26.07.2013 Views

Chem1000A Spring 2007 Practice Assignment 6 - Answers

Chem1000A Spring 2007 Practice Assignment 6 - Answers

Chem1000A Spring 2007 Practice Assignment 6 - Answers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chem1000A</strong> <strong>Spring</strong> <strong>2007</strong><br />

<strong>Practice</strong> <strong>Assignment</strong> 6 - <strong>Answers</strong><br />

1. Draw the Lewis structures of the following molecule (The first element is the central element).<br />

Include formal charges in the Lewis structure and draw reasonable resonance structures. For the<br />

determination of formal charges show the fragments (+ their charges) that result from formal<br />

homolytic cleavage of all bonds.<br />

(a) IO2F4 -<br />

(b) IF6 +<br />

(c) BCl3 (d) NO4 3-<br />

(e) ClO4 -<br />

(a) IO2F4 -<br />

.. : O:<br />

: ..<br />

.. F F..<br />

:<br />

.. I ..<br />

: .. F F..<br />

:<br />

: O..<br />

:<br />

-<br />

(b) IF6 +<br />

..<br />

: F:<br />

..<br />

.. F..<br />

:<br />

..<br />

:<br />

+<br />

.. F..<br />

I F..<br />

:<br />

: F..<br />

: F..<br />

:<br />

(c) BCl3<br />

..<br />

: Cl:<br />

.. B ..<br />

: Cl .. Cl:<br />

..<br />

(d) NO4 3-<br />

..<br />

: O :<br />

.. N<br />

O<br />

O..<br />

.. : O:<br />

.. : -<br />

-<br />

+<br />

-<br />

:<br />

- ..<br />

(e) ClO4 -<br />

: O..<br />

: O:<br />

Cl<br />

O..<br />

:<br />

_:<br />

O..<br />

:<br />

..<br />

:<br />

.. F<br />

..<br />

: .. F<br />

: O:<br />

.. Cl<br />

: O<br />

O:<br />

_<br />

..<br />

..<br />

: O:<br />

.. -<br />

: O:<br />

..<br />

F..<br />

:<br />

I ..<br />

F..<br />

:<br />

: O:<br />

: O..<br />

.. _<br />

: O:<br />

Cl<br />

O..<br />

:<br />

: O:<br />

1-5<br />

: O:<br />

Cl ..<br />

: O<br />

O:<br />

..<br />

..<br />

: O:<br />

_


2. Looking at electronegativity differences, ∆χ, predict whether the following compounds are ionic or<br />

covalent.<br />

(a) TeF6 ∆χ = 3.98-2.10 = 1.88 covalent (polar)<br />

(b) CF4 ∆χ = 3.98-2.55 = 1.43 covalent<br />

(c) AlF3 ∆χ = 3.98-1.61 = 2.37 ionic<br />

(d) NaF ∆χ = 3.98-0.93 = 3.05 ionic<br />

(e) B2H6 ∆χ = 2.20-2.04 = 0.16 covalent<br />

3. (a) Draw Lewis structures of the following molecules. (b) Specify electron-pair geometries and<br />

molecular geometries of the following molecules according the VSEPR model. (c) Indicate the bond<br />

dipole moments and the overall molecular dipole moments (if the molecule is polar). Specify whether<br />

the molecule is polar or non-polar.<br />

(i) ClO2 -<br />

(ii) XeO4<br />

(iii) BrF4 -<br />

(iv) NO2F<br />

(v) SeF4<br />

(vi) SF3 +<br />

(vii) OH2<br />

(viii) OF2<br />

(ix) CFCl3<br />

(x) XeF2<br />

(xi) SF5 -<br />

(xii) XeO3F2<br />

(xiii) PO2F2 -<br />

(ii)<br />

(i)<br />

..<br />

: Cl<br />

: O..<br />

:<br />

-<br />

: O :<br />

Xe<br />

O O<br />

O..<br />

.. : :<br />

.. :<br />

O..<br />

:<br />

..<br />

..<br />

.. +<br />

: Cl ..<br />

Cl<br />

O :<br />

: O<br />

.. -<br />

O O<br />

..<br />

electron-pair geometry: tetrahedral (SN = 4)<br />

molecular geometry: bent(the two ClO bonds are equivalent)<br />

polar molecule: molecular dipole moment is pointing towards the side of the oxygens, away from Cl<br />

