26.07.2013 Views

ICP-MS

ICP-MS

ICP-MS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ESAC Copenhagen<br />

15th 15 April 2008<br />

th April 2008<br />

Determination of Essential, Therapeutic<br />

and Toxic Elements and Their Compounds<br />

in Biological Materials; Applications of<br />

<strong>ICP</strong> <strong>ICP</strong>-<strong>MS</strong> <strong>MS</strong> iin th the Cli Clinical i l Laboratory<br />

L b t<br />

Ed McCurdy, <strong>ICP</strong>-<strong>MS</strong> Specialist, Agilent Technologies Ltd<br />

ESAC April 2008


Scope<br />

Introduction to <strong>ICP</strong>-<strong>MS</strong> for clinical sample analysis<br />

• Requirement for elemental analysis in clinical samples<br />

• Routine trace element monitoring<br />

• Analysis of f toxic and harmful f elements<br />

– Elemental screening, poisoning, radionuclides<br />

– TToxic i organometallic t lli compounds d<br />

<strong>ICP</strong>-<strong>MS</strong> analysis for the measurement of organic compounds<br />

• Identification and quantification of pesticide residues<br />

• Quantification of Chemical Warfare Agent degradation products<br />

FForensic i Applications A li ti of f <strong>ICP</strong> <strong>ICP</strong>-<strong>MS</strong> <strong>MS</strong><br />

• Laser Ablation <strong>ICP</strong>-<strong>MS</strong><br />

• Direct Analysis of Elemental Distribution in Tissues<br />

Page 2<br />

ESAC April 2008


What is <strong>ICP</strong>-<strong>MS</strong>?<br />

An inorganic (elemental) analysis technique<br />

<strong>ICP</strong> - Inductively Coupled Plasma<br />

<strong>MS</strong> - Mass Spectrometer<br />

• high temperature electrical discharge,<br />

which c decomposes, deco poses, ato atomizes es aand d ionizes o es<br />

samples<br />

– forms ions, so compounds not measured<br />

directly<br />

Page 3<br />

• quadrupole (“quad”) mass analyzer<br />

• mass range from 5 to 260 amu (Li to<br />

U...)<br />

– separates all elements in rapid<br />

sequential scan<br />

– isotopic information available<br />

• ions measured using dual mode<br />

detector<br />

– ppt level LODs for most elements<br />

– Calibration range up to 1000 1000’s s ppm<br />

• Spectral interferences removed<br />

using collision/reaction cell<br />

ESAC April 2008


Agilent 7500cx <strong>ICP</strong>-<strong>MS</strong> System with<br />

Collision/Reaction Cell (CRC)<br />

Reaction Gas Inlet<br />

High<br />

temperature<br />

27MHz plasma<br />

generator<br />

Page 4<br />

Plasma<br />

Low flow sample<br />

introduction system<br />

Multi-element interference removal by<br />

on-axis octopole reaction cell<br />

Off-axis<br />

LLens<br />

Octopole<br />

Fast simultaneous dual<br />

mode detector (9 orders<br />

dynamic range)<br />

High frequency<br />

hyperbolic quadrupole<br />

ESAC April 2008


Elements of Interest in Easily Extractable<br />

Fluids (Urine, (Urine Blood Blood, Serum Serum, Plasma)<br />

Highly toxic heavy metals<br />

• As, Cd, Pb and Hg<br />

Potentially toxic elements<br />

• Al, Sb, Ba, Be, Bi, Li, Ni, Sr and Tl<br />

Essential elements<br />

• CCr, CCo, CCu, MMg. MMn, SSe, V and d ZZn<br />

Page 5<br />

Wid Wide range of f elements l t may be b measured, d including i l di<br />

many, such as Be, As, Se, Hg, U, which are considered<br />

“difficult” by y other techniques q<br />

ESAC April 2008


Which Elements can be Measured Using<br />

<strong>ICP</strong> <strong>ICP</strong>-<strong>MS</strong>? <strong>MS</strong>?<br />

Page 6<br />

All elements in colour can be measured<br />

– only those elements present in the<br />

plasma gas, 260amu, and<br />

those which are not ionized, are<br />

inaccessible<br />

ESAC April 2008


Analytical Needs for Inorganic Measurements<br />

in Clinical Laboratories<br />

The technique must possess robust sample introduction<br />

• To handle large sample numbers and differing matrices routinely monitored<br />

