is<br />

0,866. Furthermore control of the input power<br />

factor is realized regardless of the output power<br />

factor [5]-[10]. Because of those advantages the<br />

strategy (after some modifications) will be<br />

implemented in Matrix Reactance Frequency<br />

Converters (MRFC). The converters have been<br />

studied by Professor Fedyczak’s team at the<br />

University of Zielona Góra. Implementation of the<br />

SVM for MRFC is going to be a part of the author’s<br />

PhD work. MRFC is based on a unipolar PWM AC<br />

matrix reactance choppers (MRC), description of the<br />

MRFC family (9 topologies) is included in [15] and<br />

[16]. In MRFC both a frequency change and the<br />

buck-boost load voltage conversion are possible<br />

[12]-[19].<br />

This paper presents project as well as simulation<br />

and experimental tests results of the MC control<br />

circuit with implemented direct (SVM) and four-step<br />

current commutation control strategy. Presented<br />

control circuit is going to be a part of the MRFC<br />

with modified direct SVM.<br />

Next section contains description of the matrix<br />

converter and it’s control circuit. Basing on [5]-[8]<br />

and [11] implemented control and commutation<br />

strategy is described in section 3. In section 4 some<br />

simulation and experimental test results are shown.<br />

Conclusion follows in the last section.<br />

2. Description of the MC<br />

Schema of the main and control circuit of the<br />

three phase voltage MC with RL load is shown in fig.<br />

1. Voltage and current relations of the MC are<br />

described by (1)-(2) [1]-[9].<br />

⎡ua<br />

( t)<br />

⎤ ⎡saA<br />

( t)<br />

saB<br />

( t)<br />

saC<br />

( t)<br />

⎤⎡u<br />

A ( t)<br />

⎤<br />

⎢ ⎥ ⎢<br />

⎥⎢<br />

⎥<br />

(1) ⎢<br />

ub<br />

( t)<br />

⎥<br />

=<br />

⎢<br />

sbA<br />

( t)<br />

sbB<br />

( t)<br />

sbC<br />

( t)<br />

⎥⎢<br />

u B ( t)<br />

⎥<br />

= T × ui<br />

⎢⎣<br />

uc<br />

( t)<br />

⎥⎦<br />

⎢⎣<br />

scA<br />

( t)<br />

scB<br />

( t)<br />

scC<br />

( t)<br />

⎥⎦<br />

⎢⎣<br />

uC<br />

( t)<br />

⎥⎦<br />

⎡iA<br />

( t)<br />

⎤ ⎡s<br />

aA ( t)<br />

sbA<br />

( t)<br />

scA<br />

( t)<br />

⎤⎡ia<br />

( t)<br />

⎤<br />

⎢ ⎥ ⎢<br />

⎥⎢<br />

⎥ T<br />

(2) ⎢<br />

iB<br />

( t)<br />

⎥<br />

=<br />

⎢<br />

saB<br />

( t)<br />

sbB<br />

( t)<br />

scB<br />

( t)<br />

⎥⎢<br />

ib<br />

( t)<br />

⎥<br />

= T × i o<br />

⎢⎣<br />

iC<br />

( t)<br />

⎥⎦<br />

⎢⎣<br />

saC<br />

( t)<br />

sbC<br />

( t)<br />

scC<br />

( t)<br />

⎥⎦<br />

⎢⎣<br />

ic<br />

( t)<br />

⎥⎦<br />

where<br />

s jk<br />

⎧1,<br />

= ⎨<br />

⎩0,<br />

switch is on<br />

switch is off<br />

j={a, b, c},<br />

k={A, B, C}


Fig. 1. Three- phase Matrix Converter<br />

MC can theoretically assume 512 (2 9) switching<br />

configurations (SC) but because of commutation<br />

lows there are only 27 SC permitted among which 21<br />

SC (18 active and 3 zero), are engaged in direct SVM<br />

[3]-[8]. Geometrical interpretations of those 21 SC<br />

are shown in fig. 3.<br />

Fig. 2. Geometrical interpretation of the 21 switch<br />

configurations engaged in direct SVM.<br />

Using transformation (3) input and output voltages<br />

and currents of the MC can be represented as space<br />

vectors.<br />

(3)<br />

2 j(<br />

2π<br />

/ 3)<br />

j(<br />

4π<br />

/ 3)<br />

x = ( x1<br />

+ x2e<br />

+ x3e<br />

3<br />

Where x 1<br />

, x 2<br />

, x 3<br />

– instantaneous values of the transformed<br />

signals.<br />

The geometrical interpretations of the space-<br />

vector representations of the line to neutral load<br />

voltages (uaN, ubN, ucN) and input line currents (iA, iB,<br />

iC), created for all active and zero SC (fig. 2)<br />

according to (3) are shown in fig.3. Furthermore<br />

numbers of the sectors (Si, So) between those<br />

vectors are introduced [7].<br />

