28.07.2013 Views

The Influence of Surface Waves on the Stability of a ... - aerade

The Influence of Surface Waves on the Stability of a ... - aerade

The Influence of Surface Waves on the Stability of a ... - aerade

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MINISTRY OF SUPPLY<br />

AERONAUTICAL RESEARCH COUNCIL<br />

CURRENT PAPERS<br />

C.P. No. 161<br />

(15.916)<br />

A.R.C. Technlcrl Report<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>Waves</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

<strong>Stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Laminar Boundary Layer<br />

with Uniform Sucti<strong>on</strong><br />

D. A. Spence, B.A., Ph.D. and D. G. Randall, B.Sc.<br />

LONDON. HER MAJESTY’S STATIONERY OFFICE<br />

1954<br />

Price 2s. 6d. net


ROYAL AIRCRKFT ESTABLISHMENT<br />

C.P. No.161<br />

Technical Note No. Aero 224.1<br />

Uarch, 123<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waves <strong>on</strong> <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a laminar boundary layer with uniform suctmn<br />

D. A. Sperm, B.A., Ph.D.<br />

I). G. Randall, B.Sc.<br />

In order to estmate <strong>the</strong> destab.bllxmg effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves likely<br />

to be encountered <strong>on</strong> wmg surfaces whwh wxllbe used with boundary layer<br />

sucti<strong>on</strong>, calculati<strong>on</strong>s have been made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> small sxwoldal<br />

surface waves <strong>on</strong> <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asymptotic sucti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle. Curves<br />

are presented <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> percentage increases m local sucti<strong>on</strong> flow 2<br />

necegsary to mamtain <strong>the</strong> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer at <strong>the</strong> s Le<br />

level as <strong>on</strong> a completely flat surface, for varwus values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variables<br />

Vs<br />

F , helght:wavelength ratm L and Reynolds number based <strong>on</strong> wavelength,<br />

UL<br />

7’<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se should provide quantltatlve estimates for more general cases.<br />

It 1s found, as might have been expected, that <strong>the</strong> lower "$ or <strong>the</strong><br />

larger h , <strong>the</strong> larger <strong>the</strong> necessary percentage mcrease 111 % ,<br />

espeolal 4 y for low ULI u . 10 per cent 1s a typical magm.tude for <strong>the</strong><br />

necessary increase at a hq$Reynolds nmber.<br />

-I-


List <str<strong>on</strong>g>of</str<strong>on</strong>g> symbols<br />

1 Introducti<strong>on</strong><br />

LIST OF CONTENTS<br />

2 <strong>Stability</strong> <strong>the</strong>ory for parallel flows<br />

3 Outline <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s<br />

4 Numerical example<br />

5 Discussi<strong>on</strong><br />

Referenoes<br />

LIST OF APPENDICES<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>on</strong> a wavy surface with<br />

asymptotic sucti<strong>on</strong><br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (Rg*) from Lin's formula<br />

or<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> waves as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance<br />

Typical neutral stability cmve<br />

Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lles al<strong>on</strong>g wavy wall<br />

LIST OF ILTJJS!IPATIONS<br />

Extra sucti<strong>on</strong> required for stability <strong>on</strong> a wavy surface<br />

v<br />

Required increase in sucti<strong>on</strong>, for + = 0.0014, as<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k and $ ~<br />

Appendix<br />

Page<br />

3<br />

4<br />

4<br />

5<br />

7<br />

7<br />

a<br />

9<br />

17<br />

19<br />

Fig.<br />

1<br />

84 b)(c)(a)<br />

3(a)(b)(c)(d)(e)<br />

Variati<strong>on</strong> in form parameter <strong>on</strong> a wavy surface with sucti<strong>on</strong> 5<br />

Vsriatl<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (Rg*)crit with H for sucti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles 6<br />

-2-<br />

4


U<br />

u1<br />

h<br />

L<br />

x<br />

Y<br />

u<br />

v<br />

6"<br />

0<br />

Free stream velocity at infinity<br />

LIST OF SWEOLS<br />

Velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves <strong>on</strong> <strong>the</strong> surface<br />

Ewe-length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> waves <strong>on</strong> <strong>the</strong> surface<br />

Distance measured al<strong>on</strong>g surface<br />

Distance measured normal to surface<br />

Velocity in x-directi<strong>on</strong> in <strong>the</strong> boundary layer<br />

Velocity in y-directi<strong>on</strong> in <strong>the</strong> boundary layer<br />

Displacement thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

Momentum thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

6*<br />

v S Sucti<strong>on</strong> velocity<br />

v S Sucti<strong>on</strong> velocity for aerodynsmicdly flat surface<br />

0<br />

u', Y', x', y', 6-I, 0') u;, dimensi<strong>on</strong>less variables (See equati<strong>on</strong> 3<br />

Appendix I)<br />

a o Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s produced in <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> boundary layer<br />

a,, a23 $, .**<br />

An = anelX (n = O,l,Z,....)<br />

Coeffloxents in <strong>the</strong> form taken for <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iZe<br />

For I, rl, t and x,, see (ii) in Appendix I<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> suffix orit to a Reynolds number means <strong>the</strong> msximum Reynolds<br />

number below which all disturbances are damped.<br />

-3-


1 Introducti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> minimum sucti<strong>on</strong> quentlties required to preserve lennnar flow<br />

in <strong>the</strong> boundary layer <strong>on</strong> an aer<str<strong>on</strong>g>of</str<strong>on</strong>g>oil are calculated from stability <strong>the</strong>ory<br />

m. which It is assumed that <strong>the</strong> surface is aerodynamically clean. HoWever<br />

it has not yet been possible to obtain a porous surface entirely satisfying<br />

this c<strong>on</strong>ati<strong>on</strong>, and it seems probable that under producti<strong>on</strong> end flight<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow l<strong>on</strong>gitudinal waves and <str<strong>on</strong>g>of</str<strong>on</strong>g> smell<br />

excrescences mill be unavoidable. Such surface imperfecti<strong>on</strong>s are known<br />

to have a destabilising effect <strong>on</strong> -<strong>the</strong> boundary layer, and it is important<br />

to have some estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> penalty in increased sucti<strong>on</strong> which is likely<br />

to be associated with <strong>the</strong>m.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> protuberances is discussed in a paper pesented to<br />

