26.07.2013 Views

Sample Preparation Strategies for Water Analysis

Sample Preparation Strategies for Water Analysis

Sample Preparation Strategies for Water Analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

©2007 <strong>Water</strong>s Corporation<br />

<strong>Sample</strong> <strong>Preparation</strong> <strong>Strategies</strong><br />

<strong>for</strong> <strong>Water</strong> <strong>Analysis</strong><br />

Hannah White<br />

<strong>Water</strong>s Business Development Manager


Outline<br />

Introduction<br />

— Why sample Prep<br />

— Considerations<br />

o Choices of tools<br />

— Why SPE<br />

o Pre-Treatment<br />

<strong>Strategies</strong><br />

— Traditional approaches<br />

— Modern approaches<br />

o Mixed Mode<br />

o Reverse phase<br />

Summary<br />

Appendix<br />

©2007 <strong>Water</strong>s Corporation 2


Why <strong>Sample</strong> Prep?<br />

60% of the work activity and operating cost is spent on sample preparation<br />

<strong>for</strong> introduction into the analytical system<br />

Three Purposes:<br />

– Removes interferences from sample matrix<br />

– Concentrating analytes of interest<br />

– Improving analytical system per<strong>for</strong>mances<br />

For high sensitivity analyses, such as those employing LC/MS/MS, proper sample preparation<br />

can be critical <strong>for</strong> minimizing matrix effects and concentrating analytes of interest.<br />

©2007 <strong>Water</strong>s Corporation 3


<strong>Sample</strong> <strong>Preparation</strong> Techniques<br />

<strong>Sample</strong> <strong>Preparation</strong>- The simplification of sample matrix and<br />

enrichment of target analyte(s)<br />

Types of <strong>Sample</strong> Prep include:<br />

— Dilution<br />

— Centrifugation<br />

— Filtration<br />

— Liquid/Liquid Extraction<br />

— Solid Phase Extraction<br />

©2007 <strong>Water</strong>s Corporation 4


Some Considerations<br />

Solid samples<br />

— usually start with organic or aqueous extract of tissue or soil<br />

— initial extract is adjusted <strong>for</strong> optimal SPE enrichment and/or cleanup<br />

o pH adjustment<br />

o solvent adjustment<br />

• acetone/acetonitrile/IPA – suitable <strong>for</strong> aqueous dilution, Reversed-Phase and<br />

Mixed-Mode SPE<br />

• ethyl acetate/DCM/MTBE – can be exchanged to hexane <strong>for</strong> normal-phase SPE<br />

Aqueous samples (water, beverage, plasma/urine)<br />

— pretreatment may be appropriate<br />

o pH adjustment<br />

o filtration/centrifugation<br />

o protein precipitation<br />

— Usually, aqueous samples can be analyzed using Oasis ® Reversed-<br />

Phase or Mixed-Mode SPE<br />

©2007 <strong>Water</strong>s Corporation 5


Pre-Treatment Pre Treatment Prior to SPE<br />

Pre treatment:<br />

Solid samples (soil, tissue, etc.)<br />

— shake, sonicate or soxhlet<br />

o extract with polar organic solvent (methanol, acetonitrile); polars<br />

o extract with organic solvent + drying agent (DCM, acetone); nonpolars,<br />

multi-residue<br />

Non aqueous Liquid<br />

o if water soluble, dilute with water <strong>for</strong> reversed-phase (or mixedmode)<br />

SPE<br />

o if hexane soluble, dilute with or exchange to hexane <strong>for</strong> NP-SPE<br />

Wastewater<br />

— filter or centrifuge as necessary<br />

o filtered solids and filter may require analysis as solids<br />

©2007 <strong>Water</strong>s Corporation 6


Why Solid Phase Extraction<br />

Isolation of the analyte(s) of interest from the matrix<br />

<strong>Sample</strong> Cleanup<br />

— removal of matrix interference<br />

— Increased sensitivity<br />

o Increased system uptime<br />

o Longer column lifetime<br />

Enrichment of analyte(s) of interest<br />

o Increased sensitivity<br />

Exchange to LC or GC compatible solvent<br />

SPE is also faster and more suitable <strong>for</strong> automation compared with<br />