Because of MC complexity its control and<br />

commutation strategy is complicated and demands<br />

advanced hardware solutions. That is why presented<br />

control circuit consists of two DSP processors<br />

(ADSP 21368), three A/D converters and a FPGA<br />

circuit (fig. 1). Basic specifications data for those<br />

components are collected in table 1. Using this<br />

control circuit instantaneous space- vector<br />

representations of the source currents are calculated.<br />

)<br />

322<br />

Based on those calculations proper switching<br />

sequence can be found to form desired load voltage<br />

vector. This process will be described in detail in the<br />

next section.<br />

Fig. 3. Space vector representations for, a) load line to<br />

neutral voltages (uaN, ubN, ucN), b) input line currents<br />

jα<br />

0 u 0 = e<br />

- exemplary line to neutral load voltages<br />

jβ<br />

i i<br />

vector position, i = e<br />

- exemplary line source currents<br />

vector position,, So- sector No. for u0, Si- sector No. for ii<br />

Table. 1 Specifications data for control circuit<br />

components<br />

Component Specification<br />

Processor DSP<br />

(ADSP-21368)<br />

ALS-3G-2368<br />

PCI<br />

FPGA (XS3S200)<br />

Converters<br />

A/D – D/A<br />

ALS-3G-<br />

ACA1812-1<br />

Manufactured by Analog Devices;<br />

clock speed 400 MHz; 1600 MFLOPS;<br />

2 Mbit SRAM; 6 Mbit ROM<br />

Manufactured by Xilnix; clock speed<br />

10 MHz; programable system gates:<br />

200000, 216kbajtów RAM<br />

18 bit A/D converter; convertion speed<br />

up to 570 kSps, input voltage range: +/-<br />

2,48V<br />

3. Control and commutation strategy<br />

Functional schema of the implemented control<br />

and commutation strategy and tasks division for<br />

control circuit components are shown in fig. 4.<br />

Because of MC source currents distortion their space<br />

vector representation ii is determined basing on<br />

measured source phase voltages. The way in with


source currents vector position is define, based upon<br />

source voltages vector position (calculated according<br />

to (3)) is shown in fig. 6b. Load voltages space<br />

vector uo, with desired amplitude and angular<br />

velocity ωout, is also calculated according to (3). In<br />

the next step according to fig. 3 previously calculated<br />

ii and uo positions allows sector numbers S0, Si and<br />

phase angels α’0, β’i to be identified. It has to be<br />

mentioned that phase angels α’0, β’i are defined with<br />

respect to bisecting line of suitable sector, limited<br />

according to (4) and differ then α0, βi (fig. 3, fig. 6)<br />

[7].<br />

(4) − π 6 < α'0<br />

< π 6 π 6 < β ' < π 6<br />

ALS-3G-2368 PCI<br />

21 SC.<br />

(fig. 2)<br />

saA<br />

ia ib ic<br />

β’i<br />

IDENTIFICATION<br />

(4)<br />

ON-TIME<br />

RATIOS<br />

CALCULATION<br />

(5)-(8)<br />

VECTOR<br />

SELECTION<br />

(tab. 1, tab. 2)<br />

saB saC<br />

SIGNAL CHANGE<br />

DETECTION<br />

SWITCH SEQUENCE<br />

SELECTION<br />

Tseq<br />

TRANSISTOR<br />

<strong>CONTROL</strong> SIGNALS<br />

So IDENTIFICATION (rys. 3b)<br />

α’0<br />

IDENTIFICATION<br />

(4)<br />

Si IDENTIFICATION (Rys. 3a)<br />

SWITCH- ON TIMES<br />

CALCULATION (9),(10)<br />

(rys. 9)<br />

sbA sbB sbC<br />

SWITCH SEQUENCE<br />

SELECTION<br />

− i<br />

uB<br />

uC<br />

CALCULATION <strong>OF</strong> THE SOURCE CURRENTS<br />

VECTOR REPRESENTATION (3)<br />

SWITCHING PATTERN<br />

(11), (12), (fig. 6)<br />

<strong>CONTROL</strong> SIGNALS FOR BIDIRECTIONAL<br />

SWITCHES<br />

SIGNAL CHANGE<br />

DETECTION<br />

(rys. 9)<br />

TRANSISTOR<br />

<strong>CONTROL</strong> SIGNALS<br />

scA scB scC<br />

(rys. 9)<br />

SIGNAL CHANGE<br />

DETECTION<br />

SWITCH SEQUENCE<br />

SELECTION<br />

TRANSISTOR<br />

<strong>CONTROL</strong> SIGNALS<br />

TaA1 TaA2 TaB1 TaB2 TaC1 TaC2 TbA1TbA2 TbB1 TbB2 TcC1 TcC2 TbA1TbA2 TbB1 TbB2 TcC1 TcC2<br />