<strong>the</strong> E&mdary Layer C<strong>on</strong>trol C<strong>on</strong>unittee by P.R. C&en and X!ss Klsnfer', and<br />

<strong>the</strong> present paper c<strong>on</strong>tains calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waviness.<br />

To avoid ma<strong>the</strong>matical<br />

flow over a sinusoidal<br />

complexity we c<strong>on</strong>sider <strong>the</strong> hypo<strong>the</strong>tical<br />

27tx<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> height y = h cos L , with<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sucti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s asymptotic in <strong>the</strong> sense that <strong>the</strong> boundary layer thickness and<br />

shape is <strong>the</strong> same at corresp<strong>on</strong>ding points in successive waves. If <strong>the</strong><br />

height : wavelength ratio g were large enough such c<strong>on</strong>diti<strong>on</strong>s would be<br />

impossible, but for practical values <str<strong>on</strong>g>of</str<strong>on</strong>g> r<br />

h<br />

, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

-3<br />

10 , a<br />

linearised soluti<strong>on</strong> may be obtained by excluding squares <str<strong>on</strong>g>of</str<strong>on</strong>g> 1? L<br />

0<br />

. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pIX!CeSS<br />

outlined<br />

is thus justifiable<br />

in <strong>the</strong> man part<br />

a posteriori.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> paper,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> method and results<br />

<strong>the</strong> ma<strong>the</strong>matical details<br />

are<br />

being<br />

given in <strong>the</strong> Appendices.<br />

A possible objecti<strong>on</strong> to <strong>the</strong> applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results is that<br />

aAqmptoti2 c<strong>on</strong>diti<strong>on</strong>s are not to be expected <strong>on</strong> a wing because less<br />

sucti<strong>on</strong> is required for stability than is necessary to produce <strong>the</strong>m, and<br />

because <strong>the</strong> boundary layer increases in thickness under <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pressure gradients. However <strong>the</strong> calculati<strong>on</strong>s have been designed to show<br />

<strong>the</strong> peroentage increase in sucti<strong>on</strong> necess‘zry when waves are present to<br />

preserve <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> worst pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile which occurs at <strong>the</strong> same<br />

level as for an aerodynemxcally flat surface; and it may be c<strong>on</strong>jectured<br />

that this percentage is relatively independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

In general different relative increases in sucti<strong>on</strong> will be necessary at<br />

different chordwise points, since <strong>the</strong> increase required depends <strong>on</strong> <strong>the</strong><br />

amount already used, which follows a definite chordwise distributi<strong>on</strong><br />

(increasing c<strong>on</strong>siderably when <strong>the</strong> adverse pressure gradient is reached).<br />

2 <strong>Stability</strong> <strong>the</strong>ory for parallel flows<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<strong>the</strong>matical <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> stability as developed by Lin*<br />

relates to parallel flows with n<strong>on</strong>-dimensi<strong>on</strong>al velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

and o<strong>the</strong>rs<br />

2 u (Y), a-d<br />

c<strong>on</strong>siders <strong>the</strong> variati<strong>on</strong> in <strong>the</strong> x-directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbances<br />

with wave nwibers e [= 2&avelength].<br />

stability curve in <strong>the</strong> (a, Rh,) plane.<br />

For eaoh pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>the</strong>re is a neutral<br />

Disturbances whose coordinates lie<br />

within <strong>the</strong> curve till be amplified and lead eve~tudly to transiti<strong>on</strong>; all<br />

o<strong>the</strong>rs will be damped. <str<strong>on</strong>g>The</str<strong>on</strong>g> curve is typically <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shape shown in Fig.1.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lower branch tends asymptoticelly to a = 0 as R& -tm;<strong>the</strong> upper may<br />

tend to 0 or to a Sinite value, depending <strong>on</strong> <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> m&mum Reynolds number below which all disturbances are aamped<br />

iskncwnas (R6~~)critxal* A measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> instability <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape at a given Reynolds number is provided by <strong>the</strong> area included<br />

between its neutral stability cwve and <strong>the</strong> ordinate IJI questi<strong>on</strong> - e.g. by<br />

<strong>the</strong> shaded area in <strong>the</strong> diagram<br />

'1 -


Parallel flow 1s <str<strong>on</strong>g>of</str<strong>on</strong>g> course never achieved with a solid boundary,<br />

but It 1s customary to calculate <strong>the</strong> neutral stablllty curve <str<strong>on</strong>g>of</str<strong>on</strong>g> a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Ile<br />

as <strong>the</strong> curve It would have m parallel flow, ~wce <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth or<br />

decay <str<strong>on</strong>g>of</str<strong>on</strong>g> a dxturbance 1s c<strong>on</strong>sx3erably larger t.han that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary<br />

layer. Sunllarly <strong>the</strong> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure gradlent. and suctr<strong>on</strong> <strong>on</strong><br />

stablllty are calculated purely 1x1 terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effect <strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

Sucti<strong>on</strong> quantltxs for malntalnlng lamuar flow are calculated from<br />

<strong>the</strong> c<strong>on</strong>dltl<strong>on</strong> tkt R8* shmld be not greater than (RS&)orlt at any<br />

pout. Thx c<strong>on</strong>dltr<strong>on</strong> IS sufficient, but by no n!eans necessary, since<br />

even rf It 15 not fulfilled no dxtwbances In <strong>the</strong> wave number range<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> ampllfxatl<strong>on</strong> maybe present in <strong>the</strong> boundary layer. A<br />

c<strong>on</strong>venient measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extent to whxh <strong>the</strong> requirement 1s met 13<br />

provtied by tkx? ratlo I&; = P (say). T!le present calculati<strong>on</strong>s have<br />

been designed to find out how much <strong>the</strong> local sucti<strong>on</strong> flow 1: must be<br />

rncreased when <strong>the</strong> surface c<strong>on</strong>tau% waves <str<strong>on</strong>g>of</str<strong>on</strong>g> a given hex&t and mavelength,<br />

in order to malntaln fi at tk same value (2 I) as It would have If <strong>the</strong>re<br />

were no waves present. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results should be quantltatlvely comparable<br />

to those ,nihlch wxld be obtamed lr It were posslbk to deal with flow<br />

under more general c<strong>on</strong>dltl<strong>on</strong>s than <strong>the</strong> asymptotx.<br />

