31.07.2013 Views

Momentum equation - nptel - Indian Institute of Technology Madras

Momentum equation - nptel - Indian Institute of Technology Madras

Momentum equation - nptel - Indian Institute of Technology Madras

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hydraulics Pr<strong>of</strong>. B.S. Thandaveswara<br />

28.3 <strong>Momentum</strong> <strong>equation</strong><br />

The ratio <strong>of</strong> sequent depth<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong> <strong>Madras</strong><br />

y<br />

0<br />

= y<br />

y<br />

• hydrostatic pressure distributions<br />

• uniform velocity distributions<br />

• air entrainment is negligible and<br />

• time-averaged quantities<br />

in sections 1 and 2.<br />

2<br />

1<br />

may be computed assuming<br />

Belanger's momentum <strong>equation</strong> for sequent depths <strong>of</strong> a hydraulic jump on a level floor<br />

in a rectangular channel can be derived by applying momentum <strong>equation</strong> between<br />

sections 1 and 2 as given below.<br />

2 2<br />

Q Q<br />

+ ZA = + ZA<br />

gA gA<br />

1 2<br />

1 2<br />

For a rectangular channel A = b y , A = b y , Q = V A = V A ,<br />

VA Vy y y<br />

V = ,V = , Z = ,Z = ,<br />

1 1 1 1 1 2<br />

2 2<br />

1 2<br />

A2 y2 2 2<br />

Q y Q y<br />

by b<br />

gby 2 gby 2<br />

2 2 2<br />

+ 1<br />

1 = + 2<br />

1 2<br />

Q y Q y 1 y<br />

gy b 2 gb y y 2<br />

2 2 2 2<br />

+ 2<br />

1 = 2<br />

1 + 2<br />

1 1 2<br />

V Q b y Q<br />

2 2 2 2 2<br />

2<br />

1<br />

1 =<br />

gy1 =<br />

gy1 1 = 2 3<br />

gb y1<br />

F<br />

divided<br />

by y<br />

2<br />

1<br />

2 2 2<br />

Q y1 Q y1 1 ⎛y ⎞ 2 1<br />

+ − − 0<br />

3 2 2 2 3 ⎜ ⎟ =<br />

gy1b2y1 gb y1 y2 ⎝ y1 ⎠ 2<br />

2 1 2⎛ y ⎞ ⎛ 1 y ⎞ 2 1<br />

F1 + − F1 ⎜ ⎟+ ⎜ ⎟ = 0<br />

2 ⎝y2 ⎠ ⎝ y1 ⎠<br />

2<br />

2<br />

1 1 1 2 1 2 1 1 2 2<br />

2


Hydraulics Pr<strong>of</strong>. B.S. Thandaveswara<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong> <strong>Madras</strong><br />