liquid-liquid extraction<br />

©2007 <strong>Water</strong>s Corporation 7


Short List of Sorbent Types<br />

<strong>for</strong> SPE<br />

Normal-Phase Sorbents (polar sorbents)<br />

— Silica, Alumina, Florisil ® , Aminopropyl silica, Diol silica, GCB<br />

Reversed-Phase Sorbents (non-polar sorbents)<br />

— Oasis ® HLB<br />

— C18, C8 etc (alkyl silica's)<br />

— Carbon based sorbents<br />

Ion Exchange<br />

— Accell Plus CM, QMA<br />

Mixed Mode (ion-exchange/reversed phase)<br />

— Oasis ® MAX, Oasis WAX (strong and weak anion-exchange)<br />

— Oasis ® MCX, Oasis WCX (strong and weak cation-exchange)<br />

©2007 <strong>Water</strong>s Corporation 8


Outline<br />

Introduction<br />

— Why sample Prep<br />

— Considerations<br />

o Choices of tools<br />

— Why SPE<br />

o Pre-Treatment<br />

<strong>Strategies</strong><br />

— Traditional approaches<br />

— Modern approaches<br />

o Mixed Mode<br />

o Reverse phase<br />

Summary<br />

Appendix<br />

©2007 <strong>Water</strong>s Corporation 9


SPE <strong>Strategies</strong><br />

1. Approach #1<br />

Retention, cleanup, elution<br />

2. Approach #2<br />

Pass-through<br />

3. Approach #3<br />

Dispersion<br />

©2007 <strong>Water</strong>s Corporation 10


1. <strong>Sample</strong> is<br />

loaded onto SPE<br />

sorbent<br />

• Analyte(s) of<br />

interest are<br />

retained on<br />

sorbent<br />

2. Matrix<br />

interferences<br />

are washed off<br />

sorbent<br />

3. Analytes are<br />

eluted from<br />

sorbent<br />

SPE Strategy 1<br />

Retention-Cleanup<br />

Retention Cleanup-Elution Elution<br />

1. load 2. wash 3. elute<br />

©2007 <strong>Water</strong>s Corporation 11


SPE Strategy 2<br />

Pass-Through Pass Through Cleanup<br />

1. <strong>Sample</strong> is passed<br />

through sorbent<br />

and collected<br />

• no sample<br />

enrichment<br />

2. Matrix<br />

interferences are<br />

retained on<br />

sorbent<br />

pass through<br />

©2007 <strong>Water</strong>s Corporation 12


SPE Strategy 3<br />

Dispersion Cleanup<br />

Bulk sorbent is added to sample with agitation<br />

<strong>Sample</strong> is filtered or centrifuged<br />

Supernatant is collected <strong>for</strong> analysis<br />

This is similar to pass-through cleanup, but less effective<br />

- Dispersion SPE is a one stage (one theoretical plate) cleanup<br />

- Pass-through SPE is a multi-stage cleanup<br />

©2007 <strong>Water</strong>s Corporation 13


Outline<br />

Introduction<br />

— Why sample Prep<br />

— Considerations<br />

o Choices of tools<br />

— Why SPE<br />

o Pre-Treatment<br />

<strong>Strategies</strong><br />

— Traditional approaches<br />

— Modern approaches<br />

o Mixed Mode<br />

o Reverse phase<br />

Summary<br />

Appendix<br />

©2007 <strong>Water</strong>s Corporation 14


Ion-Exchange Ion Exchange and Mixed-Mode<br />

Mixed Mode<br />

Ionizable Compounds<br />

Many compounds of environmental interest are weak acids<br />

(i.e. dinoseb) or weak bases (i. e. aniline).<br />

— weak acids can be ionized at high pH<br />

— weak bases can be ionized at low pH<br />

Some compounds are strong acids (i.e. PFOA) or strong<br />

bases (i.e. chlorhexidine) that are ionic except at extreme<br />

pH values<br />

A few of these compounds are quaternary amines (i.e.<br />

paraquat), ionic at all pH<br />

©2007 <strong>Water</strong>s Corporation 15


Why Mixed-Mode?<br />

Mixed Mode?<br />

Mixed-Mode SPE extends pH range <strong>for</strong> good retention of<br />

acids or bases<br />

Retention can be by reversed-phase, ion-exchange or both<br />

— Chose retention mode by adjusting pH<br />

— ion-exchange allows <strong>for</strong> good retention in strong solvent<br />

