28.07.2013 Views

The Influence of Surface Waves on the Stability of a ... - aerade

The Influence of Surface Waves on the Stability of a ... - aerade

The Influence of Surface Waves on the Stability of a ... - aerade

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MINISTRY OF SUPPLY<br />

AERONAUTICAL RESEARCH COUNCIL<br />

CURRENT PAPERS<br />

C.P. No. 161<br />

(15.916)<br />

A.R.C. Technlcrl Report<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>Waves</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

<strong>Stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Laminar Boundary Layer<br />

with Uniform Sucti<strong>on</strong><br />

D. A. Spence, B.A., Ph.D. and D. G. Randall, B.Sc.<br />

LONDON. HER MAJESTY’S STATIONERY OFFICE<br />

1954<br />

Price 2s. 6d. net


ROYAL AIRCRKFT ESTABLISHMENT<br />

C.P. No.161<br />

Technical Note No. Aero 224.1<br />

Uarch, 123<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waves <strong>on</strong> <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a laminar boundary layer with uniform suctmn<br />

D. A. Sperm, B.A., Ph.D.<br />

I). G. Randall, B.Sc.<br />

In order to estmate <strong>the</strong> destab.bllxmg effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves likely<br />

to be encountered <strong>on</strong> wmg surfaces whwh wxllbe used with boundary layer<br />

sucti<strong>on</strong>, calculati<strong>on</strong>s have been made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> small sxwoldal<br />

surface waves <strong>on</strong> <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asymptotic sucti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle. Curves<br />

are presented <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> percentage increases m local sucti<strong>on</strong> flow 2<br />

necegsary to mamtain <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer at <strong>the</strong> s Le<br />

level as <strong>on</strong> a completely flat surface, for varwus values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variables<br />

Vs<br />

F , helght:wavelength ratm L and Reynolds number based <strong>on</strong> wavelength,<br />

UL<br />

7’<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se should provide quantltatlve estimates for more general cases.<br />

It 1s found, as might have been expected, that <strong>the</strong> lower "$ or <strong>the</strong><br />

larger h , <strong>the</strong> larger <strong>the</strong> necessary percentage mcrease 111 % ,<br />

espeolal 4 y for low ULI u . 10 per cent 1s a typical magm.tude for <strong>the</strong><br />

necessary increase at a hq$Reynolds nmber.<br />

-I-


List <str<strong>on</strong>g>of</str<strong>on</strong>g> symbols<br />

1 Introducti<strong>on</strong><br />

LIST OF CONTENTS<br />

2 <strong>Stability</strong> <strong>the</strong>ory for parallel flows<br />

3 Outline <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s<br />

4 Numerical example<br />

5 Discussi<strong>on</strong><br />

Referenoes<br />

LIST OF APPENDICES<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>on</strong> a wavy surface with<br />

asymptotic sucti<strong>on</strong><br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (Rg*) from Lin's formula<br />

or<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> waves as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance<br />

Typical neutral stability cmve<br />

Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lles al<strong>on</strong>g wavy wall<br />

LIST OF ILTJJS!IPATIONS<br />

Extra sucti<strong>on</strong> required for stability <strong>on</strong> a wavy surface<br />

v<br />

Required increase in sucti<strong>on</strong>, for + = 0.0014, as<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k and $ ~<br />

Appendix<br />

Page<br />

3<br />

4<br />

4<br />

5<br />

7<br />

7<br />

a<br />

9<br />

17<br />

19<br />

Fig.<br />

1<br />

84 b)(c)(a)<br />

3(a)(b)(c)(d)(e)<br />

Variati<strong>on</strong> in form parameter <strong>on</strong> a wavy surface with sucti<strong>on</strong> 5<br />

Vsriatl<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (Rg*)crit with H for sucti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles 6<br />

-2-<br />

4


U<br />

u1<br />

h<br />

L<br />

x<br />

Y<br />

u<br />

v<br />

6"<br />

0<br />

Free stream velocity at infinity<br />

LIST OF SWEOLS<br />

Velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves <strong>on</strong> <strong>the</strong> surface<br />

Ewe-length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves <strong>on</strong> <strong>the</strong> surface<br />

Distance measured al<strong>on</strong>g surface<br />

Distance measured normal to surface<br />

Velocity in x-directi<strong>on</strong> in <strong>the</strong> boundary layer<br />

Velocity in y-directi<strong>on</strong> in <strong>the</strong> boundary layer<br />

Displacement thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

Momentum thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

6*<br />

v S Sucti<strong>on</strong> velocity<br />

v S Sucti<strong>on</strong> velocity for aerodynsmicdly flat surface<br />

0<br />

u', Y', x', y', 6-I, 0') u;, dimensi<strong>on</strong>less variables (See equati<strong>on</strong> 3<br />

Appendix I)<br />

a o Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s produced in <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> boundary layer<br />

a,, a23 $, .**<br />

An = anelX (n = O,l,Z,....)<br />

Coeffloxents in <strong>the</strong> form taken for <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iZe<br />

For I, rl, t and x,, see (ii) in Appendix I<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> suffix orit to a Reynolds number means <strong>the</strong> msximum Reynolds<br />

number below which all disturbances are damped.<br />

-3-


1 Introducti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> minimum sucti<strong>on</strong> quentlties required to preserve lennnar flow<br />

in <strong>the</strong> boundary layer <strong>on</strong> an aer<str<strong>on</strong>g>of</str<strong>on</strong>g>oil are calculated from stability <strong>the</strong>ory<br />

m. which It is assumed that <strong>the</strong> surface is aerodynamically clean. HoWever<br />

it has not yet been possible to obtain a porous surface entirely satisfying<br />

this c<strong>on</strong>ati<strong>on</strong>, and it seems probable that under producti<strong>on</strong> end flight<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow l<strong>on</strong>gitudinal waves and <str<strong>on</strong>g>of</str<strong>on</strong>g> smell<br />

excrescences mill be unavoidable. Such surface imperfecti<strong>on</strong>s are known<br />

to have a destabilising effect <strong>on</strong> -<strong>the</strong> boundary layer, and it is important<br />

to have some estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> penalty in increased sucti<strong>on</strong> which is likely<br />

to be associated with <strong>the</strong>m.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> protuberances is discussed in a paper pesented to<br />