electron-pair geometry: tetrahedral<br />

(SN =4)<br />

molecular geometry: tetrahedral<br />

bond dipole moments cancel each other,<br />

therefore, no mol. dipole moment<br />

XeO 4 is non-polar<br />

(iii)<br />

..<br />

.. - .. F..<br />

: ..<br />

: F..<br />

.. Br .. F<br />

F<br />

.. :<br />

: ..<br />

electron-pair geometry: octahedra (SN = 6)<br />

molecular geometry: square planar<br />

(lone pairs on opposite sides of the plane)<br />

bond dipole moments cancel each other,<br />

therefore, no molecular dipole moment<br />

BrF 4 - is non-polar<br />

2-5


(iv)<br />

..<br />

: .. F<br />

.. : :<br />

..<br />

O:<br />

N<br />

O<br />

-<br />

S<br />

F<br />

..<br />

F<br />

F..<br />

:<br />

.. : :<br />

: ..<br />

.. +<br />

..<br />

O<br />

..<br />

F F : :<br />

.. : :<br />

.. ..<br />

..<br />

: .. F<br />

.. -<br />

: O:<br />

N<br />

O..<br />

:<br />

electron-pair geometry: trigonal planar<br />

(both NO bonds are equivalent due to resonance)<br />

molecular geometry: trigonal planar<br />

The bond dipole moment of NF is significantly<br />

larger than that of the NO bonds, hence,<br />

the NF dipole is only partially compensated by the<br />

NO dipoles. The resulting molecular dipole moment<br />

points in the direction of the fluorine.<br />

NOF 2 is polar.<br />

(vi)<br />

electron-pair geometry: tetrahedral<br />

molecular geometry: trigonal pyramidal<br />

The SF bond dipole moments point have all<br />

a component pointing down.<br />

SF 3 + is polar.<br />

(viii)<br />

electron-pair geometry: tetrahedral<br />

molecular geometry: bent<br />

The OF bond dipole moments point towards F.<br />

F 2 O is polar.<br />

+<br />

+<br />

F<br />

N<br />

3-5<br />

O<br />

O<br />

+<br />

(v)<br />

.. ..<br />

O<br />

H H<br />

Cl<br />

Cl<br />

.. : :<br />

: ..<br />

..<br />

..<br />

: F :<br />

..<br />

Cl .. :<br />

..<br />

: F :<br />

F<br />

Se<br />

F<br />

.. F:<br />

:<br />

..<br />

.. :<br />

: ..<br />

.. :<br />

+<br />

electron-pair geometry: trigonal bipyramidal<br />

(lone pair goes into the equatorial position)<br />

molecular geometry: see saw<br />

the axial SeF dipoles will cancel each other.<br />

The equatorial SeF dipoles will add up to a<br />

molecular dipole moment, pointing to the side<br />

of the two equatorial fluorines.<br />

SeF 4 is polar.<br />

(vii)<br />

electron-pair geometry: tetrahedral<br />

molecular geometry: bent<br />

The OH bond dipole moments point towards O.<br />

H 2 O is polar.<br />

(ix)<br />

electron-pair geometry: tetrahedral<br />

molecular geometry: tetrahedral<br />

The CCl bond dipole moments are smaller than<br />

that of the CF bond. Hence, the overall molecular<br />

dipole moment points in the direction of F.<br />

CFCl 3 is polar.<br />

+<br />

+


(x) (xi)<br />

..<br />

: F Xe .. F:<br />

.. .. ..<br />

.. ..<br />

electron-pair geometry: trigonal bipyramidal<br />

the three lone pairs are located in<br />

the equatorial positions, therefore:<br />

molecular geometry: linear<br />

the XeF dipole moments cancel each other<br />

XeF 2 is non-polar<br />

(xii)<br />

..<br />

O..<br />