3<br />

out11ne <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves xn <strong>the</strong> surface 1s to produce a perlodrc varlatxn<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same wavelength in <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer<br />

and 1x1 <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle shape. In general <strong>the</strong>re 1s found tc be a<br />

phase shxft ln <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle shape, different at different dlstanoes from<br />

<strong>the</strong> wall. <str<strong>on</strong>g>The</str<strong>on</strong>g> basic velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>z~le IS tk asymptotx pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle<br />

u=U(l-e<br />

-V,Y/V 1 (1)<br />

or, wrltlng y' for F and u' for G , <strong>the</strong> n<strong>on</strong>-dlmensl<strong>on</strong>al pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves 1s to alter <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape in a way &uch may be<br />

represented by <strong>the</strong> equatlcn<br />

u’=l-e -y' + k A F(y')e 2.x1X/L<br />

Here <strong>the</strong> (complex) functx<strong>on</strong> F(y) represents a perturbati<strong>on</strong> to <strong>the</strong> velocity<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle, which vanishes at y = 0, m . Usmg <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mctr<strong>on</strong> and<br />

c<strong>on</strong>tinuity, and <strong>the</strong> boundary layer momentum equati<strong>on</strong>, F(y) may be calculated<br />

in <strong>the</strong> form<br />

E' = es' (1 + zy+ 2 $+ . ..)<br />

vrhsre Y = cry ) u' bexng an arbxtrary c<strong>on</strong>stant chosen to gl& rapid<br />

c<strong>on</strong>vergence. <str<strong>on</strong>g>The</str<strong>on</strong>g> ooefflclents in <strong>the</strong> resulting serle.s depend <strong>on</strong>ly <strong>on</strong><br />

tk n<strong>on</strong>-dlmensuxal varmble<br />

& r- - UL = h (say)<br />

u<br />

\ 2w<br />

-5-<br />

(2)<br />

(4)


<str<strong>on</strong>g>The</str<strong>on</strong>g> analysis 1s carried out ln detail m Appendix I. It is shown <strong>the</strong>re<br />

that <strong>the</strong> ma@itude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> perturbati<strong>on</strong> functi<strong>on</strong> F increases as A.<br />

decreases, so that in general <strong>the</strong> shorter <strong>the</strong> wavelength or <strong>the</strong> lower<br />

<strong>the</strong> sucti<strong>on</strong> velocity for a f'lxed i , <strong>the</strong> more a wave <strong>on</strong> <strong>the</strong> surface<br />

disturbs <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> displace!wnt and momentur! thicknesses 6' and 0 and <strong>the</strong><br />

form parameter H =‘$ maybe calculated from <strong>the</strong> vel&ty pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (2),<br />

and are periodic about <strong>the</strong> mean vaLucs I, $ and 2 respectively. In<br />

Fig.2 examples are shown <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at different points <strong>on</strong><br />

a wavelength, toge<strong>the</strong>r with <strong>the</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H,B and <strong>the</strong> (n<strong>on</strong>-dunensi<strong>on</strong>al)<br />

velocity U, at tbz edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer, for <strong>the</strong> values *X = 1,<br />

h = 0.125 and h = 10~-3/2 = 0.03162. [<str<strong>on</strong>g>The</str<strong>on</strong>g> valu3 <str<strong>on</strong>g>of</str<strong>on</strong>g> ao = Z$? has been<br />

chosen in each case to give an appreciable variati<strong>on</strong> in pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shape;<br />

for h = I this requires a0 = 0.1, which is much larger than <strong>the</strong><br />

practical values anticipated.]<br />

Ths pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with lowest (R6+)orit in a wavelength IS that for<br />

which H is greatest. (Rg+)crlt corresp<strong>on</strong>ding to this pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile has been<br />

calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h and !? , using <strong>the</strong> fact that (R )<br />

S* cr<br />

for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile shapes invest&ted by several authors has been<br />

found3 to be a single functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H. Tbxs applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> this result<br />

for a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present family has been tested and found satisfactory.<br />

[Append= II].<br />

l?or <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles c<strong>on</strong>sIdered R 6u has to <strong>the</strong> first order its value<br />

for <strong>the</strong> asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, namely u.<br />

ys<br />

Thus<br />

For <strong>the</strong> asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (RS*)crlt = 4 x I&. Thus <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

keeping fi <strong>the</strong> same #hsn <strong>the</strong>re are'waves in <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> length L and<br />

height h as when <strong>the</strong> surface is devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> waves and <strong>the</strong> sucti<strong>on</strong> velocity<br />

is vs 0 ' may be written<br />

<strong>the</strong> range 6 x IO3 - 106,<br />

, and thus,for fixed $ and F , '<br />

value<str<strong>on</strong>g>of</str<strong>on</strong>g> $. corresp<strong>on</strong>ding<br />

(6). <str<strong>on</strong>g>The</str<strong>on</strong>g> re&lts,<br />

against +Q, for four values <str<strong>on</strong>g>of</str<strong>on</strong>g> y in<br />

Vs t<br />

In <strong>the</strong> curves shown $-a- as o,+O. <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0<br />

u<br />

however ra<strong>the</strong>r meaningless under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s; vs itself<br />

vs<br />

-<br />

v%<br />

still<br />

is<br />

has<br />

a small finite value. If vs were plotted agaznst vs , <strong>the</strong> result would<br />

be a series <str<strong>on</strong>g>of</str<strong>on</strong>g> 1~~s <str<strong>on</strong>g>of</str<strong>on</strong>g> slope approximately 1, with mn?ercepts <strong>on</strong> <strong>the</strong> vs<br />