<strong>the</strong> E&mdary Layer C<strong>on</strong>trol C<strong>on</strong>unittee by P.R. C&en and X!ss Klsnfer', and<br />

<strong>the</strong> present paper c<strong>on</strong>tains calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waviness.<br />

To avoid ma<strong>the</strong>matical<br />

flow over a sinusoidal<br />

complexity we c<strong>on</strong>sider <strong>the</strong> hypo<strong>the</strong>tical<br />

27tx<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> height y = h cos L , with<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sucti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s asymptotic in <strong>the</strong> sense that <strong>the</strong> boundary layer thickness and<br />

shape is <strong>the</strong> same at corresp<strong>on</strong>ding points in successive waves. If <strong>the</strong><br />

height : wavelength ratio g were large enough such c<strong>on</strong>diti<strong>on</strong>s would be<br />

impossible, but for practical values <str<strong>on</strong>g>of</str<strong>on</strong>g> r<br />

h<br />

, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

-3<br />

10 , a<br />

linearised soluti<strong>on</strong> may be obtained by excluding squares <str<strong>on</strong>g>of</str<strong>on</strong>g> 1? L<br />

0<br />

. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pIX!CeSS<br />

outlined<br />

is thus justifiable<br />

in <strong>the</strong> man part<br />

a posteriori.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> paper,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> method and results<br />

<strong>the</strong> ma<strong>the</strong>matical details<br />

are<br />

being<br />

given in <strong>the</strong> Appendices.<br />

A possible objecti<strong>on</strong> to <strong>the</strong> applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results is that<br />

aAqmptoti2 c<strong>on</strong>diti<strong>on</strong>s are not to be expected <strong>on</strong> a wing because less<br />

sucti<strong>on</strong> is required for stability than is necessary to produce <strong>the</strong>m, and<br />

because <strong>the</strong> boundary layer increases in thickness under <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pressure gradients. However <strong>the</strong> calculati<strong>on</strong>s have been designed to show<br />

<strong>the</strong> peroentage increase in sucti<strong>on</strong> necess‘zry when waves are present to<br />

preserve <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> worst pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile which occurs at <strong>the</strong> same<br />

level as for an aerodynemxcally flat surface; and it may be c<strong>on</strong>jectured<br />

that this percentage is relatively independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

In general different relative increases in sucti<strong>on</strong> will be necessary at<br />

different chordwise points, since <strong>the</strong> increase required depends <strong>on</strong> <strong>the</strong><br />

amount already used, which follows a definite chordwise distributi<strong>on</strong><br />

(increasing c<strong>on</strong>siderably when <strong>the</strong> adverse pressure gradient is reached).<br />

2 <strong>Stability</strong> <strong>the</strong>ory for parallel flows<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<strong>the</strong>matical <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> stability as developed by Lin*<br />

relates to parallel flows with n<strong>on</strong>-dimensi<strong>on</strong>al velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

and o<strong>the</strong>rs<br />

2 u (Y), a-d<br />

c<strong>on</strong>siders <strong>the</strong> variati<strong>on</strong> in <strong>the</strong> x-directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbances<br />

with wave nwibers e [= 2&avelength].<br />

stability curve in <strong>the</strong> (a, Rh,) plane.<br />

For eaoh pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>the</strong>re is a neutral<br />

Disturbances whose coordinates lie<br />

within <strong>the</strong> curve till be amplified and lead eve~tudly to transiti<strong>on</strong>; all<br />

o<strong>the</strong>rs will be damped. <str<strong>on</strong>g>The</str<strong>on</strong>g> curve is typically <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shape shown in Fig.1.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lower branch tends asymptoticelly to a = 0 as R& -tm;<strong>the</strong> upper may<br />

tend to 0 or to a Sinite value, depending <strong>on</strong> <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> m&mum Reynolds number below which all disturbances are aamped<br />

iskncwnas (R6~~)critxal* A measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> instability <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape at a given Reynolds number is provided by <strong>the</strong> area included<br />

between its neutral stability cwve and <strong>the</strong> ordinate IJI questi<strong>on</strong> - e.g. by<br />

<strong>the</strong> shaded area in <strong>the</strong> diagram<br />

'1 -


Parallel flow 1s <str<strong>on</strong>g>of</str<strong>on</strong>g> course never achieved with a solid boundary,<br />

but It 1s customary to calculate <strong>the</strong> neutral stablllty curve <str<strong>on</strong>g>of</str<strong>on</strong>g> a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Ile<br />

as <strong>the</strong> curve It would have m parallel flow, ~wce <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth or<br />

decay <str<strong>on</strong>g>of</str<strong>on</strong>g> a dxturbance 1s c<strong>on</strong>sx3erably larger t.han that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary<br />

layer. Sunllarly <strong>the</strong> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure gradlent. and suctr<strong>on</strong> <strong>on</strong><br />

stablllty are calculated purely 1x1 terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effect <strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

Sucti<strong>on</strong> quantltxs for malntalnlng lamuar flow are calculated from<br />

<strong>the</strong> c<strong>on</strong>dltl<strong>on</strong> tkt R8* shmld be not greater than (RS&)orlt at any<br />

pout. Thx c<strong>on</strong>dltr<strong>on</strong> IS sufficient, but by no n!eans necessary, since<br />

even rf It 15 not fulfilled no dxtwbances In <strong>the</strong> wave number range<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> ampllfxatl<strong>on</strong> maybe present in <strong>the</strong> boundary layer. A<br />

c<strong>on</strong>venient measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extent to whxh <strong>the</strong> requirement 1s met 13<br />

provtied by tkx? ratlo I&; = P (say). T!le present calculati<strong>on</strong>s have<br />

been designed to find out how much <strong>the</strong> local sucti<strong>on</strong> flow 1: must be<br />

rncreased when <strong>the</strong> surface c<strong>on</strong>tau% waves <str<strong>on</strong>g>of</str<strong>on</strong>g> a given hex&t and mavelength,<br />

in order to malntaln fi at tk same value (2 I) as It would have If <strong>the</strong>re<br />

were no waves present. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results should be quantltatlvely comparable<br />

to those ,nihlch wxld be obtamed lr It were posslbk to deal with flow<br />

under more general c<strong>on</strong>dltl<strong>on</strong>s than <strong>the</strong> asymptotx.<br />