Measurement of many elements in the same fast acquisition<br />

• Removal of interferences<br />

• Screening applications<br />

Quadrupole <strong>ICP</strong> <strong>ICP</strong>-<strong>MS</strong> <strong>MS</strong> can<br />

• Sample turnaround/productivity meet all of these criteria<br />

• Reduced cost of analysis<br />

Make measurements at trace levels (low detection limits) and at high<br />

concentrations in the same acquisition q<br />

• To reduce reruns, improve productivity and lower costs<br />

The ability to measure element species is also provided by <strong>ICP</strong>-<strong>MS</strong> <strong>ICP</strong> <strong>MS</strong><br />

• Expands range of applications, and provides useful background research info<br />

Page 7<br />

ESAC April 2008


Collision/Reaction Cell to Remove<br />

MMatrix-Based t i B d SSpectral t l Interferences<br />

I t f<br />

(ppb)<br />

Apparent A Cr552<br />

Concentrattion<br />

in Blank<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Page 8<br />

Cr52<br />

ClO/ClOH<br />

(mass 52)<br />

overlap in<br />

HCl matrix t i<br />

AC( ArC (mass<br />

52) overlap<br />

in acetic acid<br />

matrix<br />

ArC and ClO<br />

overlaps in<br />

combined<br />

matrix<br />

01% 0.1% 5% 5% HCl 1% 1% 200 200ppm 200 200ppm 500 500ppm Mi Mixed d<br />

HNO3 HNO3 H2SO4 AcOH Na Ca P Matrix<br />

Matrix Blank<br />

Ad Advantage t of f Collision/ C lli i /<br />

Reaction Cell <strong>ICP</strong>-<strong>MS</strong><br />

• Provides removal of<br />

spectral overlaps –<br />

allows accurate trace<br />

element analysis in<br />

variable high-matrix high matrix<br />

H2 samples<br />

He • Example shows the<br />

NoGas removal of ClO ClO, ArC<br />

interferences in various<br />

matrix blanks<br />

• He collision mode gives<br />

reliable removal of all<br />

polyatomic interferences<br />

regardless of the sample<br />

matrix composition<br />

ESAC April 2008


Routine Analysis of Urine – Sample<br />

Preparation and Calibration<br />

Di Direct t analysis l i of f urine i samples l following f ll i a 1/5 or 1/10 ( (v/v) / )<br />

dilution with deionized water and nitric acid<br />

• No clogging of the nebulizer<br />

• No particle deposition in the injector tube over 12 hours of analyses<br />

Calibration using Method of Standard Additions (<strong>MS</strong>A), so<br />

matrix-matched standards<br />

• Standard addition calib is then converted to external calib and applied to<br />

subsequent samples<br />

• 5 µg/L Tb internal standard added to all sample and calibration solutions<br />

Agilent Application Note: Rapid and reliable routine analysis of urine by Octopole Reaction Cell <strong>ICP</strong>-<br />

<strong>MS</strong>, 5989 5989-2482EN, 2482EN, by Peter Heitland, Medical Laboratory Bremen, Germany<br />

Page 9<br />

ESAC April 2008


Measured and Certified Concentrations in<br />

Urine Reference Material Lyphochek®<br />

Page 10<br />

Element Concentration (µg/L - ppb)<br />

Lyphochek, yp , level 1 Lyphochek, yp , level 2<br />

Measured<br />

certified Measured<br />

(n=10, (n 10, external) (n=10, (n 10, external)<br />

certified<br />

Cr 1.7 ± 0.2 1.2 ± 0.2 18.6 ± 2.6 20.2 ± 4.1<br />

Co 6.6 ± 0.7 6.9 ± 1.4 18.9 ± 1.4 19.1 ± 4.2<br />

CCu 24 ± 21 2.1 26 26.7 7 ± 54 5.4 45 ± 55 5.5 50 ± 10<br />

Se 56 ± 5.3 49 ± 10 192 ± 17 187 ± 37<br />

As 65 ± 6 67 ± 14 162 ± 15 163 ± 33<br />

Cd 8.4 ± 1.1 8.6 ± 1.7 14.9 ± 1.9 15.6 ± 3.1<br />

Sb 6.9 ± 1.1 9 ± 1.8 34.8 ± 4.4 36.9 ± 7<br />

Tl 96± 9.6 ± 08 0.8 97± 9.7 ± 20 2.0 185 ± 17 198 ± 40<br />

Pb 13.5±1.1 14.3 ± 2.9 68 ± 5 69 ± 14<br />

Data: Medical Laboratory Bremen, Germany<br />

ESAC April 2008


High Throughput Analysis of Blood Samples<br />

using 7500ce <strong>ICP</strong>-<strong>MS</strong> <strong>ICP</strong> <strong>MS</strong><br />

