31.07.2013 Views

Velocity Distribution in Hydraulic Jump - nptel - Indian Institute of ...

Velocity Distribution in Hydraulic Jump - nptel - Indian Institute of ...

Velocity Distribution in Hydraulic Jump - nptel - Indian Institute of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

29.4 <strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> <strong>Hydraulic</strong> <strong>Jump</strong><br />

The approach<strong>in</strong>g uniform flow velocity imparts some amount <strong>of</strong> energy to the ambient<br />

fluid which changes the velocity distribution. After the jump, the variation <strong>of</strong> depth, flow<br />

pattern, and air entra<strong>in</strong>ment <strong>in</strong>fluence the velocity distribution. There has not been much<br />

work on the velocity measurements particularly <strong>in</strong> the roller zone. Experiments by the<br />

Miami conservancy District <strong>in</strong> 1917, clearly show that the approach<strong>in</strong>g high velocity <strong>of</strong><br />

the water gradually dim<strong>in</strong>ishes through the jump.<br />

Later Hubbard recorded the turbulent fluctuation <strong>in</strong> a hydraulic jump just downstream <strong>of</strong><br />

the roller, to compare the results <strong>of</strong> the air model <strong>in</strong>vestigated by Rouse et al.<br />

However, it appears that it is Rajaratnam <strong>in</strong> 1965 who rationalised the analysis. He<br />

conducted an extensive <strong>in</strong>vestigation <strong>of</strong> the mean velocity distribution <strong>in</strong> the jump<br />

formed just below a sluice gate <strong>in</strong> a smooth channel <strong>in</strong> a Froude number range <strong>of</strong> 2.68<br />

to 9.78. His measurements were conf<strong>in</strong>ed to forward flow. He compared his results with<br />

the wall jet and he was able to show the existence <strong>of</strong> similarity law <strong>of</strong> velocity<br />

distribution. further, he concluded that the velocity <strong>in</strong> the boundary layer follows the<br />

defect law and hydraulic jumps, the pressure gradient is adverse and its effect must be<br />

felt as observed by Clauser.<br />

Resch and Leutheusser <strong>in</strong> 1971-1972, have measured the turbulent velocity fluctuations<br />

both <strong>in</strong> forward and backward flow <strong>of</strong> the jump.<br />

An understand<strong>in</strong>g <strong>of</strong> the velocity distribution is necessary when energy loss is to be<br />

computed. However, it is usual to assume a uniform velocity distribution. Till recently<br />

there had not been much work on velocity measurements <strong>in</strong> hydraulic jumps and<br />

particularly <strong>in</strong> the roller zone. Miami Conservancy district conservancy report shows that<br />

the velocity <strong>of</strong> the water gradually dim<strong>in</strong>ishes through the hydraulic jumps.<br />

Hubbard and Rajaratnam <strong>in</strong>vestigated about the velocity distribution <strong>in</strong> jumps. The latter<br />

conducted extensive <strong>in</strong>vestigations on the velocity distribution. His measuremets were<br />

conf<strong>in</strong>ed to forward flows <strong>in</strong> a Froude number range <strong>of</strong> 2.68 to 9.78. His analysis<br />

followed the analogy <strong>of</strong> a wall jet.<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

In the follow<strong>in</strong>g paragraphs the results <strong>of</strong> the Thandaveswara are reported <strong>in</strong> which an<br />

attempt is is made to measure the velocity <strong>in</strong> the roller zone also.<br />