3<br />

out11ne <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves xn <strong>the</strong> surface 1s to produce a perlodrc varlatxn<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same wavelength in <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

and 1x1 <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle shape. In general <strong>the</strong>re 1s found tc be a<br />

phase shxft ln <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle shape, different at different dlstanoes from<br />

<strong>the</strong> wall. <str<strong>on</strong>g>The</str<strong>on</strong>g> basic velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>z~le IS tk asymptotx pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle<br />

u=U(l-e<br />

-V,Y/V 1 (1)<br />

or, wrltlng y' for F and u' for G , <strong>the</strong> n<strong>on</strong>-dlmensl<strong>on</strong>al pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves 1s to alter <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape in a way &uch may be<br />

represented by <strong>the</strong> equatlcn<br />

u’=l-e -y' + k A F(y')e 2.x1X/L<br />

Here <strong>the</strong> (complex) functx<strong>on</strong> F(y) represents a perturbati<strong>on</strong> to <strong>the</strong> velocity<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle, which vanishes at y = 0, m . Usmg <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mctr<strong>on</strong> and<br />

c<strong>on</strong>tinuity, and <strong>the</strong> boundary layer momentum equati<strong>on</strong>, F(y) may be calculated<br />

in <strong>the</strong> form<br />

E' = es' (1 + zy+ 2 $+ . ..)<br />

vrhsre Y = cry ) u' bexng an arbxtrary c<strong>on</strong>stant chosen to gl& rapid<br />

c<strong>on</strong>vergence. <str<strong>on</strong>g>The</str<strong>on</strong>g> ooefflclents in <strong>the</strong> resulting serle.s depend <strong>on</strong>ly <strong>on</strong><br />

tk n<strong>on</strong>-dlmensuxal varmble<br />

& r- - UL = h (say)<br />

u<br />

\ 2w<br />

-5-<br />

(2)<br />

(4)


<str<strong>on</strong>g>The</str<strong>on</strong>g> analysis 1s carried out ln detail m Appendix I. It is shown <strong>the</strong>re<br />

that <strong>the</strong> ma@itude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> perturbati<strong>on</strong> functi<strong>on</strong> F increases as A.<br />

decreases, so that in general <strong>the</strong> shorter <strong>the</strong> wavelength or <strong>the</strong> lower<br />

<strong>the</strong> sucti<strong>on</strong> velocity for a f'lxed i , <strong>the</strong> more a wave <strong>on</strong> <strong>the</strong> surface<br />

disturbs <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> displace!wnt and momentur! thicknesses 6' and 0 and <strong>the</strong><br />

form parameter H =‘$ maybe calculated from <strong>the</strong> vel&ty pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (2),<br />

and are periodic about <strong>the</strong> mean vaLucs I, $ and 2 respectively. In<br />

Fig.2 examples are shown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at different points <strong>on</strong><br />

a wavelength, toge<strong>the</strong>r with <strong>the</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H,B and <strong>the</strong> (n<strong>on</strong>-dunensi<strong>on</strong>al)<br />

velocity U, at tbz edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer, for <strong>the</strong> values *X = 1,<br />

h = 0.125 and h = 10~-3/2 = 0.03162. [<str<strong>on</strong>g>The</str<strong>on</strong>g> valu3 <str<strong>on</strong>g>of</str<strong>on</strong>g> ao = Z$? has been<br />

chosen in each case to give an appreciable variati<strong>on</strong> in pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape;<br />

for h = I this requires a0 = 0.1, which is much larger than <strong>the</strong><br />

practical values anticipated.]<br />

Ths pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with lowest (R6+)orit in a wavelength IS that for<br />

which H is greatest. (Rg+)crlt corresp<strong>on</strong>ding to this pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile has been<br />

calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h and !? , using <strong>the</strong> fact that (R )<br />

S* cr<br />

for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shapes invest&ted by several authors has been<br />

found3 to be a single functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H. Tbxs applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> this result<br />

for a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present family has been tested and found satisfactory.<br />

[Append= II].<br />

l?or <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles c<strong>on</strong>sIdered R 6u has to <strong>the</strong> first order its value<br />

for <strong>the</strong> asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, namely u.<br />

ys<br />

Thus<br />

For <strong>the</strong> asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (RS*)crlt = 4 x I&. Thus <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

keeping fi <strong>the</strong> same #hsn <strong>the</strong>re are'waves in <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> length L and<br />

height h as when <strong>the</strong> surface is devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> waves and <strong>the</strong> sucti<strong>on</strong> velocity<br />

is vs 0 ' may be written<br />

<strong>the</strong> range 6 x IO3 - 106,<br />

, and thus,for fixed $ and F , '<br />

value<str<strong>on</strong>g>of</str<strong>on</strong>g> $. corresp<strong>on</strong>ding<br />

(6). <str<strong>on</strong>g>The</str<strong>on</strong>g> re&lts,<br />

against +Q, for four values <str<strong>on</strong>g>of</str<strong>on</strong>g> y in<br />

Vs t<br />

In <strong>the</strong> curves shown $-a- as o,+O. <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0<br />

u<br />

however ra<strong>the</strong>r meaningless under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s; vs itself<br />

vs<br />

-<br />

v%<br />

still<br />

is<br />

has<br />

a small finite value. If vs were plotted agaznst vs , <strong>the</strong> result would<br />

be a series <str<strong>on</strong>g>of</str<strong>on</strong>g> 1~~s <str<strong>on</strong>g>of</str<strong>on</strong>g> slope approximately 1, with mn?ercepts <strong>on</strong> <strong>the</strong> vs<br />