Biomonitoring g of trace elements in human blood samples p - an important p tool<br />

for occupational and environmental health<br />

Goals of this study y<br />

– Determine a high number of trace metals in blood of 130 unexposed subjects<br />

– Develop a rapid routine method for the multi-element multi element analyses of blood using<br />

collision/reaction cell-<strong>ICP</strong>–<strong>MS</strong><br />

Blood samples were collected in lithium heparin monovettes<br />

• 500 uL of the sample was diluted with 100 uL 0.1% (v/v) Triton-X-100 solution and<br />

500 uL of the internal standard solution<br />

• This solution was made up to 5 mL with a 0.5% (v/v) NH 4OH solution in a 10 mL<br />

polypropylene autosampler tube<br />

More than 100 samples can be prepared in less than 1hour by one person<br />

Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by <strong>ICP</strong>–<strong>MS</strong>, Peter<br />

Heitland, Helmut D. Koster, Journal of Trace Elements in Medicine and Biology 20 (2006) 253–262 253 262<br />

Page 11<br />

ESAC April 2008


Analytical Figures of Merit for Blood Analysis<br />

Data: Peter Heitland, Helmut D. Koster, Medical Laboratory<br />

Bremen, Germany<br />

Page 12<br />

Limits of quantification<br />

q<br />

(LOQs), calculated in<br />

undiluted blood, range from<br />

0 003 ug/L for 238 0.003 ug/L for Uto01ug/L<br />

238U to 0.1 ug/L<br />

for 69Ga Spike recoveries of 1 ug/L (10<br />

ug/L for B, Mn and Sr; 200<br />

ug/L for Cu and Rb) from<br />

single element calibration<br />

solutions are in the range g<br />

94 -111%<br />

ESAC April 2008


Effects of Sample Matrix on the Sample<br />

Introduction System<br />

Sample Cone Skimmer Cone<br />

The standard 2.5mm injector<br />

torch used was virtually depositfree.<br />

The blood deposits on spray<br />

chamber and the nebulizer block<br />

were removed using a sodium<br />

hypochlorite solution<br />

Images: R. Wahlen et al., LGC Limited, UK<br />

Page 13<br />

Photos of the interface and<br />

sample l iintroduction t d ti system t<br />

after a 90-sample run (whole<br />

blood).<br />

Both the sampler and<br />

skimmer cones show only<br />

minor matrix deposits – none<br />

at the cone tips<br />

ESAC April 2008


Screening for Toxic and Harmful Elements<br />

Elemental Screening of 1:10 diluted Urine (with interference removal in He mode)<br />

Screening to identify poisons (1:10 diluted urine scan)<br />

• Unique “Unknown” Unknown capability element of spiked <strong>ICP</strong>-<strong>MS</strong> into to acquire urine sample a scan across the entire mass range in<br />

about 2 minutes, screening elements from 1000’s ppm to sub-ppb levels<br />

1 .0 E 5<br />

5 .0 E 4<br />

[1 ] S p e c tru m N o .1 [ [ 1 8 1 .5 32 1 5 s e c ]:0 0 24 S M P L .D # / T u n e # 1 [C P S ] [L in e a r]<br />

Li<br />

C Na<br />

Mg<br />

Ca C<br />

a<br />

Cu<br />

Fe<br />

Zn<br />

Rb<br />

Mo<br />

Br<br />

Sr I<br />

Sb Cs Cs Ba<br />

As Sn<br />

“Unknown” element<br />

m m / z-> > 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 0 6 6 66 0 0 00<br />

7 0 0 8 0 0 9 0 0 1 0 0 0 0 11 1 1 1 0 0 1 2 2 0 0 1 3 3 0 0 1 4 4 0 0 1 5 5 0 0 1 6 6 0 0 1 7 7 0 0 1 8 8 0 0 1 9 9 0 0 2 0 0 0 0 0 2<br />