A<br />

uA<br />

D<br />

A<br />

D<br />

A<br />

D<br />

LOAD VOLTAGE<br />

VECTOR<br />

DETERMINATION (3)<br />

φi<br />

q<br />

ωout<br />

Fig. 4. General description of the implemented control<br />

and commutation strategy.<br />

φ i - input current displacement angle, ω out - output voltage<br />

pulsation, q - voltage transfer ratio, T seq -switching time<br />

period.<br />

Subsequently four on-time ratios according to<br />

(5)-(7) are calculated. Furthermore during every<br />

sequence period, based on knowledge about actual<br />

sectors and signs of the on-time ratios, according to<br />

table 2 and 3 four active and one zero SC are<br />

selected. Switched-on times for selected SC are<br />

calculated from (5)-(7) and expressed by (9), (10).<br />

(5)<br />

(6)<br />

(7)<br />

S Si<br />

1 2 cos( α'<br />

π 3)<br />

cos( β '<br />

q<br />

i<br />

π 3)<br />

δ ( 1)<br />

0 + +<br />

0<br />

−<br />

−<br />

1<br />

= −<br />

3<br />

cosϕ<br />

i<br />

δ = ( −1)<br />

2<br />

δ = ( −1)<br />

3<br />

S0<br />

+ Si<br />

S0+<br />

Si<br />

2 cos( α'0<br />

−π<br />

3)<br />

cos( β'<br />

i + π 3)<br />

q<br />

3<br />

cosϕ<br />

2 cos( α'0<br />

+ π 3)<br />

cos( β'i<br />

−π<br />

3)<br />

q<br />

3<br />

cosϕ<br />

i<br />

i<br />

323<br />

(8)<br />

δ = ( −1)<br />

4<br />

(9) t1 = 1 Tseq<br />

(10)<br />

S0<br />

+ Si<br />

+ 1<br />

2 cos( α '0<br />

+ π 3)<br />

cos( β 'i<br />

+ π 3)<br />

q<br />

3<br />

cosϕ<br />

δ ;<br />

t2 = δ 2 Tseq<br />

;<br />

t3 = δ3<br />

Tseq<br />

;<br />

t4 = δ 4<br />

t = δ T = T − δ + δ + δ + δ ) T<br />

0<br />

0<br />

seq<br />

seq<br />

( 1 2 3 4<br />

i<br />

Tseq<br />

Table 2. Summary of the active configurations assigned<br />

to sectors and on-time ratios.<br />

(Si = 1or4)&(So=1or4) 19 16 21 18 7 4 9 6<br />

(Si = 2or5)&(So=1or4) 17 20 19 16 5 8 7 4<br />

(Si = 3or6)&(So=1or4) 21 18 17 20 9 6 5 8<br />

(Si = 1or4)&(So=2or5) 13 10 15 12 19 16 21 18<br />

(Si = 2or5)&(So=2or5) 11 14 13 10 17 20 19 16<br />

(Si = 3or6)&(So=2or5) 15 12 11 14 21 18 17 20<br />

(Si = 1or4)&(So=3or6) 7 4 9 6 13 10 15 12<br />

(Si = 2or5)&(So=3or6) 5 8 7 4 11 14 13 10<br />

(Si = 3or6)&(So=3or6) 9 6 5 8 15 12 11 14<br />

δ1>0 δ10 δ20 δ30 δ40 -δ4 δ4 -δ4 δ4 -δ4<br />

Selected switching configurations (vectors) are<br />

turned on according to the sequence described by<br />

(11), where for example ½δ3 means that SC selected<br />

according to above described principles and assigned<br />

in table 2 to δ3 must be switched on as the first one<br />

for the time ½t3. This switching pattern was achieved<br />

by comparison of the modulation waves with saw<br />

wave as it is shown in fig. 5. As a result of this<br />

comparison during every switching period Tseq local<br />

duty cycles d0-d4 for individual transistors are<br />

worked out.<br />

(11)<br />

(12)<br />

x<br />

d1<br />

1 1 1 1<br />

δ3<br />

→ δ1<br />

→ δ 2 → δ 4 → δ0<br />

2 2 2 2<br />

1 1 1 1<br />

→ δ 4 → δ 2 → δ1<br />

→ δ3<br />

2 2 2 2<br />

= δ ; x<br />

3<br />

x<br />

d<br />

d<br />

2<br />

4<br />

= δ + δ ; x<br />

3<br />

1<br />

= δ + δ + δ + δ ;<br />

3<br />

1<br />

d<br />

2<br />

3<br />

seq<br />

= δ + δ + δ ;<br />

0 0.5 1 1.5 2<br />

Fig. 5. Switching pattern description<br />

In fig. 6 there is an example how vector uo, which<br />

represents instantaneous values of the load phase<br />

voltages, and vector ii, which represents<br />

instantaneous values of the source currents is<br />

formed. .Vector u0 is set up of two components u’0<br />

and u’’0 , which are created by switching on earlier<br />

selected vectors (in ex. 7, 16, 21, 6, 1) through<br />