- 6-


\<br />

ans determined by h, and tending to 1 as h tends to 0. <str<strong>on</strong>g>The</str<strong>on</strong>g> c-s<br />

for +3 x 105 drkl III thu my are shownLFlg.3(e).<br />

4 N~rlcal example<br />

Curva'cxe gauge readings obtained by D. Johns<strong>on</strong> <strong>on</strong> <strong>the</strong> wing <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

producti<strong>on</strong> Vampire, and by Dr. Lachmann4 <strong>on</strong> <strong>the</strong> wxnd t-lmodel <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sleeve for <strong>the</strong> Handley Page experments suggest ttit -<strong>the</strong> xreduclble<br />

minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> h 1s approximately 10m3. <str<strong>on</strong>g>The</str<strong>on</strong>g> surfaces In both cases are by<br />

no means pu& smuso~dal, although such a shape might well be produced<br />

by stringers at regular chordwIse Intervals. A harmcnx analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tk<br />

surface shape would strictly be necessary to find <strong>the</strong> wavelengths and<br />

<strong>the</strong>n heights ln <strong>the</strong> form assumed In <strong>the</strong> analysis.<br />

As an example, c<strong>on</strong>zlder an axrcraft orusing at 350 knots at<br />

$f,OOO feet, and a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> VW where <strong>the</strong> local sucti<strong>on</strong> flow<br />

0 = 0.0014. <str<strong>on</strong>g>The</str<strong>on</strong>g> Reynolds nwnber per inch is Id. For a wave 3 inches<br />

lkg and 3/~000 xnch high + = 3 x 16, 2 = IO-', and <strong>the</strong> requxed<br />

mcrease - “S 1.3 1.07, 1.e. 7$ more sucti<strong>on</strong> is requrred to marntaln<br />

vSO<br />

<strong>the</strong> saxe stabxllty at tix worst point In <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile as m <strong>the</strong> absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> waves. With thus lncnase, tine pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile ~~11 actually be more stable<br />

than before at all o<strong>the</strong>r points. On <strong>the</strong> o<strong>the</strong>r hand, for a wave IO xi&es<br />

l<strong>on</strong>g and '/lo0 Inch high,<br />

UL<br />

- = IO6 whhlle 2 1s St111 10-3, but less than<br />

1% Increase In sucti<strong>on</strong> 1s Gcessary. Thus <strong>the</strong> l<strong>on</strong>ger thz wave, <strong>the</strong><br />

smaller <strong>the</strong> necessary mncrease.<br />

C<strong>on</strong>versely If "so TJ xs smaller, a larger percentage increase 1s<br />

needed for waves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same length and height. Thus with <strong>the</strong> above data,<br />

suppose vQg= 0.0007. For waves 3 lnohes l<strong>on</strong>g $- = 1.15, and for waves<br />

u<br />

0<br />

IO Inches l<strong>on</strong>g 3 = 1.07.<br />

"SC<br />

5<br />

Dlscusslop<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results should provide an upper llmlt for tiE percentage<br />

increase m sucti<strong>on</strong> necessary to preserve stability over a wavy surface.<br />

In fact with <strong>the</strong> calculated Increase In suctr<strong>on</strong> <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle wxll actually<br />

by c<strong>on</strong>slderably more stable than for <strong>the</strong> flat surface at all pornts in a<br />

wavelength except <strong>the</strong> most unfavourable. A typIca value for <strong>the</strong> lllcrease<br />

would be <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> IO per cent. However <strong>the</strong> llmlt depends <strong>on</strong> <strong>the</strong><br />

partxxxlar level <str<strong>on</strong>g>of</str<strong>on</strong>g> stablllty chosen in cnlculatmg <strong>the</strong> sucti<strong>on</strong> necesssxy<br />

wltho ut surface waves, as well as <strong>on</strong> <strong>the</strong> variables already menti<strong>on</strong>ed. It<br />

might be expected that ra<strong>the</strong>r smaller Increases In sucti<strong>on</strong> than ths lunlt<br />

would be sufflcler3 to counteract <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves, sUce regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rxlng and falling pressure alternate al<strong>on</strong>g <strong>the</strong> surface. When <strong>the</strong> pressure<br />

is falling a disturbance wlllbe damped c<strong>on</strong>slderably more than at <strong>the</strong> most<br />

"unfavourable" point In a wavelength, for which <strong>the</strong> calculati<strong>on</strong>s have been<br />

made. Attentx<strong>on</strong> might be drawn to Pretsch's5 interesting explanati<strong>on</strong>, for<br />

boundary layers wIthout sucti<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fact tMt Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds<br />

number can lead to transItlo<strong>on</strong> suddenly ~umplng forward a whole wave length.<br />

Disturbances In <strong>the</strong> wavelength ahoad <str<strong>on</strong>g>of</str<strong>on</strong>g> that In which transztl<strong>on</strong> took place<br />

at <strong>the</strong> lower Reynolds number, crhlcn were lnsufflclently amplrfied for<br />

transltl<strong>on</strong> m <strong>the</strong> adverse gradlent, and subsequently damped In <strong>the</strong> favcur-<br />

able gradlent, are at a higher Reynolds number sufflclently smplifled in<br />

<strong>the</strong> adverse gradlent. This could also apply to flow with mnsufficient<br />

suotl<strong>on</strong> to preserve a stable pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle at all points 1.n a wavelength.<br />

-7-


<str<strong>on</strong>g>The</str<strong>on</strong>g> fact that waves <strong>on</strong> <strong>the</strong> sirface, by disturbing <strong>the</strong> velocity<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in a periodic manner, <strong>the</strong>mselves provxle a potential instability,<br />

has not been c<strong>on</strong>sidered in <strong>the</strong>se calculati<strong>on</strong>s, since It is assumed that<br />

sufficient sucti<strong>on</strong> ~111 be applied to damp out all oscillati<strong>on</strong>s whatever<br />

<strong>the</strong>ir source. Thus <strong>the</strong> results obtalned are fundamentally different from<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> Fage6, which express <strong>the</strong> m~ax~mum permissible wave height in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> lamlnar fXoTTr before transiti<strong>on</strong>, and Reynolds number,<br />