1 1 0 0 2 2 2 0 0 2 3 3 0 0 2 4 4 0 0 2 5 5 0 0 2 6 6 0<br />

0<br />

Page 14<br />

Pb<br />

ESAC April 2008


Analysis of Toxic and Harmful Elements<br />

Screening to identify poisons (1:10 diluted urine scan)<br />

• Confirmation (from isotopic template) of presence of Thallium (2ppb spike)<br />

– Can be quantified (semiquant) by reference to known concentration element<br />

– Note 210Po would also be seen in this mass region of the screening acquisition<br />

Page 15<br />

1.0E5<br />

5.0E4<br />

[1 ] S p e c tru m N o .1 [ 1 7 5 .1 1 8 s e c ]:0 005SMPL.D# 3 S M P L .D / T/ u n e # 1 [C P S ] [L in e a r]<br />

203 Tl<br />

205 Tl<br />

Tl<br />

208 Pb<br />

Alexander Litvinenko - poisoning<br />

210 Po<br />

m/z m/z- > 194 196 198 200 202 204 204<br />

206 208 210 212 214 216<br />

Pb<br />

ESAC April 2008


Measurement of Radionuclides<br />

Radionuclides are typically easily<br />

ionized and the spectrum is free<br />

from overlaps and<br />

backgrounds, so LOD’s in the pg/L<br />

(ppq) range are achieved<br />

Page 16<br />

Scan of 1ppt 237Np standard, showing high<br />

sensitivity and low random<br />

background g<br />

Left: Calibration for<br />

radionuclides is easily<br />

achieved at sub ng/L (ppt)<br />

levels, even with standard<br />

sample p introduction ( (U<br />

used for illustration)<br />

ESAC April 2008


Radionuclide Analysis – Quantification and<br />

Isotope Ratio Measurement<br />

Very high sensitivity and low<br />

background g for 10ppt U in 1:10<br />

diluted urine<br />

~1.2 million cps/ppb U<br />

Natural U spike, so 235 U (0.72%<br />

abundance) concentration was<br />

72ppq<br />

<strong>ICP</strong>-<strong>MS</strong> also provides isotopic<br />

information, so U isotopic pattern<br />

(isotope ratio) can be used to identify<br />

source of contamination<br />

N t l 0 72% 235 • Natural = 0.72% U 235U • Waste depleted = 0.2 - 0.4% 235U • Pile depleted 0 6% 235 • Pile depleted ~0.6% U 235U • Enriched >0.72% 235U Page 17<br />

2.0E4<br />

1.0E4<br />

[1] Spectrum No.1 [ 115.786 sec]:10Urine.d / Tune #1 [CPS] [Linear]<br />

238U (99.27%) ( )<br />

235 U (0.72%)<br />

m/z-> 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242<br />

U<br />

ESAC April 2008


Toxic Elemental Forms or “Species”<br />

For many elements, the level of toxicity is highly dependent on the chemical<br />

form of the element, so separation (chromatography) is required<br />

Page 18<br />

LC<br />

CE<br />

GC Laser Ablation<br />

%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

72 7<br />

Optional<br />

Conventional<br />

Detector(s)<br />

– e.g. ESI ESI-<strong>MS</strong> <strong>MS</strong><br />

1004<br />

139.0<br />

1336<br />

144.1<br />

160.1<br />

174.1<br />

1668<br />

203.1<br />

2000<br />

2332<br />

m/z<br />

258.9<br />

2664<br />

276.9<br />

282.1<br />

2996<br />

3228<br />

3660<br />

<strong>ICP</strong>-<strong>MS</strong><br />

31 P<br />

Respo onse (CPS)<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5 6<br />

7 8<br />

9<br />

10<br />

0 5 10 15 20 25<br />

Time (min)<br />

ESAC April 2008


Example: LC-<strong>ICP</strong>-<strong>MS</strong> for As Speciation<br />

Courtesy Ute Kohlmeyer GALAB, Germany<br />

Page 19<br />

Toxic! Many As species<br />

exist – the<br />

inorganic As<br />

species are known<br />

Less-Toxic Less Toxic to be toxic and<br />

most organic<br />

species are<br />

Non-Toxic relatively l i l hharmless l<br />

to humans.<br />

?<br />

The potential<br />

toxicity of some<br />

species, such as<br />

th the hhuge variety i t of f<br />

arsenosugars, has<br />

not yet been<br />

established.<br />

ESAC April 2008


Chromatogram of As Standard (1.0 µg/L each)<br />

A new column has been developed to provide routine separation of the 5 most<br />