suitable times (9), (10) during the cycle period.<br />

Furthermore in Fig. 4b) it is shown how the control<br />

4<br />

3<br />

1<br />

2


of φi (input power factor) is achieved by controlling<br />

βi. It has to be accounted that:<br />

(13) q = 0,<br />

866 ⋅cos(<br />

ϕ )<br />

max i<br />

Fig. 6 Vector modulation principle a) for exemplary<br />

output voltage vector position, b) for exemplary input<br />

current vector position.<br />

In fig. 7a a fragment of MC from fig .1 is shown.<br />

Bidirectional switch S cB (T cB1 ,T cB2) cannot be<br />

switched on in the same time when S cC (T cC1 ,T cC2) is<br />

switched off because of the finite turn-on and turnoff<br />

times. In such switch state short-circuit or<br />

overvoltage can occur which can cause<br />

semiconductor damage. To avoid such switch states<br />

in presented control circuit a four step current<br />

commutation strategy is implemented. In fig. 7b an<br />

exemplary commutation diagram between SBc and<br />

SCb is shown. In fig. 8a transition diagram which<br />

presents how this commutation strategy is realized in<br />

FPGA (fig. 1, fig. 4) is shown.<br />

Fig. 7 Commutation in MC, a) fragment of MC- two<br />

bidirectional switches b) commutation diagram for SBc<br />

and SCb. td – duration of commutation steps.<br />

Rys. 8. Transition diagram of the implemented in FPGA<br />

four step current commutation strategy<br />

Where: OUT={Tak1, Tak2, Tbk1, Tbk2, Tck1, Tck2}- actual transistors<br />

states, Current_SC={Tak1, Tak2, Tbk1, Tbk2, Tck1, Tck2} transistors<br />

states before commutation request , New_SC={Tak1, Tak2, Tbk1,<br />

Tbk2, Tck1, Tck2}- final transistor states, Tx- transitions, Sx-<br />

steps<br />

324<br />

4. Simulation and experimental test<br />

results<br />

A photograph of the MC prototype for which the<br />

described control circuit was designed is shown in<br />

fig. 9. the MRFC are also researched with this<br />

prototype[19]. Simulation tests ware obtained by<br />

Matlab Simulink. Simulation and experiment<br />

parameters are collected in table 4.<br />

Table 4. Simulation and experiment parameters.<br />

Parameter Symbol Value<br />

Source<br />

Simulation Experiment<br />

amplitude and<br />

frequency<br />

Us / f 230 V/50<br />

Hz<br />

62 V / 50 Hz<br />

Switching<br />

time period<br />

Tsequ 2 ms<br />

Inductivities<br />

LF LL 1,5 mH<br />

10 mH<br />

Capacitors CF 10 µF<br />

Resistance RL 60 Ω<br />

Rys. 9. Matrix converter prototype<br />

1 – input filter; 2 – AC adapter; 3 – FPGA board<br />

(ZL9PLD); 4 – optical transmitters; 5 – load current<br />

measurement circuit; 6- source voltage measurement<br />

circuit; 7 – optical receivers and transistor drivers; 8 –<br />

protection lamp circuit; 9 – load induction; 10 – load<br />

resistance; 11 –DSP board (ALS-G3-2368PCI) 12 – A/D<br />

converters (ALS-G3-ACA1812-1); 13 - PC<br />

Simulation and experimental tests results of the MC<br />

prototype controlled by the described control circuit<br />

are shown in fig. 10- 18. In fig. 10 an example of the<br />

generated by FPGA transistors control signals<br />

(during commutation process) time waveforms are<br />

shown. Voltage and current time waveforms, for<br />

three desired first harmonic load voltage frequencies<br />

25 Hz, 50 Hz, 75 Hz, are shown in fig. 11 and 12. It<br />

has to be mentioned that input power factor for<br />

those waveforms is corrected to value 1 thanks to<br />

proper control. In fig. 13- 15 voltage and current<br />

time waveforms with desired displacement between<br />

source current and voltage (input power factor) with<br />

RL load (fig. 13, 14) and R load (fig. 15) are shown.