- 6-


\<br />

ans determined by h, and tending to 1 as h tends to 0. <str<strong>on</strong>g>The</str<strong>on</strong>g> c-s<br />

for +3 x 105 drkl III thu my are shownLFlg.3(e).<br />

4 N~rlcal example<br />

Curva'cxe gauge readings obtained by D. Johns<strong>on</strong> <strong>on</strong> <strong>the</strong> wing <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

producti<strong>on</strong> Vampire, and by Dr. Lachmann4 <strong>on</strong> <strong>the</strong> wxnd t-lmodel <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sleeve for <strong>the</strong> Handley Page experments suggest ttit -<strong>the</strong> xreduclble<br />

minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> h 1s approximately 10m3. <str<strong>on</strong>g>The</str<strong>on</strong>g> surfaces In both cases are by<br />

no means pu& smuso~dal, although such a shape might well be produced<br />

by stringers at regular chordwIse Intervals. A harmcnx analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tk<br />

surface shape would strictly be necessary to find <strong>the</strong> wavelengths and<br />

<strong>the</strong>n heights ln <strong>the</strong> form assumed In <strong>the</strong> analysis.<br />

As an example, c<strong>on</strong>zlder an axrcraft orusing at 350 knots at<br />

$f,OOO feet, and a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> VW where <strong>the</strong> local sucti<strong>on</strong> flow<br />

0 = 0.0014. <str<strong>on</strong>g>The</str<strong>on</strong>g> Reynolds nwnber per inch is Id. For a wave 3 inches<br />

lkg and 3/~000 xnch high + = 3 x 16, 2 = IO-', and <strong>the</strong> requxed<br />

mcrease - “S 1.3 1.07, 1.e. 7$ more sucti<strong>on</strong> is requrred to marntaln<br />

vSO<br />

<strong>the</strong> saxe stabxllty at tix worst point In <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile as m <strong>the</strong> absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> waves. With thus lncnase, tine pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile ~~11 actually be more stable<br />

than before at all o<strong>the</strong>r points. On <strong>the</strong> o<strong>the</strong>r hand, for a wave IO xi&es<br />

l<strong>on</strong>g and '/lo0 Inch high,<br />

UL<br />

- = IO6 whhlle 2 1s St111 10-3, but less than<br />

1% Increase In sucti<strong>on</strong> 1s Gcessary. Thus <strong>the</strong> l<strong>on</strong>ger thz wave, <strong>the</strong><br />

smaller <strong>the</strong> necessary mncrease.<br />

C<strong>on</strong>versely If "so TJ xs smaller, a larger percentage increase 1s<br />

needed for waves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same length and height. Thus with <strong>the</strong> above data,<br />

suppose vQg= 0.0007. For waves 3 lnohes l<strong>on</strong>g $- = 1.15, and for waves<br />

u<br />

0<br />

IO Inches l<strong>on</strong>g 3 = 1.07.<br />

"SC<br />

5<br />

Dlscusslop<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results should provide an upper llmlt for tiE percentage<br />

increase m sucti<strong>on</strong> necessary to preserve stability over a wavy surface.<br />

In fact with <strong>the</strong> calculated Increase In suctr<strong>on</strong> <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle wxll actually<br />

by c<strong>on</strong>slderably more stable than for <strong>the</strong> flat surface at all pornts in a<br />

wavelength except <strong>the</strong> most unfavourable. A typIca value for <strong>the</strong> lllcrease<br />

would be <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> IO per cent. However <strong>the</strong> llmlt depends <strong>on</strong> <strong>the</strong><br />

partxxxlar level <str<strong>on</strong>g>of</str<strong>on</strong>g> stablllty chosen in cnlculatmg <strong>the</strong> sucti<strong>on</strong> necesssxy<br />

wltho ut surface waves, as well as <strong>on</strong> <strong>the</strong> variables already menti<strong>on</strong>ed. It<br />

might be expected that ra<strong>the</strong>r smaller Increases In sucti<strong>on</strong> than ths lunlt<br />

would be sufflcler3 to counteract <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waves, sUce regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rxlng and falling pressure alternate al<strong>on</strong>g <strong>the</strong> surface. When <strong>the</strong> pressure<br />

is falling a disturbance wlllbe damped c<strong>on</strong>slderably more than at <strong>the</strong> most<br />

"unfavourable" point In a wavelength, for which <strong>the</strong> calculati<strong>on</strong>s have been<br />

made. Attentx<strong>on</strong> might be drawn to Pretsch's5 interesting explanati<strong>on</strong>, for<br />

boundary layers wIthout sucti<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fact tMt Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds<br />

number can lead to transItlo<strong>on</strong> suddenly ~umplng forward a whole wave length.<br />

Disturbances In <strong>the</strong> wavelength ahoad <str<strong>on</strong>g>of</str<strong>on</strong>g> that In which transztl<strong>on</strong> took place<br />

at <strong>the</strong> lower Reynolds number, crhlcn were lnsufflclently amplrfied for<br />

transltl<strong>on</strong> m <strong>the</strong> adverse gradlent, and subsequently damped In <strong>the</strong> favcur-<br />

able gradlent, are at a higher Reynolds number sufflclently smplifled in<br />

<strong>the</strong> adverse gradlent. This could also apply to flow with mnsufficient<br />

suotl<strong>on</strong> to preserve a stable pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle at all points 1.n a wavelength.<br />

-7-


<str<strong>on</strong>g>The</str<strong>on</strong>g> fact that waves <strong>on</strong> <strong>the</strong> sirface, by disturbing <strong>the</strong> velocity<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in a periodic manner, <strong>the</strong>mselves provxle a potential instability,<br />

has not been c<strong>on</strong>sidered in <strong>the</strong>se calculati<strong>on</strong>s, since It is assumed that<br />

sufficient sucti<strong>on</strong> ~111 be applied to damp out all oscillati<strong>on</strong>s whatever<br />

<strong>the</strong>ir source. Thus <strong>the</strong> results obtalned are fundamentally different from<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> Fage6, which express <strong>the</strong> m~ax~mum permissible wave height in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> lamlnar fXoTTr before transiti<strong>on</strong>, and Reynolds number,<br />