<strong>on</strong> an aer<str<strong>on</strong>g>of</str<strong>on</strong>g>oll without sucti<strong>on</strong>. in Fag?' s case <strong>the</strong> waves <strong>the</strong>mselves are<br />

resp<strong>on</strong>sible for <strong>the</strong> Instability.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer in <strong>the</strong> limit<br />

v<br />

when $ = 0 is<br />

not given by <strong>the</strong>se calculati<strong>on</strong>s, since asymptotic c<strong>on</strong>diti<strong>on</strong>s cannot <strong>the</strong>n<br />

occur. In fact Quick and Schroder7 have shown that separati<strong>on</strong>wlll occur<br />

fairly rapidly for vraves <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient 'size' k .<br />

In c<strong>on</strong>trast to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface ~otubersnces', which becomes<br />

more serious as sucti<strong>on</strong> is Increased, It I.S seen that <strong>the</strong> destabilising<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface 'rraves ~3 alleviated by Increased suctl<strong>on</strong>. Presumably<br />

for a surface not completely clean aerodynamically, and c<strong>on</strong>taxnmng waves,<br />

a compromise must be found be+xrsen <strong>the</strong> ti,o requirements. <str<strong>on</strong>g>The</str<strong>on</strong>g>re 1s also<br />

<strong>the</strong> psslbllity <str<strong>on</strong>g>of</str<strong>on</strong>g> a res<strong>on</strong>ance effect between <strong>the</strong> perzodlcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

p<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface itself, for 'iavc numbers near <strong>the</strong> crltxal.<br />

Some calclitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sucti<strong>on</strong> qwirtitws for irhlch this might occur are<br />

given in Appendix III.<br />

No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Author<br />

P.R. &en, and<br />

L. luanfer<br />

C.C. Lin<br />

P. Chiarulli, and<br />

J.C. Freeman<br />

G.V. Lachmann,<br />

N. Gregory, and<br />

W.S. '!'alker<br />

J. Pretsch<br />

A. Fage<br />

A.vJ. Quick, and<br />

K. Schroder<br />

RXFFXFNCES<br />

Title, etc.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> xsolated roughness <strong>on</strong> boundary<br />

layer transitI<strong>on</strong>. (;Tnpublished)<br />

ARC 16,458, Xzch 1753<br />

On <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> D,?o dimensx<strong>on</strong>al parallel<br />

flows.<br />

Q. APP. Xath 1, 1174L+2, 218-234, 277-301.<br />

4945-46<br />

<strong>Stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer.<br />

Technical Report F-TR-1197-IA,<br />

Wight-Patters<strong>on</strong> Air Force Base, August 1948<br />

Handley Page Lamlnar Flow lying with Porous<br />

Strips: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> Model and '%nd Tunnel<br />

Tests at N.P.L.<br />

A.R.C. 14,794, Pky 1952<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> two dlmensl<strong>on</strong>al lannnar<br />

flow with pressure drop and pressure rise.<br />

J


,<br />

APPJ3NDMI<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Velocltg Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Iles <strong>on</strong> a<br />

Wavy <str<strong>on</strong>g>Surface</str<strong>on</strong>g> with As.ymptotlc SudiOn<br />

C<strong>on</strong>suler <strong>the</strong> boundary layer flow over a wavy surface, with free<br />

stream velocity U at infknty and U, at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary<br />

2F.x<br />

layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface 1s gIvenby y = h cos - , where<br />

h. ( L )<br />

E 1s small and its square negllglble.<br />

where H+<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum are respectively<br />

$+ (H+2) U, a -&= au +<br />

If n<strong>on</strong>-dz.mensl<strong>on</strong>s.1 variables defined by<br />

Ul<br />

0<br />

au<br />

dy,-iiy'<br />

u1 = u s 27cc VY ve<br />

u ) v'=vs, x'=y , Y - "<br />

l--H, ,t=s Y<br />

are mtmduced, <strong>the</strong> equati<strong>on</strong>s maybe wrl'cten<br />

2<br />

au,’<br />

u’ au’.<br />

ax’ u =Qi-ui dx’+<br />

0 2 UL auf _<br />

0’ a;,<br />

s+ (H+2) -<br />

u1 tm-<br />

VS<br />

“s UL ii&<br />

(7 U zEdy'2<br />

(2)<br />

(3)<br />

(4)<br />

-(g ~[-+(&y&q] (5)<br />

Dropping <strong>the</strong> primes, end introducing <strong>the</strong> n<strong>on</strong>-dimensi<strong>on</strong>al parameter<br />

-9-<br />

(6)


<strong>the</strong> equati<strong>on</strong>s are<br />

z+ (H+ 2) (8)<br />

With boundary c<strong>on</strong>dltl<strong>on</strong>s u = & = 0, v = -1, at y = 0, ws.ves <strong>on</strong><br />

<strong>the</strong> surface vslll produce a fluotuatl<strong>on</strong> 1X-I <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> boundary layer so that<br />

u, = I + +p = I + A, , say<br />

(We work throughout with complex quantities, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>ly <strong>the</strong> real<br />

parts are relevant).<br />

h<br />

where a0 18 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> - .<br />

L<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle is <strong>the</strong>n<br />

A reas<strong>on</strong>able form for <strong>the</strong> velocity<br />

!J = 1 - ,-y + a0 elx - e-’ (a0 + a,Y t a2 $ + . ..) elx<br />

=1-e<br />

-y+ & - .-y (A, + AIY + A2 z+ Y2 . ..). (11)<br />

where Y = ay and c 1s some suitably cbsen c<strong>on</strong>stant. A, = anelx and<br />

dA<br />

-$ aAn. Squares and products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> An 's wlllbe assumed negligible.<br />