Fig 10. Example of the control signals (during<br />

commutation process) time waveforms<br />

a)<br />

b)<br />

c)<br />

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06<br />

0,02 0,025 0,03 0,035 0,04 0,045 0,05 0,055 0,06<br />

Fig.11. Simulation time waveforms of the source current and<br />

voltage (uS1, iA) and load current and voltages (uaS, ia) with a)<br />

corrected to value 1 input power factor and desired output<br />

frequency, a) fL=25 Hz, b) fL=50 Hz, c) fL=75 Hz<br />

a)<br />

b)<br />

c)<br />

Fig.12. Experimental time waveforms of the source current<br />

and voltage (uS1, iA) and load current and voltages (uaS, ia) with<br />

corrected to value 1 input power factor for desired output<br />

frequency, a) fL=25 Hz, b) fL=50 Hz, c) fL=75 Hz<br />

a)<br />

b)<br />

0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1<br />

Fig. 13. Simulation time waveforms of the source current and voltage<br />

(uS1, iA) and load current and voltages (uaS, ia) by RL load for a) fL=75<br />

HZ, φi=-0,6 rad, q=0,71, b) fL=75 HZ, φi=0,6 rad, q=0,71<br />

a)<br />

b)<br />

Fig. 14. Experimental time waveforms of the source current and<br />

voltage (uS1, iA) and load current and voltages (uaS, ia) by RL load for<br />

a) fL=25 HZ, φi=-0,6 rad, q=-0,71, b) fL=25 HZ, φi=0,6 rad, q=0,71<br />

b)<br />

Fig. 15. Experimental time waveforms of the source current and<br />

voltage (uS1, iA) and load current and voltages (uaS, ia) by R load<br />

for a) fL=50 HZ, φi=-0,7 rad, q=0,66; b) fL=50 HZ, φi=0 rad,<br />

q=0,66; c) fL=50 HZ, φi=0,7 rad, q=0,66<br />

From fig. 10-14 it can be seen that control circuit in<br />

contest make possible of the matrix converter output<br />

voltage amplitude and frequency change also input<br />

power factor (displacement between source currents<br />

and voltages) can be controlled. In fig 16-18 static<br />

characteristics of the controlled converter are shown.<br />

Maximum input/output voltage transfer ratio by<br />

325


sinusoidal current shape is below 1 what is shown in<br />

fig. 16. In fig. 17 obtained range of input power<br />

factor changes is shown. Coefficient efficiency for<br />

presented MC is shown in fig. 18.<br />

1<br />

0.8<br />

U L/ U S<br />

0.6<br />

Experiment: 50 Hz<br />

Experiment: 75 Hz<br />

0.4<br />

Experiment: 25 Hz<br />

Simulation: 50 Hz<br />

0.2<br />

Simulation: 75 Hz<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

q<br />

Simulation: 25 Hz<br />

0.6 0.7 0.8 0.9<br />

Fig. 16. Input/output voltage ratio (UL/US) as a function<br />

of desired in program Input/output voltage (q) for fL=25,<br />

50, 75 Hz<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

q<br />

0,2 0,4 0,6 0,8 1 0,8 0,6<br />

Fig. 17.Input power factor changes as a function of<br />

input/output voltage transfer ratio q dla for fL=25, 50, 75 Hz<br />

1<br />

?=P L/ P S<br />

0,8<br />

Fig. 18. Experimental efficiency coefficient as a function of<br />

input/output voltage transfer ratio q dla for fL=25, 50, 75 Hz Hz<br />

5. Conclusions<br />

In this paper the project of the control<br />

circuit of MC with implemented space vector<br />

modulation and four step commutation strategy has<br />

been presented. Simulation and experimental tests<br />

results have confirmed that the presented control<br />

technique exploits the MC’s possibility to control the<br />

input power factor regardless of the output power<br />

factor. In addition frequency and amplitude of the<br />

output voltage can be controlled. Implementation of<br />

the direct space vector modulation and four step<br />

current commutation strategies for Matrix-<br />

Reactance Frequency converter will be the subject of<br />

investigation in the near future.<br />

6. References<br />

Inductive character Capacitive . character<br />

f L<br />

25 Hz<br />

50 Hz<br />

75 Hz<br />

Sym. Exp. .<br />

0,6<br />

0,4<br />

Experiment 50 Hz<br />

Experiment 25 Hz<br />

Experiment 75 Hz<br />

0,2<br />

0,1 0,2 0,3 0,4 0,5<br />

q<br />

0,6 0,7 0,8 0,9<br />

[1] Venturini M., Alesina A., The generalized transformer: a new bidirectional<br />