In Figures a to f the normalised velocity ( V/ V1 max ) distribution along the jump have<br />

been plotted aga<strong>in</strong>st the normalsied depth ( y / y1 ) <strong>in</strong> which V1 max is the maximal<br />

velocity <strong>of</strong> the apprach<strong>in</strong>g flow and y1 is the depth <strong>of</strong> the approach<strong>in</strong>g flow. The velocity<br />

pr<strong>of</strong>ile rises sharply up to the maximum velocity <strong>of</strong> the flow and then decreases<br />

gradually as to the depth <strong>in</strong>creases and f<strong>in</strong>ally becomes zero. These velocity pr<strong>of</strong>iles<br />

exhibits similarity with the wall jet velocity pr<strong>of</strong>ile as discussed by Rajaratnam. In<br />

backflow the roller zone, is shown <strong>in</strong> dotted l<strong>in</strong>es <strong>in</strong> Figures a to f. The negative sign<br />

<strong>in</strong>dicates only the direction. These components are only approximate, as the roller is full<br />

<strong>of</strong> eddies and even the presence <strong>of</strong> a pitot tube will cause disturbances and affect their<br />

characteristics. Just downstream <strong>of</strong> the roller, the velocity pr<strong>of</strong>iles beg<strong>in</strong> at a higher<br />

level. In this region the flow becomes almost static and full <strong>of</strong> vortices. The presence <strong>of</strong><br />

vortices is discussed elsewhere. Farther downstream <strong>of</strong> this region the flow reverts to<br />

nearly uniform flow.<br />

In Figures g to h. the variation <strong>of</strong> the velocity pr<strong>of</strong>ile along the jump is presented for the<br />

PHJ. This also exhibits a sharp rise up to the wall turbulent zone. As observed <strong>in</strong> the<br />

NHJ, there exists a zone near the bed where the flow is anticlockwise and the velocity<br />

pr<strong>of</strong>ile shown is only for the ma<strong>in</strong> flow direction. Later, flow returns to the normal<br />

condition.<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

y<br />

___<br />

y1<br />

10<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

8<br />

6<br />

4<br />

10<br />

y<br />

___<br />

y1<br />

0 0 0 0 0 0 0 0<br />

0<br />

0<br />

0 0.4 0.8 1.2<br />

0<br />

0 0.4 0.8 1.2<br />

_____ v<br />

v1max<br />

(a)<br />

0 0 0 0 0 0 0 0 0 0<br />

12<br />

Run R2<br />

8<br />

6<br />

4<br />

2<br />

_____ v<br />

v1max<br />

(b)<br />

Run R1


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

12<br />

___ y<br />

y1<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

16<br />

14<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0 0 0 0 0 0 0 0 0<br />

Run R3<br />

0<br />

0 0.2 0.8<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the <strong>Jump</strong> (NHJ)<br />

(c)


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

y<br />

___<br />

y1<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Run R4<br />

0<br />

0 0.4 0.8<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the <strong>Jump</strong> (NHJ)<br />

(d)


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

18<br />

16<br />

14<br />

12<br />

10<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

y<br />

___<br />

y1<br />

0 0 0 0 0 0 0 0 0 0 0<br />

20 Run R5<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 0.4 0.8<br />

1.2<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the Jumo (NHJ)<br />

(e)


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

y<br />

___<br />

y1<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 0 0 0 0 0 0 0 0 0<br />

Run R6<br />

0 0.4 0.8<br />

1.2<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the <strong>Jump</strong> (NHJ)<br />

(f)<br />

0 0


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

y<br />

___<br />

y1<br />

*<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0 0 0 0 0 0 0 0 0<br />

Run B0<br />

0<br />

0 0.4 0.8<br />

1.2<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the <strong>Jump</strong> (PHJ)<br />

(g)


<strong>Hydraulic</strong>s Pr<strong>of</strong>. B.S. Thandaveswara<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> Technology Madras<br />

y<br />

___<br />

y1<br />

*<br />

8<br />

6<br />

4<br />

2<br />

0 0 0 0 0 0 0 0 0 0<br />

Run B2<br />

0<br />

0 0.4 0.8<br />

1.2<br />

_____ v<br />

v1max<br />

<strong>Velocity</strong> <strong>Distribution</strong> <strong>in</strong> the <strong>Jump</strong> (PHJ)<br />

(h)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!