This form may be made to satisfy any number <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>dltl<strong>on</strong>s at<br />

y = 0,b.e. at Y = 0), obtained by differentzating <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>,<br />

and it automatically satlsfles <strong>the</strong> boundary layer equati<strong>on</strong>s at <strong>the</strong> outer<br />

edge. Thus by finding all <strong>the</strong> coefflclents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> infinite series, an<br />

exact soluti<strong>on</strong> would be given,<br />

set from 0 to=.<br />

slnoe <strong>the</strong> functi<strong>on</strong>s -e<br />

yn<br />

n!<br />

-Y<br />

form a complete<br />

F'racticalvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> h maybe emall compared with 1, and with <strong>the</strong><br />

obvious choice <str<strong>on</strong>g>of</str<strong>on</strong>g> c = 1, It 1s found that <strong>the</strong> quantltres<br />

x43 so that a very large nwlber <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s<br />

-increase an<br />

as<br />

a0<br />

must be used<br />

to se;ure c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> series mbrackets. Apart from <strong>the</strong> numerical<br />

difficulties thus raised, bourdary c<strong>on</strong>diti<strong>on</strong>s obtained by repeated<br />

differentlatl<strong>on</strong> with respect to y become inoreaslngly inaccurate because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m&rent approximati<strong>on</strong> in <strong>the</strong> boundary layer equata<strong>on</strong>. It 19,<br />

<strong>the</strong>refore, desirable to use as few terms as possible, and thus may best<br />

- IO -<br />

(7)


e achreved by equatmg d to a negative power <str<strong>on</strong>g>of</str<strong>on</strong>g> h . <str<strong>on</strong>g>The</str<strong>on</strong>g> relatmn<br />

has been chosen.<br />

Th? calculatmn ma proceeds as follows:-<br />

-'/3<br />

a=?!. (12)<br />

(1) <str<strong>on</strong>g>The</str<strong>on</strong>g> quantity<br />

H-2<br />

T- 1s calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h by means<br />

I Jw I<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> momentum equati<strong>on</strong> and tk equatmn <str<strong>on</strong>g>of</str<strong>on</strong>g> mctl<strong>on</strong>.<br />

(11) J.~ u related to _h by c<strong>on</strong>slderlng <strong>the</strong> potential flow past a wavy<br />

L<br />

wall.<br />

(~1) By means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong>between H and (R a) found by Lm,<br />

6 h cr&.<br />

%*)cr1t<br />

1s calculated for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(Secti<strong>on</strong> 34 1 -7 and 2 as<br />

described ~.n <strong>the</strong> main part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> report,<br />

(I) CQefflclents in velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Ile<br />

*=L<br />

6<br />

For <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (II),<br />

9 J<br />

Ul<br />

0<br />

m<br />

(u, -<br />

-Y<br />

q-u=" -'+ e [+ + A,Y+ . ..]<br />

u) dy = l-A/$ [A, + A1 + . ..]<br />

m ca<br />

u(u1 - u) dy =<br />

i<br />

0<br />

0<br />

0<br />

(excludmg squares and products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> k's),<br />

I.e.<br />

o-<br />

where z=-; and<br />

1 +c<br />

,-Y (I -e-y) - 2emySY[Ac+A,Y+ . ..I<br />

7<br />

+ e-y [A, + A,Y + . . . ],dy ,<br />

iJ=;+; c (1 - 2~~') A, ,<br />

n=O<br />

H=$2 - 2Ac - 5 c.<br />

n=o<br />

- 11 -<br />

(1 - 4z”+‘) An<br />

(13)<br />

(14)<br />

(15)


By differentmtmg (11) and puttug y = Y = 0 , we obtam<br />

= (-QPd (16)<br />

Dtiferentlatmg <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> (7) with respect to y<br />

twice we obtam, <strong>on</strong> putting y = 0 and insertmg <strong>the</strong> boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

I-0<br />

0 = A2 [($). + (,,I , (17)<br />

If ti-e series expansi<strong>on</strong> in (11) 1s tenmnated after <strong>the</strong> term III Y4,<br />

equativns (7), (a), (17) and (18) form four lmear equati<strong>on</strong>s suffuxent<br />

to determine Ac: A, : A2 : A3 : A4.<br />

Makmg use <str<strong>on</strong>g>of</str<strong>on</strong>g> (I@, toge<strong>the</strong>r mth <strong>the</strong> fact that<br />

a du<br />

ax 0 aYo = -& [I + u (A0 - A,)] = 16 (k, - AI) ,<br />

<strong>the</strong> momentum equati<strong>on</strong>, <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and <strong>the</strong> tm remammg<br />

equati<strong>on</strong>s become respectively<br />

ii<br />

u (1 - 2rTH' )An + 2iA, = A2 [&, - A,) - A,] (19)<br />

n=O<br />

-IA<br />

0<br />

(18)<br />

=I? [o(Ao - A,) - c-2 (A0 - 211, + A2)] (20)<br />

16 (A, - A,) = x2[c3(A,-3Aj + 382' A3)<br />

- &A, - 4f1,+6A2-4Aj+A&)+ d&-$)1<br />

- 12 -<br />

(22)


We now solve <strong>the</strong>se equatmns approxmately for small values <str<strong>on</strong>g>of</str<strong>on</strong>g> X .<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> R agaux~t h for <strong>the</strong> solutmn so obtamed ~111 later be<br />

JOlned <strong>on</strong> to <strong>the</strong> value for h = d = 1 , for which <strong>the</strong> equati<strong>on</strong>s are<br />

easily solved. Puttmg X2 = us6, (12), and excludmg 6-4 and higher<br />

powers m comparis<strong>on</strong> with 1, <strong>the</strong> cqnatums become<br />

- la, + (-A+ $)a, + 5 a2<br />

(1 - $) a0 + (- 3 + $)a, + (3 - $)a2 - a3 -0<br />

With <strong>the</strong> same degree <str<strong>on</strong>g>of</str<strong>on</strong>g> approxmatl<strong>on</strong>, <strong>the</strong> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se equati<strong>on</strong>s IS<br />

a0<br />

: -2 (.i _ zT5) + $ (-IO + 2.r’ + L+T~ + 62 + 8~~) .<br />

=a , : g (IO - 2T3 - 6,4 _ ,2T5) + 1 (-6 + 2~~) + -$ (1 - 2~~) + 2<br />

I<br />

I<br />

2<br />

u<br />

J I<br />

= a2<br />

(IO + 2T2 - h4 - 166~)<br />

=a 3 : 2 (1 - 275) - 5 (1 - 275) + 1(6r2+ 6~~-<br />

u4 122)<br />

=a 4<br />

,<br />

: $ (-4 + 2T3 + 6~~) + d- (I - 2~~) + $ (-18 +12.t2+16r3 +?2~~)>]<br />

.2 u<br />

Substltutmg <strong>the</strong>se values mto (151, we obtam for small A,<br />

(23)<br />

(25)