sinusoidal waveform frequency converter with<br />

continuously adjustable input power factor, IEEE Power Electronics<br />

Specialists Conference Record, PESC’80, pp. 242-252.<br />

? p<br />

326<br />

[2] Alesina A., Venturini M., Analises and Design of Optimum-<br />

Amplitude Nine-Switch Direct AC-AC Converters, IEEE<br />

Transactions on Power Electronics, Vol. 4, no. 1, pp. 101-112, Styczeń<br />

1989<br />

[3] Ziogas P. D., Khan S. I. and Rashid M. H., Analysis and design of<br />

forced commutated cycloconverer structures with improved<br />

transfer characteristics, IEEE Trans. Ind. Electron., vol. IE-33, pp.<br />

271-280, Aug 1986<br />

[4] Huber L., Borojevic D., Space vector modulator for forced<br />

commutated cycloconverters, in Conf. Rec. IEEE-IAS Annu.<br />

Meeting, vol. 1, 1989, pp. 871-876<br />

[5] Casadei G., Grandi G., Serra G., and Tani A., Space vector control<br />

of matrix converters with unity input power factor and sinusoidal<br />

input/output waveforms, in Proc. EPE Conf., vol. 7, Brighton, U.K,<br />

Sept, 13-16, 1993, pp. 170-175<br />

[6] Casadei D., Sierra G., Tani A., Reduction of the input current<br />

harmonic content in matrix converters under input/output<br />

unbalance, IEEE Trans. Ind. Electron., vol. 45, pp. 401-411, June<br />

1998<br />

[7] Blaabjerg F., Casadei D., Klumpner Ch., Matteini M.: Comparison<br />

of Two Current Modulation Strategies for Matrix Converters<br />

Under Unbalanced Input Voltage Conditions<br />

[8] Casadei D., Serra G., Tani A, Zarri L., Matrix Converter<br />

Modulation Strategies: A New General Approach Based on Space-<br />

Victor Representation of the Switch State, IEEE Transactions on<br />

Industrial Electronic, vol. 49, no. 2, pp. 370-381, April 2002<br />

[9] Wheeler P. W., Rodriguez J., J. C. Clare, L. Empringham,<br />

Weinstein A.: Matrix Converters: A Technology Reviev, IEEE<br />

Transactions on Industrial Electronic, vol. 49, no. 2, pp. 276-387. April<br />

2002.<br />

[10] Tadra G., Fedyczak Z., Koncepcja układu sterowania dla<br />

przekształtnika matrycowego z bezpośrednim sterowaniem<br />

wektorowym Wiadomości Elektrotechniczne 10.2008, s. 18-21<br />

[11] Casadei D., Trentin A., Matteini M., Calvini M., Matrix Converter<br />

Commutation Strategy Using both Output Current and Input<br />

Voltage Sign Measurement. EPE 2003.<br />