common As species in urine:<br />

( )<br />

Column G3288-80000 (4.6 x 250 mm) Agilent g Application pp Note: Routine<br />

Guard Column G3154-65002<br />

Analysis of Toxic Arsenic Species in Urine<br />

Using HPLC with <strong>ICP</strong>-<strong>MS</strong>, 5989-<br />

Mobile Phase (Basic):<br />

5505EN, by Tetsushi Sakai and Steven<br />

Wilbur, Agilent Technologies<br />

2 mM phosphate buffer solution (PBS)<br />

pH 11.0 adjusted with NaOH<br />

02mMEDTA<br />

0.2 mM EDTA<br />

10 mM, CH3COONa 3.0 mM NaNO3 1% ethanol<br />

Page 20<br />

ESAC April 2008


Determination of Organo-As Species<br />

Using HPLC with ESI-<strong>MS</strong> & <strong>ICP</strong>-<strong>MS</strong><br />

<strong>ICP</strong> <strong>ICP</strong>-<strong>MS</strong> <strong>MS</strong><br />

Agilent 7500<br />

7500<br />

15 %<br />

HPLC<br />

Agilent<br />

1100<br />

85 %<br />

ESI ESI-<strong>MS</strong> <strong>MS</strong><br />

Agilent 1100<br />

1100<br />

Elemental specific detection Molecular specific specific detection<br />

Single HPLC System with controlled split to provide sample flow to ESI-<strong>MS</strong> and <strong>ICP</strong>-<strong>MS</strong>. Provides<br />

simultaneous measurement of As-containing compounds and As concentration (<strong>ICP</strong>-<strong>MS</strong>) and<br />

concentration/structural information on the organic part of the As compounds (ESI-<strong>MS</strong>) (ESI <strong>MS</strong>)<br />

Courtesy Jörg Feldmann et al, Aberdeen Univ.<br />

Page Page 21 21<br />

ESAC April 2008


Separation and Identification of Organo-<br />

Arsenic Species<br />

pH 5.3<br />

<strong>ICP</strong>-<strong>MS</strong><br />

ESI-<strong>MS</strong><br />

Intensityy<br />

PPeak k11<br />

Peak 2<br />

Peak 3<br />

<strong>ICP</strong>-<strong>MS</strong> m/z 75<br />

m/z 167<br />

m/z 139<br />

m/z 277<br />

m/z / 259 2 9<br />

m/z 181<br />

m/z 361<br />

m/z 91<br />

0 500<br />

Retention time (s)<br />

1000<br />

Chromatograms (above) for <strong>ICP</strong>-<strong>MS</strong> <strong>ICP</strong> <strong>MS</strong><br />