<strong>on</strong> an aer<str<strong>on</strong>g>of</str<strong>on</strong>g>oll without sucti<strong>on</strong>. in Fag?' s case <strong>the</strong> waves <strong>the</strong>mselves are<br />

resp<strong>on</strong>sible for <strong>the</strong> Instability.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer in <strong>the</strong> limit<br />

v<br />

when $ = 0 is<br />

not given by <strong>the</strong>se calculati<strong>on</strong>s, since asymptotic c<strong>on</strong>diti<strong>on</strong>s cannot <strong>the</strong>n<br />

occur. In fact Quick and Schroder7 have shown that separati<strong>on</strong>wlll occur<br />

fairly rapidly for vraves <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient 'size' k .<br />

In c<strong>on</strong>trast to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface ~otubersnces', which becomes<br />

more serious as sucti<strong>on</strong> is Increased, It I.S seen that <strong>the</strong> destabilising<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface 'rraves ~3 alleviated by Increased suctl<strong>on</strong>. Presumably<br />

for a surface not completely clean aerodynamically, and c<strong>on</strong>taxnmng waves,<br />

a compromise must be found be+xrsen <strong>the</strong> ti,o requirements. <str<strong>on</strong>g>The</str<strong>on</strong>g>re 1s also<br />

<strong>the</strong> psslbllity <str<strong>on</strong>g>of</str<strong>on</strong>g> a res<strong>on</strong>ance effect between <strong>the</strong> perzodlcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

p<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface itself, for 'iavc numbers near <strong>the</strong> crltxal.<br />

Some calclitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sucti<strong>on</strong> qwirtitws for irhlch this might occur are<br />

given in Appendix III.<br />

No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Author<br />

P.R. &en, and<br />

L. luanfer<br />

C.C. Lin<br />

P. Chiarulli, and<br />

J.C. Freeman<br />

G.V. Lachmann,<br />

N. Gregory, and<br />

W.S. '!'alker<br />

J. Pretsch<br />

A. Fage<br />

A.vJ. Quick, and<br />

K. Schroder<br />

RXFFXFNCES<br />

Title, etc.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> xsolated roughness <strong>on</strong> boundary<br />

layer transitI<strong>on</strong>. (;Tnpublished)<br />

ARC 16,458, Xzch 1753<br />

On <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> D,?o dimensx<strong>on</strong>al parallel<br />

flows.<br />

Q. APP. Xath 1, 1174L+2, 218-234, 277-301.<br />

4945-46<br />

<strong>Stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary layer.<br />

Technical Report F-TR-1197-IA,<br />

Wight-Patters<strong>on</strong> Air Force Base, August 1948<br />

Handley Page Lamlnar Flow lying with Porous<br />

Strips: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> Model and '%nd Tunnel<br />

Tests at N.P.L.<br />

A.R.C. 14,794, Pky 1952<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stablllty <str<strong>on</strong>g>of</str<strong>on</strong>g> two dlmensl<strong>on</strong>al lannnar<br />

flow with pressure drop and pressure rise.<br />

J


,<br />

APPJ3NDMI<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Velocltg Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Iles <strong>on</strong> a<br />

Wavy <str<strong>on</strong>g>Surface</str<strong>on</strong>g> with As.ymptotlc SudiOn<br />

C<strong>on</strong>suler <strong>the</strong> boundary layer flow over a wavy surface, with free<br />

stream velocity U at infknty and U, at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundary<br />

2F.x<br />

layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface 1s gIvenby y = h cos - , where<br />

h. ( L )<br />

E 1s small and its square negllglble.<br />

where H+<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum are respectively<br />

$+ (H+2) U, a -&= au +<br />

If n<strong>on</strong>-dz.mensl<strong>on</strong>s.1 variables defined by<br />

Ul<br />

0<br />

au<br />

dy,-iiy'<br />

u1 = u s 27cc VY ve<br />

u ) v'=vs, x'=y , Y - "<br />

l--H, ,t=s Y<br />

are mtmduced, <strong>the</strong> equati<strong>on</strong>s maybe wrl'cten<br />

2<br />

au,’<br />

u’ au’.<br />

ax’ u =Qi-ui dx’+<br />

0 2 UL auf _<br />

0’ a;,<br />

s+ (H+2) -<br />

u1 tm-<br />

VS<br />

“s UL ii&<br />

(7 U zEdy'2<br />

(2)<br />

(3)<br />

(4)<br />

-(g ~[-+(&y&q] (5)<br />

Dropping <strong>the</strong> primes, end introducing <strong>the</strong> n<strong>on</strong>-dimensi<strong>on</strong>al parameter<br />

-9-<br />

(6)


<strong>the</strong> equati<strong>on</strong>s are<br />

z+ (H+ 2) (8)<br />

With boundary c<strong>on</strong>dltl<strong>on</strong>s u = & = 0, v = -1, at y = 0, ws.ves <strong>on</strong><br />

<strong>the</strong> surface vslll produce a fluotuatl<strong>on</strong> 1X-I <strong>the</strong> velocity at <strong>the</strong> edge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> boundary layer so that<br />

u, = I + +p = I + A, , say<br />

(We work throughout with complex quantities, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>ly <strong>the</strong> real<br />

parts are relevant).<br />

h<br />

where a0 18 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> - .<br />

L<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle is <strong>the</strong>n<br />

A reas<strong>on</strong>able form for <strong>the</strong> velocity<br />

!J = 1 - ,-y + a0 elx - e-’ (a0 + a,Y t a2 $ + . ..) elx<br />

=1-e<br />

-y+ & - .-y (A, + AIY + A2 z+ Y2 . ..). (11)<br />

where Y = ay and c 1s some suitably cbsen c<strong>on</strong>stant. A, = anelx and<br />

dA<br />

-$ aAn. Squares and products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> An 's wlllbe assumed negligible.<br />