o acids can be retained by anion-exchange while<br />

bases/neutrals are washed off with strong solvent<br />

o bases can be retained on cation-exchange while<br />

acids/neutrals are washed off with strong solvent<br />

For environmental analysis, mixed-mode SPE allows<br />

simultaneous retention of acids and bases<br />

©2007 <strong>Water</strong>s Corporation 16


Oasis ® Family of Mixed-Mode<br />

Mixed Mode<br />

Sorbents:<br />

Reversed-Phase Reversed Phase Retention and Ion Exchange<br />

©2007 <strong>Water</strong>s Corporation 17


Oasis Mixed-Mode Mixed Mode Sorbents<br />

<strong>Strategies</strong> <strong>for</strong> Isolation and Enrichment<br />

of Individual Compounds or Compound<br />

Classes<br />

Oasis ® 2x4 method<br />

PFOS, PFOA (perfluoroacids and related compounds)<br />

— Oasis WAX<br />

Acidic Herbicides<br />

— Oasis MAX<br />

Quats<br />

— Oasis WCX<br />

Pharmaceuticals/pesticides (organic bases)<br />

— Oasis MCX<br />

©2007 <strong>Water</strong>s Corporation 18


Introduction<br />

Perfluorinated compounds (PFCs) such as<br />

perfluorooctanesulfonate and perfluorooctanoic acid are<br />

persistent organic pollutants (POPs)<br />

PFCs have been identified in environmental samples<br />

worldwide<br />

— PFOS can be detected at low PPT levels in most humans<br />

— PFOS commonly found in arctic fauna<br />

There is need <strong>for</strong> reliable analytical methods <strong>for</strong> PFCs in<br />

food, drinking water, tissue, plasma and blood<br />

In this presentation we will discuss sample preparation <strong>for</strong><br />