measurement of As (mass 75) and ESI-<br />

<strong>MS</strong> of various indicator masses. Mass<br />

spectra (ESI-<strong>MS</strong>) for the 3 peaks show<br />

characteristic fragmentation patterns<br />

for the identified species – DMAE, DMA<br />

and (maybe) DMAA<br />

Hansen et al. J Anal At. Spectrom, 18, 474<br />

Page Page 22 22<br />

%<br />

%<br />

120<br />

100<br />

100 120<br />

80<br />

[M+H]<br />

139.0<br />

100<br />

144.1 276.9<br />

60<br />

160.1 258 9<br />

80<br />

+<br />

[2M+H] +<br />

60<br />

258.9<br />

174.1 [2M-H2O] +<br />

40<br />

20<br />

0<br />

72<br />

104<br />

136<br />

168<br />

203.1<br />

200<br />

232<br />

80<br />

60<br />

40<br />

20<br />

0<br />

84<br />

94.9 116.1<br />

108<br />

[M+H]<br />

167.0<br />

+<br />

132<br />

155.1<br />

156<br />

DMAE<br />

Peak 1 (B)<br />

191 191.1 1<br />

213.1<br />

229.0<br />

173.1<br />

180<br />

204<br />

m/z<br />

DMA DMAA?<br />

Peak 2 (C ) Peak 3 (D)<br />

264<br />

282.1<br />

296<br />

328<br />

360<br />

%<br />

60<br />

40<br />

20<br />

0<br />

72<br />

105<br />

[M+H]<br />

181.0<br />

+<br />

144.1<br />

138<br />

171<br />

204<br />

237<br />

228<br />

270<br />

252<br />

155.1<br />

163.1<br />

214.2 302.0<br />

m/z m/z<br />

276<br />

300<br />

[2M+H]<br />

361.0<br />

+<br />

303<br />

336<br />

369<br />

ESAC April 2008


Which Elements can be Measured Using <strong>ICP</strong>-<br />

<strong>MS</strong>?<br />

Page 23<br />

<strong>ICP</strong>-<strong>MS</strong> can also measure non-metals<br />

used in highly toxic compounds compounds, such<br />

as pesticides and chemical warfare<br />

agents, provided the backgrounds can<br />

be controlled – e.g. using GC-<strong>ICP</strong>-<strong>MS</strong><br />

ESAC April 2008


Agilent GC-<strong>ICP</strong>-<strong>MS</strong> Interface<br />

GC-<strong>ICP</strong>-<strong>MS</strong> System used:<br />

<strong>ICP</strong>-<strong>MS</strong>: Agilent 7500<br />

GC: Agilent 6890<br />

Interface: Agilent G3158A<br />

Courtesy Raimund Wahlen, LGC Teddington<br />

Page 24<br />

Fully heated and insulated GC transfer line<br />

Modified torch with heated injector replaces<br />

standard demountable torch<br />

“Silicosteel” transfer line and injector liner<br />

for inertness<br />

GC effluent injected directly into base of<br />

plasma l<br />

Very high transport efficiency, high plasma<br />

temperature (no water vapour/aerosol) and<br />

no solvent-based interferences<br />

High g pplasma temperature p means elemental<br />

response is high, even for poorly ionized<br />

elements.<br />

Also, elemental response is independent of<br />

compound, so compound independent<br />

calibration (CIC) ( ) is ppossible<br />

ESAC April 2008


Pesticide Analysis by GC-<strong>ICP</strong>-<strong>MS</strong><br />

Single ion chromatograms for C, P and S<br />

(right) and Cl, Br and I (below), extracted<br />

from multi-element GC-<strong>ICP</strong>-<strong>MS</strong> acquisition<br />

Low backgrounds (due to absence of<br />

solvent) and good ionization (due to high<br />

temperature of “dry” dry plasma) plasma), leads to<br />

excellent signal to background and low LOD<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

400000<br />

300000<br />

Chl Chlorine i<br />

Ion 35.00 (34.70 to 35.70): CICCAL3.D<br />

8000000<br />

6000000<br />

4000000<br />

2000000<br />

300 3.00 400 4.00 500 5.00 600 6.00 700 7.00 800 8.00 900 9.00 10 10.00 00 11 11.00 00 12 12.00 00 13 13.00 00<br />

Bromine<br />

Ion 79.00 (78.70 to 79.70): CICCAL3.D<br />

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00<br />

Iodine<br />

Ion 127.00 (126.70 to 127.70): CICCAL3.D<br />

Carbon<br />

IIon 12.00 12 00 (11 (11.70 70 tto 12 12.70): 70) CICCAL3 CICCAL3.DD<br />

0<br />

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00<br />

Ion 31.00 (30.70 to 31.70): CICCAL3.D<br />

Phosphorus<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00<br />

Ion 34.00 (33.70 to 34.70): CICCAL3.D<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

Sulphur<br />

0<br />

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00<br />

Compound p Conc (pg/uL (pg - ppb) pp ) Calib Elements Elemental %<br />

Dichlobenil 610 Cl 41.3<br />

2,4,6-TBA 287 Br 72.5<br />

Ethoprop 39 P, S 12.8, 26.4<br />

DBOB 100 Br 35 35.1 1<br />

Phorate 210 P, S 11.9, 36.9<br />

PCNB 169 Cl 60.1<br />

Terbufos 745 P, S 10.8, 33.3<br />

200000 Diazinon 976 PP, S 10 10.2, 2 10 10.5 5<br />

100000<br />

Malathion 107 P, S 9.37, 19.4<br />

0<br />

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00<br />

Dursban 569 Cl, P, S 30.3, 8.82, 9.15<br />

Table (right) shows components, concentrations and<br />

elemental l t l weight i ht % in i 1/10 diluted dil t d CIC pesticide ti id mix.<br />