This form may be made to satisfy any number <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>dltl<strong>on</strong>s at<br />

y = 0,b.e. at Y = 0), obtained by differentzating <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>,<br />

and it automatically satlsfles <strong>the</strong> boundary layer equati<strong>on</strong>s at <strong>the</strong> outer<br />

edge. Thus by finding all <strong>the</strong> coefflclents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> infinite series, an<br />

exact soluti<strong>on</strong> would be given,<br />

set from 0 to=.<br />

slnoe <strong>the</strong> functi<strong>on</strong>s -e<br />

yn<br />

n!<br />

-Y<br />

form a complete<br />

F'racticalvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> h maybe emall compared with 1, and with <strong>the</strong><br />

obvious choice <str<strong>on</strong>g>of</str<strong>on</strong>g> c = 1, It 1s found that <strong>the</strong> quantltres<br />

x43 so that a very large nwlber <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s<br />

-increase an<br />

as<br />

a0<br />

must be used<br />

to se;ure c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> series mbrackets. Apart from <strong>the</strong> numerical<br />

difficulties thus raised, bourdary c<strong>on</strong>diti<strong>on</strong>s obtained by repeated<br />

differentlatl<strong>on</strong> with respect to y become inoreaslngly inaccurate because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m&rent approximati<strong>on</strong> in <strong>the</strong> boundary layer equata<strong>on</strong>. It 19,<br />

<strong>the</strong>refore, desirable to use as few terms as possible, and thus may best<br />

- IO -<br />

(7)


e achreved by equatmg d to a negative power <str<strong>on</strong>g>of</str<strong>on</strong>g> h . <str<strong>on</strong>g>The</str<strong>on</strong>g> relatmn<br />

has been chosen.<br />

Th? calculatmn ma proceeds as follows:-<br />

-'/3<br />

a=?!. (12)<br />

(1) <str<strong>on</strong>g>The</str<strong>on</strong>g> quantity<br />

H-2<br />

T- 1s calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h by means<br />

I Jw I<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> momentum equati<strong>on</strong> and tk equatmn <str<strong>on</strong>g>of</str<strong>on</strong>g> mctl<strong>on</strong>.<br />

(11) J.~ u related to _h by c<strong>on</strong>slderlng <strong>the</strong> potential flow past a wavy<br />

L<br />

wall.<br />

(~1) By means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong>between H and (R a) found by Lm,<br />

6 h cr&.<br />

%*)cr1t<br />

1s calculated for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(Secti<strong>on</strong> 34 1 -7 and 2 as<br />

described ~.n <strong>the</strong> main part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> report,<br />

(I) CQefflclents in velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Ile<br />

*=L<br />

6<br />

For <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (II),<br />

9 J<br />

Ul<br />

0<br />

m<br />

(u, -<br />

-Y<br />

q-u=" -'+ e [+ + A,Y+ . ..]<br />

u) dy = l-A/$ [A, + A1 + . ..]<br />

m ca<br />

u(u1 - u) dy =<br />

i<br />

0<br />

0<br />

0<br />

(excludmg squares and products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> k's),<br />

I.e.<br />

o-<br />

where z=-; and<br />

1 +c<br />

,-Y (I -e-y) - 2emySY[Ac+A,Y+ . ..I<br />

7<br />

+ e-y [A, + A,Y + . . . ],dy ,<br />

iJ=;+; c (1 - 2~~') A, ,<br />

n=O<br />

H=$2 - 2Ac - 5 c.<br />

n=o<br />

- 11 -<br />

(1 - 4z”+‘) An<br />

(13)<br />

(14)<br />

(15)


By differentmtmg (11) and puttug y = Y = 0 , we obtam<br />

= (-QPd (16)<br />

Dtiferentlatmg <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> (7) with respect to y<br />

twice we obtam, <strong>on</strong> putting y = 0 and insertmg <strong>the</strong> boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

I-0<br />

0 = A2 [($). + (,,I , (17)<br />

If ti-e series expansi<strong>on</strong> in (11) 1s tenmnated after <strong>the</strong> term III Y4,<br />

equativns (7), (a), (17) and (18) form four lmear equati<strong>on</strong>s suffuxent<br />

to determine Ac: A, : A2 : A3 : A4.<br />

Makmg use <str<strong>on</strong>g>of</str<strong>on</strong>g> (I@, toge<strong>the</strong>r mth <strong>the</strong> fact that<br />

a du<br />

ax 0 aYo = -& [I + u (A0 - A,)] = 16 (k, - AI) ,<br />

<strong>the</strong> momentum equati<strong>on</strong>, <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and <strong>the</strong> tm remammg<br />

equati<strong>on</strong>s become respectively<br />

ii<br />

u (1 - 2rTH' )An + 2iA, = A2 [&, - A,) - A,] (19)<br />

n=O<br />

-IA<br />

0<br />

(18)<br />

=I? [o(Ao - A,) - c-2 (A0 - 211, + A2)] (20)<br />

16 (A, - A,) = x2[c3(A,-3Aj + 382' A3)<br />

- &A, - 4f1,+6A2-4Aj+A&)+ d&-$)1<br />

- 12 -<br />

(22)


We now solve <strong>the</strong>se equatmns approxmately for small values <str<strong>on</strong>g>of</str<strong>on</strong>g> X .<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> R agaux~t h for <strong>the</strong> solutmn so obtamed ~111 later be<br />

JOlned <strong>on</strong> to <strong>the</strong> value for h = d = 1 , for which <strong>the</strong> equati<strong>on</strong>s are<br />

easily solved. Puttmg X2 = us6, (12), and excludmg 6-4 and higher<br />

powers m comparis<strong>on</strong> with 1, <strong>the</strong> cqnatums become<br />