[12] Zino v iev G. S., Obucho v A. Y., Ot chenasc h W. A.,<br />

Popov W. I., Transformer less PWM AC boost and buck-boost<br />

converters (In Russian), Technicznaja Elektrodinamika, T 2, pp.36-39.<br />

Nac. Akademia Nauk Ukrainy, Kijev 2000.<br />

[13] Fedyczak Z., Szcześn ia k P., Study of matrix-reactance<br />

frequency converter with buck-boost topology, PELINCEC 2005,<br />

(2005), CD-ROM.<br />

[14] Fedyczak Z., Szcześni ak P., Klytta M., Matrix-reactance<br />

frequency converter based on buck-boost topology, 12th Conf.<br />

EPE-PEMC, (2006), 763-768, CD-ROM.<br />

[15] Fedyczak Z., Szcześni ak P., K orotyeye v I., Generation of<br />

matrix-reactance frequency converters based on unipolar matrixreactance<br />

choppers, Proc. of PESC’08, (2008), 1821-1827.<br />

[16] Fedyczak Z., Szcześniak P., Korotyeyev I., New family of matrixreactance<br />

frequency converters based on unipolar PWM AC<br />

matrix-reactance choppers, Proc. of EPE-PEMC 2008, pp. 236 –<br />

242, Poznań 2008.<br />

[17] Szcześniak P., Fedyczak Z., Klytta M., Modelling and analysis of a<br />

matrix-reactance frequency converter based on buck-boost<br />

topology by DQ0 transformation“, Proc. of EPE-PEMC 2008, pp.<br />

165–171, Poznań 2008.<br />

[18] K orotyeye v I.Y., Fed yczak Z., Steady and transient state<br />

modelling methods of matrix-reactance converter with buck-boost<br />

topology, COMPEL 28 (2009), n.3, 626 – 638.<br />

[19] Fedyczak Z., Szcześniak P., Tadra G., Implementacja trójfazowych<br />

przemienników częstotliwości bazujących na topologii matrycoworeaktancyjnego<br />

sterownika prądu przemiennego typu buck-boost<br />

SENE 2009, Łódź 2009 (Przyjęty do prezentacji).<br />

[20] Gilles R., Goerges-Emile R.: “Direct Frequency Changer Operation<br />

Under a New Scalar Control Algorithm” IEEE Transactions on Power<br />

Electronics, Vol. 6, No. 1, January 1991, 100-107.<br />

This work was supported by Polish Ministry of Science and<br />

Higher Education, Project No. N510 036 32/3380<br />

Pragnę serdecznie podziękować dr hab. inŜ. Zbigniewowi Fedyczakowi<br />

prof. UZ, panu mgr inŜ. Pawlowi Sczesniakowi oraz panu Markowi<br />

Szymankowi za pomoc w przygotowaniu powyŜszej pracy.<br />

mgr inŜ. Tadra Grzegorz<br />

Uniwersytet Zielonogórski<br />

ul. Licealna 9<br />

65-417 Zielona Góra<br />

gtadra@iee.uz.zgora.pl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!