UPLC-MS determination of PFCs in water and tissue<br />

samples<br />

©2007 <strong>Water</strong>s Corporation 19


UPLC-MS<br />

UPLC MS-MS MS System<br />

ACQUITY Ultra Per<strong>for</strong>mance LC<br />

— Using 1.7μm particles, and at elevated pressures up to 15,000<br />

psi<br />

Shorter <strong>Analysis</strong> Time<br />

Higher Resolution<br />

Broad selectivity options<br />

Quattro Premier XE<br />

— Fast acquisition rates<br />

— Sensitive detection<br />

Oasis sorbents<br />

— Cleaner samples<br />

©2007 <strong>Water</strong>s Corporation 20


Goals<br />

Develop an Acquity UPLC TM separation based on a recently<br />

published method*<br />

Adapt or modify the SPE protocol <strong>for</strong> UPLC<br />

— River <strong>Water</strong> sample<br />

— Chicken Liver tissue sample<br />

Lower the quantification limits to under 1 ppb in Chicken<br />

Liver tissue, and Low ppt level in River <strong>Water</strong> sample<br />

*S. Taniyasu et. al.<br />

J. Chrom. A., 1093 (2005) pp89-97<br />

©2007 <strong>Water</strong>s Corporation 21


Structures of PFOS and PFOA<br />

PFOA and PFOS are Persistent Organic Pollutants of high interest<br />

worldwide.<br />

F 3C<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

perfluorooctanoic acid<br />

PFOA<br />

pKa ~ 1<br />

O<br />

OH<br />

F 3C<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

perfluorooctanesulfonate<br />

PFOS<br />

pKa


Oasis ® 2x4 Method<br />

For Acids, Bases, and Neutrals<br />

For Bases:<br />

pKa 2-10<br />

Use Oasis ® MCX<br />

For Strong Acids<br />

pKa 10<br />

Use Oasis ® WCX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash:<br />

5% NH 4OH<br />

Elute 1:<br />

100% MeOH<br />

For Acids<br />

pKa 2-8<br />

Use Oasis ® MAX<br />

Elute 2:<br />

2% Formic Acid in MeOH<br />

Strong<br />

Bases<br />

Acids<br />

©2007 <strong>Water</strong>s Corporation 23


Optimized SPE Protocol<br />

<strong>for</strong> River <strong>Water</strong><br />

Oasis ® WAX sorbent was<br />

selected <strong>for</strong> these analytes<br />

Logic: PFOA pKa ~1<br />

PFOS pKa < 1<br />

Oasis ® WAX<br />

N<br />

N<br />

H<br />

N O<br />

H<br />

N<br />

N<br />

H H<br />

mixed-mode weak anion-exchange<br />

pKa ~6<br />

+<br />

+<br />

Conditions <strong>for</strong> Oasis ® WAX 3 cc 60mg cartridges<br />

Oasis ® WAX<br />

Optimized Protocol 1<br />

Prepare <strong>Sample</strong><br />

pH 3<br />

Condition<br />

2 mL methanol/2 mL water<br />

Load<br />

200 mL<br />

Wash #1<br />

1 mL 2% Formic acid<br />

Elute 1 (Wash #2)<br />

2 mL methanol<br />

Elute 2<br />

2 mL 1% conc. ammonia in<br />

10:90 methanol/MTBE<br />

<strong>Sample</strong>s were evaporated and<br />

reconstituted in 0.15 mL mobile phase<br />

©2007 <strong>Water</strong>s Corporation 24


SPE Protocol<br />

Oasis ® WAX<br />

Optimized Protocol 1<br />

Prepare <strong>Sample</strong><br />

pH 3<br />

Condition<br />

2 mL methanol/2 mL water<br />

Load<br />

200 mL<br />

Wash #1<br />

1 mL 2% <strong>for</strong>mic acid<br />

Wash #2<br />

2 mL methanol<br />

Elute 2<br />

2 mL 1% conc. ammonia in<br />

10:90 methanol/MTBE<br />

@ pH 3 Sorbent, and analytes are fully charged<br />

(assures mixed-mode retention)<br />

Maximum load <strong>for</strong> good recovery<br />

of C3, C4 and PFBS<br />

Assures sorbent is charged<br />

Removes neutrals and bases retained<br />

by reversed-phase<br />

MTBE based eluent minimizes elution of<br />

any retained humic material<br />

©2007 <strong>Water</strong>s Corporation 25


PFBS/PFOS in River <strong>Water</strong><br />

100 ng/L (ppt)<br />

200mL river water 6cc WAX _200uL recon _BK<br />

PFOS_082306AQC21x50C18_3 Sm (SG, 1x1) 2: MRM of 3 Channels ES-<br />

100<br />

TIC<br />

1.34e4<br />

%<br />

0<br />

%<br />

0<br />

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75<br />

PFOS_082306AQC21x50C18_4 Sm (SG, 1x1) 2: MRM of 3 Channels ES-<br />

100<br />

TIC<br />

1.34e4<br />

PFBS<br />

Blank<br />

Spiked River <strong>Water</strong><br />

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75<br />

PFOS<br />

©2007 <strong>Water</strong>s Corporation 26


C3-C7 C3 C7 in River <strong>Water</strong><br />

100 ng/L (ppt)<br />

200mL river water 6cc WAX _200uL recon _BK<br />

PFOS_082306AQC21x50C18_3 Sm (SG, 1x1) 1: MRM of 5 Channels ES-<br />

100<br />

TIC<br />

9.38e4<br />

%<br />

0<br />

%<br />

0<br />

Blank<br />

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20<br />

PFOS_082306AQC21x50C18_4 Sm (SG, 1x1) 3: MRM of 5 Channels ES-<br />

100<br />

TIC<br />

9.38e4<br />

C3<br />

C4<br />

Spiked River <strong>Water</strong><br />

C5<br />

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20<br />

C6<br />

C7<br />

©2007 <strong>Water</strong>s Corporation 27


C8-C12 C8 C12 in River <strong>Water</strong><br />

100 ng/L (ppt)<br />

200mL river water 6cc WAX _200uL recon _BK<br />

PFOS_082306AQC21x50C18_3 1: MRM of 5 Channels ES-<br />

100<br />

TIC<br />

1.61e5<br />

%<br />

0<br />

%<br />

0<br />

Blank<br />

2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00<br />

PFOS_082306AQC21x50C18_4 1: MRM of 5 Channels ES-<br />

100<br />

C9<br />

TIC<br />

1.61e5<br />

Spiked River <strong>Water</strong><br />

C8 C10<br />

2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00<br />

C11<br />

C12<br />

©2007 <strong>Water</strong>s Corporation 28


River <strong>Water</strong> Recoveries<br />

Spike Level<br />

μg/L<br />

PFBS PFOS PFOS C C3 C4 C4 C5 C5 C6 C6 C7 C8 C9 C10 C11 C12<br />

0.10 122 109 108 119 97 154 107 83 121 101 101 100<br />

0.30 110 117 95 132 105 110 119 126 137 118 94 95<br />

0.70 102 98 91 107 93 118 100 78 103 126 119 121<br />

1.0 113 94 128 106 98 130 100 88 100 110 117 87<br />

4.0 104 86 101 99 99 102 102 92 115 99 84 68<br />

10 104 100 98 101 100 87 89 82 103 99 101 66<br />

©2007 <strong>Water</strong>s Corporation 29


Observations/Recommendations<br />

Fluorocarbon parts, tubing, etc. are potential sources of<br />

interferences<br />

— UPLC fluidic lines were conditioned with 2% TFA in propanol<br />

followed with 4% conc. ammonia in water (4 hours each step)<br />

Polypropylene (PP) lab ware may be best <strong>for</strong> sample prep<br />

— Do not use Teflon!! (possible positive interference)<br />

— Analytes may adsorb to glass (possible negative interference)<br />

C3-C5 analytes are highly volatile<br />

— Evaporative losses are possible, much more so at very low pH<br />

<strong>Sample</strong>s in glass vials may show loss of some analytes with<br />