- la, + (-A+ $)a, + 5 a2<br />

(1 - $) a0 + (- 3 + $)a, + (3 - $)a2 - a3 -0<br />

With <strong>the</strong> same degree <str<strong>on</strong>g>of</str<strong>on</strong>g> approxmatl<strong>on</strong>, <strong>the</strong> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se equati<strong>on</strong>s IS<br />

a0<br />

: -2 (.i _ zT5) + $ (-IO + 2.r’ + L+T~ + 62 + 8~~) .<br />

=a , : g (IO - 2T3 - 6,4 _ ,2T5) + 1 (-6 + 2~~) + -$ (1 - 2~~) + 2<br />

I<br />

I<br />

2<br />

u<br />

J I<br />

= a2<br />

(IO + 2T2 - h4 - 166~)<br />

=a 3 : 2 (1 - 275) - 5 (1 - 275) + 1(6r2+ 6~~-<br />

u4 122)<br />

=a 4<br />

,<br />

: $ (-4 + 2T3 + 6~~) + d- (I - 2~~) + $ (-18 +12.t2+16r3 +?2~~)>]<br />

.2 u<br />

Substltutmg <strong>the</strong>se values mto (151, we obtam for small A,<br />

(23)<br />

(25)


For h = 1 , <strong>the</strong> equatmns (IT) to (22) become particularly smple,<br />

mth <strong>the</strong> soluti<strong>on</strong><br />

a0 : (-49+i)= a, : (32 +701) = a2 : (31+ 211)=a3 :(30-28i)= a4:(-40+4x)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> y for this case and that for h = 0.4 are plotted<br />

I I<br />

in Flg.5, toge<strong>the</strong>r with <strong>the</strong> curve obtamed from (25) for smaller values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> h.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> varmtl<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H al<strong>on</strong>g <strong>the</strong> surface 1, given by H=2+\H-2)e1(X+E),<br />

say, where c 1s some phase angle. <str<strong>on</strong>g>The</str<strong>on</strong>g> stability is least for <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

mth greatest H , so that m calculating <strong>the</strong> maxmum Reynolds number for<br />

stablllty at all points m a wave-length, It 1s sufflclent to use <strong>the</strong><br />

curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Flg.6 vlth<br />

H=2+ IH-21.<br />

(ii) Velocity fluctuati<strong>on</strong> at mfinitg<br />

In this se&I<strong>on</strong> It 1s more c<strong>on</strong>venient to work wzth dimensi<strong>on</strong>al<br />

quantltles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fled over thz wavy surface wlthboundary layer present maybe<br />

represented by <strong>the</strong> potential flow, mth uniform velocity at mfmlty over<br />

a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> height<br />

where in = he 2*L and<br />

y=?J+ 6' 9<br />

6” = 5 )I - A, + ;(A, + A1 + A2 + A3 + A411 from (13)<br />

S<br />

= k 11 + A,AI , say, where A = O(l),<br />

= v 11 + a$e 2mi/L<br />

vs<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> flow 1s calculated try xapresentmng <strong>the</strong> surface by a source<br />

distrlbutz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

I.<br />

[h + v$- a,A].<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> velocity m <strong>the</strong> x drect~<strong>on</strong> at a pornt (x,, y,) 1s <strong>the</strong>n<br />

[<br />

u 25x1 - (x1 - x)e2e~Ldx<br />

h + A a,A]; 7<br />

vS J Y,L ' + (x, - "Y<br />

-m<br />

- 14 -<br />

‘<br />

(26)<br />

(27)<br />

(28)<br />

(29)


Wrltlng t = x - x, , thxs may be wrItten<br />

To evaluate <strong>the</strong> mtegra1 c<strong>on</strong>sider<br />

I=<br />

.<br />

m<br />

.wt<br />

dt<br />

2 -<br />

J Yq +t2<br />

-m<br />

Thx. may be integrated round a semi-czu-cle <str<strong>on</strong>g>of</str<strong>on</strong>g> large radius R in<br />

<strong>the</strong> upper half plane. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>trlbutl<strong>on</strong> from <strong>the</strong> curved part 1s o(h).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly pole UBAS <strong>the</strong> senu-cucle 1s at t = iy,, where <strong>the</strong> EsCiue<br />

1s escIy1/21Yl .<br />

. . (32)<br />

Thus,<br />

‘<br />

' I<br />

d1<br />

ziY=<br />

m<br />

=<br />

- ?ce-pyl<br />

m<br />

(30)<br />

(311<br />

ltevtdt<br />

t2 + Yl 2 * (33)<br />

te2nlt/L dt = e-2n~,/L<br />

-m -t2+ y;2 , -L<br />

and tk velocity due to <strong>the</strong> source dlstrrbutl<strong>on</strong> 1s<br />

Now let us chqose -y, .sc that '<br />

- 15-<br />

(34)<br />

(35)<br />

(36)


From Flg.6, for thrs value <str<strong>on</strong>g>of</str<strong>on</strong>g> H (Rg*)or,t = 1.1 X fCJ!+. IA's eqmtl<strong>on</strong><br />

has two roots,<br />

For <strong>the</strong>se<br />

yc, z 0.064 and Y C2 = 0.293<br />

+I<br />

= 0.0296 , uc = 0.2071<br />

2<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> former <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se corresp<strong>on</strong>ds to (R8*)orlt = 3.26 x IQ~, <strong>the</strong> latter<br />

to (Rg*)crit = 1.36 x Id;. It seems reas<strong>on</strong>able to treat <strong>the</strong> lower <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>re 2s <strong>the</strong> relevant; value On this basrs (Rg*)crlt 1s estunated to<br />

within 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> Its correct value and log,O (Rg*)crlt , a quantity whch<br />

means more, to mthxx 23. Hrgher accuracy m stabllxty tkmory would be<br />

quite fortUltoUS.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> slope and curvature parameters<br />

n=- e2 - a2,<br />

U<br />

( aY2 > FO<br />

for <strong>the</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>lle are respectively 0.512, -0.674.. <str<strong>on</strong>g>The</str<strong>on</strong>g> value 0.674 for -m<br />

IS much larger than those <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles mvestlgated by o<strong>the</strong>r authors, and<br />

It night at first seem surprx~ng that such good agreement wth <strong>the</strong><br />

@,*)cr > HI curve 1s aohleved m this case. However <strong>the</strong> prwf0e<br />

curvature could be arbltrarrly changed In <strong>the</strong> neighbourhood <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

orrgln quite sufflclently to bring m into <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> values usually<br />

c<strong>on</strong>sidered, mth negligible changes 1n <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> H , and without<br />

affecting <strong>the</strong> outer root <str<strong>on</strong>g>of</str<strong>on</strong>g> Lm's equati<strong>on</strong> at all.<br />