i<br />

Page 25<br />

Ioxynil (methyl ester) 50 I 66<br />

TPP 158 P 50 50.3 3<br />

ESAC April 2008


CIC - Sulphur in Pesticide Mix<br />

Sulphur elemental response is independent of the compound<br />

Area<br />

Page 26<br />

900000<br />

800000<br />

700000<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

R 2 R = 0.9996<br />

Malathion<br />

Ethoprop<br />

Sulphur Response<br />

Phorate<br />

Dursban<br />

Di Diazinon i<br />

Compound<br />

Terbufos<br />

Compound<br />

Concentration RT S conc<br />

S<br />

pg/uL (min) (ppb) response<br />

Ethoprop 385 6.4 101.64 23544<br />

Phorate 2102 7.01 775.64 261462<br />

Terbufos 7454 7.87 2280.92 785089<br />

Diazinon 9755 8.1 1024.28 360585<br />

Malathion 1072 9.75 207.97 62313<br />

Dursban 5690 9.94 597.45 197738<br />

0 500 1000 1500 2000 2500<br />

Concentration (ppb) Pesticide compound LoD’s<br />

typically single ppb or sub-ppb<br />

ESAC April 2008


Chemical Warfare Agent (CWA) Regulation<br />

• Chemical Weapons Convention of January 1993<br />

• Enforcement began April 1997<br />

• August 24 th , 2006; Meeting of 180 countries (representing 98% of World<br />

Population) which are members of the OPCW.<br />

• OOrganization i i ffor the h PProhibition hibi i of f Ch Chemical i l WWeapons<br />

• ~70,000 Metric Tons of Chemical Weapons Declared (24/8/2006)<br />

• ~14,000 Metric Tons Destroyed (24/8/2006)<br />

• 2006 Budget<br />

•$96 Million<br />

From Doug Richardson, Univ Cincinnati<br />

Page 27<br />

"Determined for the sake of all<br />

mankind, to exclude completely<br />

the possibility of the use of<br />

chemical weapons..."<br />

ESAC April 2008


Chemical Warfare Agent Analysis by <strong>ICP</strong>-<strong>MS</strong><br />

H 3<br />

Ner ve Agent s<br />

C<br />

G-Type V-Type<br />

O<br />

P<br />

O C H<br />

O C H<br />

F H C<br />

H 3<br />

CH 3<br />

CH 3<br />

Soman (GD)<br />

CH 3<br />

H 3<br />

C<br />

O<br />

P<br />

F<br />

O C<br />

H<br />

Sarin (GB)<br />

CH 3<br />

CH 3<br />

O<br />

O<br />

P<br />

N<br />

CN<br />

H C 3<br />

O<br />

P<br />

F<br />

O<br />

N<br />

TAbun (GA) Cycl osar in (GF)<br />

VX<br />

31 P Selective Detection<br />

All these agents contain a P atom, so <strong>ICP</strong>-<strong>MS</strong><br />

can be used to identify and quantify the<br />

concentration of agent, g , based on the<br />

consistent (compound independent) response<br />

for 31P. Nerve agents mostly decompose in the<br />

environment to MPA (via EMPA, IMPA, CMPA…)<br />

From Doug Richardson, Univ Cincinnati<br />

Page 28<br />

O<br />

O<br />

H C P O CH CH 3 2 3 C P<br />

S<br />

H 3<br />

S<br />

N<br />

O<br />

CH 3<br />

CH 3<br />

Russian VX (RVX)<br />

ESAC April 2008


31 P<br />

Respponse<br />

(CPSS)<br />

CWA Analysis in Natural Samples by LC-<strong>ICP</strong>-<strong>MS</strong><br />