time<br />

— Analyze within 24 hrs of sample prep<br />

©2007 <strong>Water</strong>s Corporation 30


Conclusions<br />

• Oasis ® WAX SPE method is effective <strong>for</strong> isolation and<br />

enrichment of C4-C8 perfluorosulfonic acids and C3-C12<br />

perfluorocarboxylic acids from water and tissue<br />

• Acquity UPLC provides significantly reduced analysis time<br />

and improved chromatographic behavior <strong>for</strong> these<br />

compounds compared with traditional HPLC<br />

The Quattro Premier XE API mass spectrometer, operated<br />

in MRM mode, provides outstanding sensitivity and<br />

selectivity <strong>for</strong> these compounds<br />

©2007 <strong>Water</strong>s Corporation 31


Acidic Herbicides<br />

Cl<br />

OCH 2COOH<br />

Cl<br />

2,4-D<br />

These herbicides, such as<br />

2,4-D, are used in cultivated<br />

agriculture, in pasture and<br />

rangeland applications,<br />

<strong>for</strong>est management and<br />

home and garden. Also in<br />

aquatic applications.<br />

Step 1 – characterize analytes<br />

they are acids pKa 3-6<br />

For Acids<br />

pKa 2-8<br />

Select<br />

Oasis ® MAX<br />

©2007 <strong>Water</strong>s Corporation 32


Oasis ® 2x4 Method: Method<br />

Starting Protocols For Acids and Bases<br />

For Bases:<br />

pKa 2-10<br />

Use Oasis ® MCX<br />

For Strong Acids<br />

pKa 10<br />

Use Oasis ® WCX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash:<br />

5% NH 4OH<br />

Elute 1:<br />

100% MeOH<br />

For Acids<br />

pKa 2-8<br />

Use Oasis ® MAX<br />

Elute 2:<br />

2% Formic Acid in MeOH<br />

Strong<br />

Bases<br />

Acids<br />

©2007 <strong>Water</strong>s Corporation 33


Oasis ® 2x4SM 2x4SM<br />

Method<br />

Choose Starting Protocol<br />

Cl<br />

OCH 2COOH<br />

Cl<br />

2,4-D<br />

For Acids<br />

pKa 2-8<br />

Use Oasis ® MAX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash:<br />

5% NH 4OH*<br />

Elute 1:<br />

100% MeOH<br />

Elute 2:<br />

1% Formic Acid in MeOH<br />

Acids<br />

The Oasis MAX cartridge<br />

was chosen <strong>for</strong> retention<br />

of acid herbicides<br />

Logic: 2,4-D and other<br />

acid herbicides<br />

pKa 3-6<br />

©2007 <strong>Water</strong>s Corporation 34


Oasis ® MAX SPE Method<br />

Acidic Herbicides 1µg/kg 1 g/kg in River <strong>Water</strong><br />

Oasis MAX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition<br />

3 mL methanol/ 3 mL water<br />

Load<br />

300 mL sample<br />

Wash #1<br />

3 mL 5% NH 4OH<br />

Elute 1 (Wash #2)<br />

3 mL methanol<br />

Elute 2<br />

4 mL 2% Formic Acid in MeOH<br />

Evaporate and Reconstitute<br />

Conditions <strong>for</strong> 6 cc cartridges<br />

1 2<br />

3<br />

4<br />

5<br />

<strong>Water</strong>s XTerraMS C 18 , 2.1 x 100 mm<br />

A: 15mM ammonium <strong>for</strong>mate (pH 3.5),<br />

B: acetonitrile<br />

25% B to 60% B in 9 min, hold 5 min,<br />

to 90% B in 16 min<br />

<strong>Water</strong>s ZQ, ESI-, SIR mode<br />

6<br />

7,8 9<br />

1 ppb in river water<br />

1. picloram<br />

2. chloramben<br />

3. 4-nitrophenol<br />

4. bentazon<br />

5. 2,4-D<br />

6. MCPA<br />

7. dichlorprop<br />

8. 2,4,5-T<br />

10<br />

11<br />

12<br />

13<br />

14<br />

9. MCPP<br />

10. DCB<br />

11. acifluorfen<br />

12. 2,4,5-TP<br />

13. 2,4-DB<br />

14. dinoseb<br />

15. pentachlorophenol<br />

15<br />

20 min<br />

©2007 <strong>Water</strong>s Corporation 35


Paraquat/Diquat<br />

For Quats<br />

Select<br />

Oasis ® WCX<br />

CH 3<br />

+<br />

The Oasis WCX cartridge was<br />

chosen <strong>for</strong> these analytes<br />

Logic: quats are<br />

cationic at all pH<br />

values<br />

+<br />

N N CH 3<br />