For h = 1 , <strong>the</strong> equatmns (IT) to (22) become particularly smple,<br />

mth <strong>the</strong> soluti<strong>on</strong><br />

a0 : (-49+i)= a, : (32 +701) = a2 : (31+ 211)=a3 :(30-28i)= a4:(-40+4x)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> y for this case and that for h = 0.4 are plotted<br />

I I<br />

in Flg.5, toge<strong>the</strong>r with <strong>the</strong> curve obtamed from (25) for smaller values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> h.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> varmtl<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H al<strong>on</strong>g <strong>the</strong> surface 1, given by H=2+\H-2)e1(X+E),<br />

say, where c 1s some phase angle. <str<strong>on</strong>g>The</str<strong>on</strong>g> stability is least for <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

mth greatest H , so that m calculating <strong>the</strong> maxmum Reynolds number for<br />

stablllty at all points m a wave-length, It 1s sufflclent to use <strong>the</strong><br />

curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Flg.6 vlth<br />

H=2+ IH-21.<br />

(ii) Velocity fluctuati<strong>on</strong> at mfinitg<br />

In this se&I<strong>on</strong> It 1s more c<strong>on</strong>venient to work wzth dimensi<strong>on</strong>al<br />

quantltles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fled over thz wavy surface wlthboundary layer present maybe<br />

represented by <strong>the</strong> potential flow, mth uniform velocity at mfmlty over<br />

a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> height<br />

where in = he 2*L and<br />

y=?J+ 6' 9<br />

6” = 5 )I - A, + ;(A, + A1 + A2 + A3 + A411 from (13)<br />

S<br />

= k 11 + A,AI , say, where A = O(l),<br />

= v 11 + a$e 2mi/L<br />

vs<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> flow 1s calculated try xapresentmng <strong>the</strong> surface by a source<br />

distrlbutz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

I.<br />

[h + v$- a,A].<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> velocity m <strong>the</strong> x drect~<strong>on</strong> at a pornt (x,, y,) 1s <strong>the</strong>n<br />

[<br />

u 25x1 - (x1 - x)e2e~Ldx<br />

h + A a,A]; 7<br />

vS J Y,L ' + (x, - "Y<br />

-m<br />

- 14 -<br />

‘<br />

(26)<br />

(27)<br />

(28)<br />

(29)


Wrltlng t = x - x, , thxs may be wrItten<br />

To evaluate <strong>the</strong> mtegra1 c<strong>on</strong>sider<br />

I=<br />

.<br />

m<br />

.wt<br />

dt<br />

2 -<br />

J Yq +t2<br />

-m<br />

Thx. may be integrated round a semi-czu-cle <str<strong>on</strong>g>of</str<strong>on</strong>g> large radius R in<br />

<strong>the</strong> upper half plane. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>trlbutl<strong>on</strong> from <strong>the</strong> curved part 1s o(h).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly pole UBAS <strong>the</strong> senu-cucle 1s at t = iy,, where <strong>the</strong> EsCiue<br />

1s escIy1/21Yl .<br />

. . (32)<br />

Thus,<br />

‘<br />

' I<br />

d1<br />

ziY=<br />

m<br />

=<br />

- ?ce-pyl<br />

m<br />

(30)<br />

(311<br />

ltevtdt<br />

t2 + Yl 2 * (33)<br />

te2nlt/L dt = e-2n~,/L<br />

-m -t2+ y;2 , -L<br />

and tk velocity due to <strong>the</strong> source dlstrrbutl<strong>on</strong> 1s<br />

Now let us chqose -y, .sc that '<br />

- 15-<br />

(34)<br />

(35)<br />

(36)


From Flg.6, for thrs value <str<strong>on</strong>g>of</str<strong>on</strong>g> H (Rg*)or,t = 1.1 X fCJ!+. IA's eqmtl<strong>on</strong><br />

has two roots,<br />

For <strong>the</strong>se<br />

yc, z 0.064 and Y C2 = 0.293<br />

+I<br />

= 0.0296 , uc = 0.2071<br />

2<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> former <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se corresp<strong>on</strong>ds to (R8*)orlt = 3.26 x IQ~, <strong>the</strong> latter<br />

to (Rg*)crit = 1.36 x Id;. It seems reas<strong>on</strong>able to treat <strong>the</strong> lower <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>re 2s <strong>the</strong> relevant; value On this basrs (Rg*)crlt 1s estunated to<br />

within 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> Its correct value and log,O (Rg*)crlt , a quantity whch<br />

means more, to mthxx 23. Hrgher accuracy m stabllxty tkmory would be<br />

quite fortUltoUS.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> slope and curvature parameters<br />

n=- e2 - a2,<br />

U<br />

( aY2 > FO<br />

for <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle are respectively 0.512, -0.674.. <str<strong>on</strong>g>The</str<strong>on</strong>g> value 0.674 for -m<br />

IS much larger than those <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles mvestlgated by o<strong>the</strong>r authors, and<br />

It night at first seem surprx~ng that such good agreement wth <strong>the</strong><br />

@,*)cr > HI curve 1s aohleved m this case. However <strong>the</strong> prwf0e<br />

curvature could be arbltrarrly changed In <strong>the</strong> neighbourhood <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

orrgln quite sufflclently to bring m into <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> values usually<br />

c<strong>on</strong>sidered, mth negligible changes 1n <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> H , and without<br />

affecting <strong>the</strong> outer root <str<strong>on</strong>g>of</str<strong>on</strong>g> Lm's equati<strong>on</strong> at all.<br />