..<br />

: F :<br />

Xe<br />

..<br />

F : :<br />

..<br />

O..<br />

..<br />

O..<br />

electron-pair geometry: trigonal bipyramidal<br />

molecular geometry: trigonal bipyramidal<br />

the double-bond domains are located in the<br />

equatorial plane.<br />

The XeF bond dipole moments cancel each other.<br />

The three XeO dipole moments cancel each other,<br />

too. Therefore, XeO 3 F 2 is non-polar.<br />

4-5<br />

+<br />

: ..<br />

.. F<br />

: F<br />

..<br />

..<br />

..<br />

: F : ..<br />

F..<br />

.. :<br />

S F..<br />

:<br />

..<br />

-<br />

electron-pair geometry: octahedral<br />

molecular geometry: square pyramidal<br />

the four SF bond dipole moments of the<br />

equatorial fluorines will cancel each other<br />

the axial SF dipole remains<br />

SF 5 - is a polar molecule.<br />

(xiii)<br />

:<br />

..<br />

.. :<br />

..<br />

O O<br />

.. F<br />

P<br />

F<br />

:<br />

..<br />

.. :<br />

..<br />

- ..<br />

: :<br />

..<br />

:<br />

..<br />

: O<br />

.. -<br />

: O:<br />

.. F<br />

P<br />

F<br />

electron-pair geometry: tetrahedral<br />

molecular geometry: tetrahedral<br />

PF bond dipole moments are larger than those<br />

of the PO bond, therefore, a small residual<br />

dipole moment in the direction of the F's remains<br />

PO 2 F 2 - is polar.<br />

4. Determine the oxidation states in the following sulfur compounds (only one resonance structure is<br />

given). Use the original definition of the oxidation state (by cleaving bonds). For (b) and (c),<br />

distinguish between the oxidation states for individual sulfur atoms and an average oxidation state for<br />

sulfur (i.e., the average of the two – or more – values). You would obtain these average oxidation<br />

states if you use the ‘simple rules’, that are usually used for oxidation states.<br />

(a) peroxodisulfate: S2O8 2-<br />

+


-II<br />

..<br />

O..<br />

-II<br />

: O:<br />

S<br />

.. -I<br />

O.. -I ..<br />

O.. -II<br />

: O:<br />

-II ..<br />

S O..<br />

+VI : O..<br />

:<br />

-<br />

-II<br />

(b) S2F4<br />

..<br />

F<br />

: S S F<br />

: F F<br />

: O..<br />

:<br />

-<br />

-II<br />

+VI<br />

..<br />

-I..<br />

+I +III:<br />

:<br />

.. -I<br />

.. :<br />

.. : : .. :<br />

-I -I<br />

(c) disulfite S2O5 2-<br />

-II -II<br />

O:<br />

O :<br />

-II<br />

: :<br />

..<br />

O..<br />

S S:<br />

+III<br />

+V<br />

O: .. : : O..<br />

:<br />

- -<br />

-II -II<br />

(d) dithionate S2O6 2-<br />

-II -II<br />

..<br />

-IIO..<br />

: O:<br />

: O :<br />

+V +V..<br />

S S O..<br />

-II<br />

O: .. : : O..<br />

:<br />

- -<br />

-II -II<br />

5. Determine oxidation states for all elements in the following compounds:<br />

(a) H-O-O-F H +I -O -I -O +I -F -I<br />

(b) H3C-O-O-F H +I 3C -II -O -I -O +I -F -I<br />

(c) glycol, H2C(OH)CH(OH)CH2(OH):<br />

H<br />

H<br />

H<br />

H<br />

H<br />

(d) ClO3 -<br />

..<br />

O.. ..<br />

.. H<br />

O<br />

.. H<br />

O..<br />

H<br />

H +I 2C -I (O -II H +I )C 0 H +I (O -II H +I )C -I H +I 2(O -II H +I )<br />

Cl +V O -II 3 -<br />

5-5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!