quats can be eluted<br />

from Oasis WCX with<br />

acidic solvent<br />

N<br />

paraquat diquat<br />

+<br />

N + N<br />

©2007 <strong>Water</strong>s Corporation 36


Retention Factor (k’)<br />

% Eluted<br />

Retention and Elution of Paraquat<br />

on Mixed-Mode Mixed Mode Sorbents<br />

Retention<br />

Oasis ® MCX<br />

Oasis ® WCX<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

pH<br />

Elution<br />

Oasis ® WCX<br />

Oasis ® MCX<br />

note: quats are eluted from<br />

Oasis WCX at low pH<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

pH of elution solvent (80:20 acetonitrile/water)<br />

©2007 <strong>Water</strong>s Corporation 37


Paraquat/Diquat<br />

Optimized Oasis MCX Protocol<br />

For Quats<br />

Select<br />

Oasis ® WCX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash1:<br />

5% NH 4 OH in water<br />

Wash2:<br />

100% MeOH<br />

Elute :<br />

1.5 mL ACN/water/TFA 84:14:2<br />

optimized elution solvent<br />

acetonitrile/water/TFA<br />

©2007 <strong>Water</strong>s Corporation 38


Optimized SPE Protocol<br />

Paraquat/Diquat<br />

Oasis ® WCX SPE Method<br />

Paraquat/Diquat<br />

Conditions <strong>for</strong> 3 cc cartridges<br />

Prepare <strong>Sample</strong><br />

adjust to pH 7<br />

Condition<br />

1mL methanol/ 1 mL water<br />

Load<br />

up to 25 mL sample<br />

Wash<br />

1 mL pH 7 buffer/1mL methanol<br />

Elute<br />

1.5 mL ACN/water/TFA 84:14:2<br />

Evaporate and Reconstitute<br />

0.5 mL mobile phase<br />

50:1 sample enrichment<br />

©2007 <strong>Water</strong>s Corporation 39


LC-MS LC MS Conditions<br />

paraquat/diquat<br />

MS Conditions<br />

Instrument: <strong>Water</strong>s Quattro micro API<br />

Paraquat: cone 40 V<br />

MRM 171 → 77 (CID (CID 35 eV)<br />

171 → 155 (CID 35 eV<br />

cone 15 V<br />

MRM 93* → 77 (CID 30 eV)<br />

Diquat: cone 40 V<br />

MRM 183 → 157 (CID 30 eV)<br />

183 → 168 (CID 35 eV)<br />

cone 15 V<br />

MRM 92* → 85 (CID 30 eV)<br />

LC Conditions<br />

Column: <strong>Water</strong>s Atlantis HILIC, 2.1 x 150 mm<br />

Flow: 0.4 mL/min<br />

Mobile Phase: 40% acetonitrile<br />

60% aqueous buffer pH 3.7<br />

(200 mM ammonium <strong>for</strong>mate)<br />

Column Temp: 30 o C<br />

<strong>Sample</strong> Temp: 5 o C<br />

Injection: 10 µL<br />

100<br />

1<br />

100<br />

0.20 µg/L Spiked <strong>Sample</strong><br />

diquat<br />

paraquat<br />

1<br />

2 3 4 5 6 7 8<br />

©2007 <strong>Water</strong>s Corporation 40


0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

r2 r = 0.998<br />

2 = 0.998<br />

0 2 4 6<br />

Validation<br />

Per<strong>for</strong>mance was demonstrated<br />

from 0.1 to 5 µg/L using 20 mL<br />

samples of Sudbury River<br />

water.<br />

Paraquat Intraday Results (1 µg/L)<br />

Day 1 1.08 µg/L (8.1% RSD)<br />

Day 4 1.10 µg/L (8.0% RSD)<br />

Day 5 0.95 µg/L (7.1% RSD)<br />

Overall (n=15) 1.04 µg/L (9.8% RSD)<br />

©2007 <strong>Water</strong>s Corporation 41


Advantage of Oasis® Oasis WCX<br />

<strong>for</strong> Paraquat/Diquat<br />

No Salts required <strong>for</strong> elution<br />

— Eluent can be evaporated and reconstituted in<br />

mimimal volume<br />

— Method is more compatible with API mass<br />

spectrometry<br />

— Method is more compatible with ion-pair<br />

chromatography<br />

— Method is more compatible with on-line SPE<br />

©2007 <strong>Water</strong>s Corporation 42


Oasis ® 2x4 Method: Method<br />

Starting Protocols For Acids and Bases<br />

For Bases:<br />

pKa 2-10<br />

Use Oasis ® MCX<br />

For Strong Acids<br />

pKa 10<br />

Use Oasis ® WCX<br />

Protocol 2<br />

Prepare <strong>Sample</strong><br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash:<br />