Right: Standards<br />

Below: Unspiked and spiked<br />

Apple Juice<br />

Column: Hamilton PRP-X100<br />

Anion Exchange g<br />

31 P<br />

Respo onse (CPS)<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

30000 2 10000<br />

20000<br />

10000<br />

0<br />

1<br />

3<br />

4<br />

5 6<br />

5000<br />

0 5 10 15 20 25<br />

Time (min)<br />

From Doug Richardson, Univ Cincinnati<br />

Page 29<br />

0<br />

1<br />

2 4<br />

3<br />

7 8<br />

6 9<br />

5<br />

7 8<br />

9<br />

0 5 10 15 20 25<br />

10<br />

Apple Juice<br />

+ Spike (3ppm)<br />

Apple Juice<br />

Time (min)<br />

10<br />

Elution Order<br />

1. MPA<br />

2. H 2PO 4 -<br />

2 4<br />

3. EPA<br />

4. DMHP<br />

5. PPA<br />

6. EMPA<br />

7. IMPA<br />

8. DEHP<br />

9. IPHEP<br />

10. IBHMP<br />

ESAC April 2008


Forensic Applications of <strong>ICP</strong>-<strong>MS</strong> –<br />

Glass Fragment Analysis<br />

Almost any solid fragment collected from a suspect individual or location may be<br />

suitable for analysis using laser ablation <strong>ICP</strong>-<strong>MS</strong> – sample size as small as 50um<br />

diameter can be measured routinely<br />

Images courtesy of New Wave Research<br />

Glass samples can be analysed using simple<br />

screening scan (qualitative or semi-quantitative) or<br />

calibrated lib t d against i t well-characterized ll h t i d reference f<br />

glasses. NIST 600 series Trace Elements in Glass<br />

– eg NIST 612 ~ 50ppm<br />

ESAC April 2008


Trace Element Distribution Patterns (sum<br />

tto 100%) – SSynthetic th ti Glass Gl and d Unknown U k Samples S l<br />

Data courtesy of New Wave Research<br />

Page 31<br />

ESAC April 2008


Analysis of Bic Black Pen Inks<br />

15 black Bic pen inks<br />

different sources<br />

analyzed in triplicate<br />

24 elements / 26 isotopes<br />

105 comparisons taken as pairs<br />

Non-ablated Ink<br />

86/105 (82%) pairs were discriminated by Pb<br />

Of 19 remaining, 17 pairs were discriminated by Co<br />

Of 2 remaining, 1 pair was discriminated by Ba<br />

Both Zn and Cu have similar discriminating power to Co<br />

Only 1 pair (


Eight Bic Black Pen Inks<br />

25.000<br />

20.000<br />

15.000<br />

10 10.000 000<br />

5.000<br />

0.000<br />

01 Bic<br />

Mean<br />

02 Bic<br />

Mean<br />

03 Bic<br />

Mean<br />

Unknown #2b is 02 Bic<br />

(high W and low Mo)<br />

Unknown #8b is 08 Bic<br />

(High Pb and low W)<br />

04 Bic<br />

Mean<br />

Data courtesy of FBI Academy<br />

Page 33<br />

05 Bic<br />

Mean<br />

06 Bic<br />

Mean<br />

07 Bic<br />

Mean<br />

08 Bic<br />

Mean<br />

Unk (#2b) Unk (#8b)<br />

Al/Cu<br />

Pb<br />

W/Mo<br />

Mo/Co<br />

Zn/Ba<br />

ESAC April 2008


Metal Imaging Mass Spectrometry<br />

( (MI<strong>MS</strong>) S)<br />

Slice frozen tissue, e.g. brain<br />

Page 34<br />

10 µm tissue sections<br />

LA-<strong>ICP</strong>-<strong>MS</strong><br />

Image reconstruction Raster Laser<br />

Images courtesy of Dominic Hare, UTS<br />

DData t acquisition i iti<br />

ESAC April 2008


MI<strong>MS</strong> maps of various elements in brain section<br />

of Parkinson Parkinson’ss disease rat model system<br />

Intact side of<br />

brain<br />

EM<br />

56 Fe<br />

Lesion side of brain<br />

(Parkinson-like)<br />

Images courtesy of Dominic Hare, UTS<br />

Page Page 35 35<br />

Intensity increases from blue – green – yellow – red<br />

31 P<br />

57 Fe<br />

ESAC April 2008


Conclusions<br />

<strong>ICP</strong>-<strong>MS</strong> offers a unique combination of:<br />

Wide elemental coverage (almost all elements can be measured)<br />

Low limits of detection (typically 10’s 10 s ppq for easily ionized elements)<br />

Wide dynamic range (from sub-ppt to 1000’s ppm)<br />

Very rapid analysis (

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!