- 18 -


\<br />

A2?PExDIx -. III<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> kves as a Source <str<strong>on</strong>g>of</str<strong>on</strong>g> DisWcbance .<br />

As is @r&d out in secti<strong>on</strong> 5, regular ~mves <strong>on</strong> <strong>the</strong> surface, or<br />

indeed any disccntinuit~es with vrhlch a Tz:avelength can be associated.,<br />

prcv~Je disturbances Txhich could. be amplified under critical ccn&ti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sucti<strong>on</strong> quantities calculated. ia <strong>the</strong> report are large enough to<br />

prevent <strong>the</strong>se ccndit~cns ever arising, 1.e. Rho < (R6.+)crit always, but<br />

it is mteresting to compare <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface waves discussed<br />

with that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crltxal disturbance.<br />

For <strong>the</strong> asymptotic p<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, exact computati<strong>on</strong> is stated 2.n<br />

Reference 3, Figure 21, to give <strong>the</strong> critical vmve nwlber<br />

Here<br />

Thus<br />

a cr<br />

a<br />

= 0.17<br />

=- 2 7165<br />

CT 4<br />

cr<br />

4<br />

2nv .- 1<br />

,cr =y 0.17<br />

And if <strong>the</strong> surface wave 1s <str<strong>on</strong>g>of</str<strong>on</strong>g> critical rravelength, ecr = L,<br />

12.3 61.7<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calculatuxxs 'have not taken into account <strong>the</strong> po&bility <str<strong>on</strong>g>of</str<strong>on</strong>g> a res<strong>on</strong>arr,e<br />

between pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile- and surface-disturbance at this &elength, but it mm<br />

seeIns Fcssible that some such effect may play a part in <strong>the</strong> transiti<strong>on</strong><br />

caused by surfau excrescences.<br />

Wt.2078.CP161.~3. i'nnted %n Great Qr,tcm. - 19 -


(R ff)CRlT R6”<br />

FIG. I& 2(a)<br />

FIG.1. TYPICAL NEUTRAL STABILITY CURVE.<br />

LOW SUCTION<br />

-__ - HIGH SUCTION<br />

FIG. 2 (a) SCHEMATIC VELOCITY PROFILES<br />

ALONG WAVY WALL.


FIG .2 (b).<br />

PROFILE<br />

POSITION<br />

FIG2(b). PROFILES FOR 2 ’<br />

II<br />

L ,<br />

I /I<br />

-0 (ASYMPTOTIC SUCTION PROFILE)<br />

4<br />

=I, L = O-016.


I<br />

PROFILE<br />

POSITION @<br />

0<br />

FlG.2@). FROFILES FOR ; r+, = 425,<br />

lI = -0016.<br />

-<br />

X<br />

--<br />

L<br />

*5<br />

F I G .2 (c).


FIG. 2 (d).<br />

‘*Or--- I<br />

t-l<br />

I<br />

PROFILE<br />

P05lT10N<br />

I<br />

I<br />

2.4-<br />

I.61<br />

0<br />

x<br />

T-<br />

*5<br />

UCTION PROFILE)<br />

FIG. 2 (d) PROFILE\ FOR y “’ = “‘ = IO -92<br />

- =*0005<br />

L<br />

6


_ -<br />

6<br />

2<br />

I<br />

Fl=<br />

IV<br />

\<br />

5% o-<br />

o-4<br />

\ 2.5 x :O+<br />

I ,<br />

(a) +=I06<br />

\ .I . I I<br />

1 FIG. -?h;ti<br />

. ‘-‘-x-“-<br />

FIG.36 a b) EXTRA S”CT:ON R&“lRED<br />

FOR STABILITY ON A WAVY SURFACE.<br />

50


FIG .3 (cad).<br />

1 Y<br />

&o 4<br />

I I 5 ” XI0 IO<br />

;cj. + :3x104.<br />

20<br />

7 \ \<br />

3<br />

2<br />

I<br />

“5<br />

$x IO4<br />

I 2<br />

I I<br />

5<br />

I I<br />

IO 20 50<br />

(d). + -6x10’.<br />

FIG.3 (cad). EXTRA SUCTION REQUIRED FOR<br />

STAB ILITY ON A WAVY SURFACE.<br />

50<br />

1


10 15<br />

“5. -4<br />

0 u x ‘O<br />

FIG.3 (e). $ AGAINST !$ FOR + = 3 x IO?<br />

FIG .3 (e>.


‘I---T--<br />

FIG. 4. REQUIRED INCREASE’ IN SUCTION, FOR “+-<br />

FUNCTION OF k AND 9<br />

-.0014, AS


H-2<br />

- ZlTA<br />

t L<br />

lOi<br />

5<br />

2<br />

lo;<br />

5<br />

-2<br />

IO<br />

5<br />

2<br />

I<br />

?<br />

><br />

-i<br />

FIG. 5.<br />

FlG.5. VARIATION IN FORM PARAMETER<br />

ON A WAVY -SURFACE WITH SUCTION.<br />

-:<br />

-<br />

3


FIG. 6.<br />

I04<br />

I03<br />

2<br />

2<br />

5<br />

2<br />

IO2<br />

2 2.2 2.3 2.4<br />

FIG- 6. VARIATION OF (Rs “) crit WITH H<br />

FOR SUCTION PROFILE-S.


Crown Copyr@t Reserved<br />

York House. Kn-@way, U)MXJN. wc.2. 423 Oxford Street. LONDON, w 1<br />

P.0 Box 569, LONWN. se 1<br />

13a Castle street, EmNB”ROH, 2 I St Andrew’s Crescent, CARDIFF<br />

39 Kmg street, MANCHEITBR, 2 Tower Lane. BRISIUL 1<br />

2 Edmund Street, BIRMMOH*M, 3 so ChIchester street, BELFAST<br />

or fmm any Bookseller<br />

19Sb<br />

Price 2s. 6d. net<br />

C.P. No. 161<br />

(15.916)<br />

A.R.C. Technical Report<br />

S.O. Code No. U-9007-61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!