5% NH 4OH<br />

Elute 1:<br />

100% MeOH<br />

For Acids<br />

pKa 2-8<br />

Use Oasis ® MAX<br />

Elute 2:<br />

2% Formic Acid in MeOH<br />

Strong<br />

Bases<br />

Acids<br />

©2007 <strong>Water</strong>s Corporation 43


Example: Aniline (pKa ~ 4)<br />

NH 2<br />

pH 2<br />

Pharmaceuticals/Pesticides/Industrial<br />

Chemicals<br />

(Organic Organic Bases, pKa 2-10) 10)<br />

NH 3<br />

Protocol 1<br />

Prepare <strong>Sample</strong><br />

+<br />

Condition/Equilibrate<br />

Load <strong>Sample</strong><br />

Wash:<br />

2% Formic acid<br />

Elute 1:<br />

100% MeOH<br />

Elute :<br />

5% NH 4OH in MeOH<br />

For Bases<br />

pKa 2-10<br />

Select<br />

Oasis ® MCX<br />

To recover acids and neutrals,<br />

analyze Elute 1<br />

<strong>for</strong> GC, use 90:10<br />

MTBE/methanolic ammonia<br />

<strong>for</strong> elute 2<br />

©2007 <strong>Water</strong>s Corporation 44


GC-NPD Conditions<br />

Agilent 5890 series II<br />

30 m x 0.25 mm (ID) RTX 5 (0.25 µm)<br />

EPA 8270C bases, 20 ug/L<br />

200 mL tap water/Oasis MCX protocol<br />

2 uL inject<br />

1<br />

2<br />

3<br />

9<br />

Pharmaceuticals/Pesticides/Industrial<br />

Chemicals<br />

(Organic Organic Bases, pKa 2-10) 10)<br />

10<br />

11<br />

13<br />

16<br />

0 10 20 Minutes 30 40 50<br />

17<br />

19 20<br />

22 23<br />

24<br />

25 26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

NPD<br />

33<br />

COMPOUND % RECOVERY ±RSD ±RSD<br />

(20 µg/L Tap <strong>Water</strong>)<br />

1. pyridine 61 (17)<br />

2. picoline 77 (16)<br />

3. aniline 90 (11)<br />

9. o-toluidine 82 (12)<br />

10. phentermine 73 (18)<br />

11. chloroaniline 82 (11)<br />

13. phenylenediamine 93 (15)<br />

16. 2 -nitroaniline 95 (7.2)<br />

17. 3 -nitroaniline 103 (8.5)<br />

19. 1 -aminonaphthalene 87 (5.1)<br />

20. 2 -aminonaphthalene 88 (8.5)<br />

22. 2 -methyl -5-nitroaniline 104 (6.2)<br />

23. 4 -nitroaniline 106 (8.7)<br />

24. diphenylamine 93 (4.4)<br />

26. aminobiphenyl 105 (4.2)<br />

30. dimethylaminoazobenzene 100 (3.9)<br />

31. dimethylbenzidine 64 (8.9)<br />

33. dichlorobenzidine 111 (6.0)<br />

©2007 <strong>Water</strong>s Corporation 45


Summary<br />

<strong>Sample</strong> <strong>Preparation</strong> is necessary to obtain the best<br />

analytical results<br />

SPE is a very versatile and cost efficient sample preparation<br />

technique <strong>for</strong> environmental samples.<br />

<strong>Water</strong>s provides strategies which combine sorbents, <strong>for</strong>mats<br />

and methodologies resulting in optimal SPE protocols.<br />

Whether <strong>for</strong> analysis by LCMS or GCMS; <strong>Water</strong>s analytical<br />

solutions, including SPE, cover a wide range of sample<br />

matrices and compounds classes<br />

©2007 <strong>Water</strong>s Corporation 46


Oasis ® Mixed-Mode Mixed Mode Sorbents<br />

<strong>Strategies</strong> <strong>for</strong> Multiresidue Isolation and Enrichment<br />