2 2 2<br />

Q y1 Q y1 1 ⎛y ⎞ 2 1<br />

+ − − 0<br />

3 2 2 2 3 ⎜ ⎟ =<br />

gy1b2y1 gb y1 y2 ⎝ y1 ⎠ 2<br />

2 1 2⎛ y ⎞ ⎛ 1 y ⎞ 2 1<br />

F1 + − F1 ⎜ ⎟+ ⎜ ⎟ = 0<br />

2 ⎝y2 ⎠ ⎝ y1 ⎠ 2<br />

2 2⎛ y ⎞ ⎛ 1 y ⎞ 2<br />

2F1 + 1 −2F1 ⎜ ⎟− ⎜ ⎟ = 0<br />

⎝y2 ⎠ ⎝ y1<br />

⎠<br />

( )<br />

2 ⎛y ⎞ 2 2 ⎛ y ⎞ 2<br />

2F1 + 1 ⎜ ⎟−2F1 − ⎜ ⎟ = 0<br />

⎝ y1 ⎠ ⎝ y1<br />

⎠<br />

( )<br />

3<br />

⎛y ⎞ 2 2 ⎛y ⎞ 2 2<br />

⎜ ⎟ − ( 2F1 + 1) ⎜ ⎟+<br />

2F1 = 0<br />

⎝ y1 ⎠ ⎝ y1<br />

⎠<br />

This can be rewritten<br />

as<br />

2<br />

⎡ y2 y ⎤<br />

2 2 y2<br />

⎢ 1 ⎥<br />

y1 y1 y1<br />

⎛<br />

⎜<br />

⎢⎣⎝ ⎞<br />

⎟<br />

⎠<br />

+<br />

⎡<br />

−2F ⎢<br />

⎥⎦⎣<br />

⎤<br />

− 1⎥= 0<br />

⎦<br />

y<br />

1 0 y y uniform flow.<br />

2 ∴ − = ∴ 2 = 1<br />

y1<br />

2<br />

⎛y ⎞ 2 y2<br />

2<br />

⎜ ⎟ + − 1 =<br />

y1 y1<br />

⎝ ⎠<br />

2<br />

y211 2<br />

Hence = = 1+ 8F1 −1<br />

y12 2<br />

2<br />

2<br />

3<br />

2F 0 a quadratic <strong>equation</strong>.<br />

⎛ ⎞ − 1+ 1+ 8F<br />

⎡ ⎤<br />

⎜ ⎟<br />

⎝ ⎠<br />

⎣ ⎦<br />

y2 1 ⎡ ⎤<br />

=<br />

⎢<br />

1+ 8F<br />

2<br />

−1<br />

y ⎣<br />

1 ⎥<br />

1 2<br />

⎦<br />

2<br />

(28.1)<br />

⎛ V1<br />

⎞<br />

in which y2, y1 are sequent and initial depths respectively and F= 1 ⎜ ⎟ is the initial<br />

⎜ gy ⎟<br />

⎝ 1 ⎠<br />

Froude number. Equation 28.1 has been verified by many investigators experimentally<br />

and <strong>of</strong>ten a ratio lower than the one calculated by the <strong>equation</strong> has been recorded.<br />

Belanger , did not consider the bed shear force while deriving Eq. 28.1. Rajaratnam in


Hydraulics Pr<strong>of</strong>. B.S. Thandaveswara<br />

1965, proposed the following momentum <strong>equation</strong> taking into consideration the<br />

integrated shear force.<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong> <strong>Madras</strong><br />

3<br />

⎛y ⎞<br />

⎜<br />

2 y<br />

⎟ − 2 ⎡ − + ⎤<br />

⎢<br />

1 ε 2F<br />

2<br />

⎥<br />

+ 2F<br />

2<br />

=0<br />

⎜ ⎟ ⎣ ⎦<br />

⎝ y<br />

1 1<br />

1 ⎠ y1<br />

In which ε is the non dimensional integrated shear force, given by<br />

γ y<br />

2<br />

function <strong>of</strong> Froude number. Pf is the integrated shear force.<br />

P<br />

f<br />

2<br />

1<br />

(28.2)<br />

and is a<br />

He used the data <strong>of</strong> Rouse et al. , Harleman, Bakhmeteff ,Safranez , Bradley - Peterka ,<br />

along with his own. Figure 2 shows the effect <strong>of</strong> shear force on sequent depth ratio.<br />

y2<br />

___<br />

y1<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Eq. 28.1<br />

Eq. 28.3<br />

Eq. 28.2<br />

Belanger<br />

Rajaratnam<br />

Sarma and Newnham<br />

2 4 6 8 10<br />

Fig. 28.5 - Variation <strong>of</strong> sequent depth ratio<br />

F1


Hydraulics Pr<strong>of</strong>. B.S. Thandaveswara<br />

Sarma and Newnham 1975 introducing the momentum coefficient ( j 1.045 β = ) for the<br />

<strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong> <strong>Madras</strong><br />

non uniform velocity distribution obtained the following modified momentum <strong>equation</strong><br />

y2 1 ⎡ ⎤<br />

=<br />

⎢<br />

1 + 10.4 F<br />

2<br />

−1<br />

y ⎣<br />

1 ⎥<br />

1 2<br />

⎦<br />

(28.3)<br />

In Eqn. 28.3, a value <strong>of</strong> β j was used by them based on the assumption <strong>of</strong> a similarity<br />

pr<strong>of</strong>ile for the velocity distribution. Eq. 28.3 gives a higher value for the sequent depth<br />

ratio, compared to the value computed from Eq.28.1. Their analysis was carried out<br />

upto a Froude number value <strong>of</strong> 4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!