- 18 -


\<br />

A2?PExDIx -. III<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> kves as a Source <str<strong>on</strong>g>of</str<strong>on</strong>g> DisWcbance .<br />

As is @r&d out in secti<strong>on</strong> 5, regular ~mves <strong>on</strong> <strong>the</strong> surface, or<br />

indeed any disccntinuit~es with vrhlch a Tz:avelength can be associated.,<br />

prcv~Je disturbances Txhich could. be amplified under critical ccn&ti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sucti<strong>on</strong> quantities calculated. ia <strong>the</strong> report are large enough to<br />

prevent <strong>the</strong>se ccndit~cns ever arising, 1.e. Rho < (R6.+)crit always, but<br />

it is mteresting to compare <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface waves discussed<br />

with that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crltxal disturbance.<br />

For <strong>the</strong> asymptotic p<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, exact computati<strong>on</strong> is stated 2.n<br />

Reference 3, Figure 21, to give <strong>the</strong> critical vmve nwlber<br />

Here<br />

Thus<br />

a cr<br />

a<br />

= 0.17<br />

=- 2 7165<br />

CT 4<br />

cr<br />

4<br />

2nv .- 1<br />

,cr =y 0.17<br />

And if <strong>the</strong> surface wave 1s <str<strong>on</strong>g>of</str<strong>on</strong>g> critical rravelength, ecr = L,<br />

12.3 61.7<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calculatuxxs 'have not taken into account <strong>the</strong> po&bility <str<strong>on</strong>g>of</str<strong>on</strong>g> a res<strong>on</strong>arr,e<br />

between pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile- and surface-disturbance at this &elength, but it mm<br />

seeIns Fcssible that some such effect may play a part in <strong>the</strong> transiti<strong>on</strong><br />

caused by surfau excrescences.<br />

Wt.2078.CP161.~3. i'nnted %n Great Qr,tcm. - 19 -


(R ff)CRlT R6”<br />

FIG. I& 2(a)<br />

FIG.1. TYPICAL NEUTRAL STABILITY CURVE.<br />

LOW SUCTION<br />

-__ - HIGH SUCTION<br />

FIG. 2 (a) SCHEMATIC VELOCITY PROFILES<br />

ALONG WAVY WALL.


FIG .2 (b).<br />

PROFILE<br />

POSITION<br />

FIG2(b). PROFILES FOR 2 ’<br />

II<br />

L ,<br />

I /I<br />

-0 (ASYMPTOTIC SUCTION PROFILE)<br />

4<br />

=I, L = O-016.


I<br />

PROFILE<br />

POSITION @<br />

0<br />

FlG.2@). FROFILES FOR ; r+, = 425,<br />

lI = -0016.<br />

-<br />

X<br />

--<br />

L<br />

*5<br />

F I G .2 (c).


FIG. 2 (d).<br />

‘*Or--- I<br />

t-l<br />

I<br />

PROFILE<br />

P05lT10N<br />

I<br />

I<br />

2.4-<br />

I.61<br />

0<br />

x<br />

T-<br />

*5<br />

UCTION PROFILE)<br />

FIG. 2 (d) PROFILE\ FOR y “’ = “‘ = IO -92<br />

- =*0005<br />

L<br />

6


_ -<br />

6<br />

2<br />

I<br />

Fl=<br />

IV<br />

\<br />

5% o-<br />

o-4<br />

\ 2.5 x :O+<br />

I ,<br />

(a) +=I06<br />

\ .I . I I<br />

1 FIG. -?h;ti<br />

. ‘-‘-x-“-<br />

FIG.36 a b) EXTRA S”CT:ON R&“lRED<br />

FOR STABILITY ON A WAVY SURFACE.<br />

50


FIG .3 (cad).<br />

1 Y<br />

&o 4<br />

I I 5 ” XI0 IO<br />

;cj. + :3x104.<br />

20<br />

7 \ \<br />

3<br />

2<br />

I<br />

“5<br />

$x IO4<br />

I 2<br />

I I<br />

5<br />

I I<br />

IO 20 50<br />

(d). + -6x10’.<br />

FIG.3 (cad). EXTRA SUCTION REQUIRED FOR<br />

STAB ILITY ON A WAVY SURFACE.<br />

50<br />

1


10 15<br />

“5. -4<br />

0 u x ‘O<br />

FIG.3 (e). $ AGAINST !$ FOR + = 3 x IO?<br />

FIG .3 (e>.


‘I---T--<br />

FIG. 4. REQUIRED INCREASE’ IN SUCTION, FOR “+-<br />

FUNCTION OF k AND 9<br />

-.0014, AS


H-2<br />

- ZlTA<br />

t L<br />

lOi<br />

5<br />

2<br />

lo;<br />

5<br />

-2<br />

IO<br />

5<br />

2<br />

I<br />

?<br />

><br />

-i<br />

FIG. 5.<br />

FlG.5. VARIATION IN FORM PARAMETER<br />

ON A WAVY -SURFACE WITH SUCTION.<br />

-:<br />

-<br />

3


FIG. 6.<br />

I04<br />

I03<br />

2<br />

2<br />

5<br />

2<br />

IO2<br />

2 2.2 2.3 2.4<br />

FIG- 6. VARIATION OF (Rs “) crit WITH H<br />

FOR SUCTION PROFILE-S.


Crown Copyr@t Reserved<br />

York House. Kn-@way, U)MXJN. wc.2. 423 Oxford Street. LONDON, w 1<br />

P.0 Box 569, LONWN. se 1<br />

13a Castle street, EmNB”ROH, 2 I St Andrew’s Crescent, CARDIFF<br />

39 Kmg street, MANCHEITBR, 2 Tower Lane. BRISIUL 1<br />

2 Edmund Street, BIRMMOH*M, 3 so ChIchester street, BELFAST<br />

or fmm any Bookseller<br />

19Sb<br />

Price 2s. 6d. net<br />

C.P. No. 161<br />

(15.916)<br />

A.R.C. Technical Report<br />

S.O. Code No. U-9007-61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!