(acids, bases and neutrals together)<br />

Mixed-Mode strong ion-exchange sorbents (Oasis MCX and Oasis<br />

MAX) can simultaneously retain polar acids and bases better than<br />

the best reversed-phase sorbents such as Oasis HLB<br />

— Oasis ® MCX, sample adjusted to low pH<br />

o acids/neutrals retained by reversed-phase<br />

o bases retained by mixed-mode cation-exchange<br />

— Oasis ® MAX, sample adjusted to high pH<br />

o acids retained by mixed-mode anion-exchange<br />

o bases/neutrals retained by reversed-phase<br />

©2007 <strong>Water</strong>s Corporation 47


SPE of Acids and Base/Neutrals<br />

Reversed-Phase Reversed Phase Logic<br />

Consider:<br />

Aniline, phenol and benzyl alcohol on Reversed-Phase SPE<br />

NH 2 OH OH<br />

At pH 2: Aniline is cation – not retained<br />

Phenol is protonated – retained<br />

Benzyl alcohol is neutral – retained<br />

At pH 11 Aniline is neutral – retained<br />

Phenol is ionized – not retained<br />

Benzyl alcohol is neutral – retained<br />

©2007 <strong>Water</strong>s Corporation 48


SPE of Acids and Base/Neutrals<br />

Mixed-Mode Mixed Mode Logic<br />

Consider:<br />

Aniline, phenol and benzyl alcohol on Mixed-Mode SPE<br />

NH 2 OH OH<br />

At pH 2 on Oasis ® MCX: Aniline is cation –retained<br />

Phenol is neutral – retained<br />

Benzyl alcohol is neutral – retained<br />

At pH 11 on Oasis ® MAX: Aniline is neutral – retained<br />

Phenol is anion – retained<br />

Benzyl alcohol is neutral – retained<br />

©2007 <strong>Water</strong>s Corporation 49


Multi residue <strong>Analysis</strong><br />

Oasis ® MCX Method <strong>for</strong> GC<br />

Oasis ® MCX<br />

Optimized Protocol<br />

Prepare <strong>Sample</strong><br />

pH 2<br />

Condition<br />

2 mL DCM, 2 mL methanol, 2 mL water<br />

Load<br />

250 mL sample<br />

Wash<br />

2 mL 5 % MeOH/water<br />

Elute<br />

4 mL of 0.7 M NH4OH in 90:10 DCM/MeOH<br />

Dry over Sodium Sulfate<br />

Evaporate to Final Volume<br />

Micro K-D<br />

prepare reagent using<br />

anhydrous ammonia in<br />

methanol (Aldrich)<br />

©2007 <strong>Water</strong>s Corporation 50


SPE <strong>for</strong> Base/Neutrals and Acids<br />

Oasis ® MCX GC Protocol<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7,8<br />

9<br />

10<br />

12<br />

11<br />

13<br />

14<br />

15<br />

16<br />

0 10 20 Minutes 30 40 50<br />

17<br />

18<br />

19 20<br />

22 23<br />

24<br />

25 26<br />

bases, acids, neutrals<br />

21<br />

27<br />

28<br />

29<br />

30<br />

FID<br />

31<br />

32<br />

NPD<br />

33<br />

COMPOUND % RECOVERY ±RSD<br />

(20 µg/L Tap <strong>Water</strong>)<br />

1. pyridine 61 (17)<br />

2. picoline 77 (16)<br />

3. aniline 90 (11)<br />

4. phenol 65 (14)<br />

5. benzyl alcohol 75 (25)<br />

6. o-cresol 91 (8.6)<br />

7,8. m,p-cresol 91 (8.9)<br />

9. o-toluidine 82 (12)<br />

10. phentermine 73 (18)<br />

11. chloroaniline 82 (11)<br />

12. dichlorophenol 57 (6.2)<br />

13. phenylenediamine 93 (15)<br />

14. 2-methylnaphthalene 81 (8.0)<br />

15. trichlorophenol 54 (10)<br />

16. 2-nitroaniline 95 (7.2)<br />

17. 3-nitroaniline 103 (8.5)<br />

18. dibenzofuran 80 (5.4)<br />

19. 1-aminonaphthalene 87 (5.1)<br />

20. 2-aminonaphthalene 88 (8.5)<br />

21. tetrachlorophenol 35 (17)<br />

22. 2-methyl-5-nitroaniline 104 (6.2)<br />

23. 4-nitroaniline 106 (8.7)<br />

24. diphenylamine 93 (4.4)<br />

25. phenacetin 85 (7.3)<br />

26. aminobiphenyl 105 (4.2)<br />

27. dinoseb 90 (7.1)<br />

28. nitroquinoline oxide 100 (6.5)<br />

29. methapyrilene 105 (5.5)<br />

30. dimethylaminoazobenzene 100 (3.9)<br />

31. dimethylbenzidine 64 (8.9)<br />

32. acetamidofluorene 135 (5.4)<br />

33. dichlorobenzidine 111 (6.0)<br />

©2007 <strong>Water</strong>s Corporation 51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!