31.07.2013 Views

PPT-22 - Climate Science: Roger Pielke Sr.

PPT-22 - Climate Science: Roger Pielke Sr.

PPT-22 - Climate Science: Roger Pielke Sr.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Climate</strong> Impacts of Agriculture<br />

Related Land Use Change in the US<br />

Jimmy Adegoke 1 , <strong>Roger</strong> <strong>Pielke</strong> <strong>Sr</strong>. 2 , Andrew M. Carleton 3<br />

1 Dept. Of Geosciences, University of Missouri-Kansas City<br />

2 Dept. of Atmospheric <strong>Science</strong>s, Colorado State University<br />

3 Dept. of Geography, The Pennsylvania State University<br />

World Meteorological Organization (WMO) Committee on<br />

Agricultural Meteorology (CAgM ( CAgM) ) Expert Team Meeting<br />

on the Contribution of Agriculture to the State of <strong>Climate</strong><br />

Ottawa, Canada, 27-30 27 30 September 2004


Presentation Outline<br />

Cropland/Forest Impacts on Convective Cloud<br />

Development in the US Midwest : Empirical studies<br />

Agriculture-related land use change impacts on<br />

seasonal climate in the Central US: Modeling studies<br />

Crop-climate modeling Issues, challenges & questions


Current & Potential Natural Vegetation<br />

[Copeland et al., 1996]


Agriculture - Human Imprint on the Land<br />

Surface<br />

Spring Summer


Land Surface-Atmosphere Interactions<br />

Schematic of the differences in surface heat energy budget<br />

and planetary boundary layer over a forest and cropland.


Temp, Water<br />

Trace Gases<br />

Pollutants<br />

Community<br />

Composition &<br />

Structure<br />

Atmosphere<br />

Heat, Moisture<br />

Radiation<br />

Light, Temp<br />

Moisture, Wind<br />

Surface Physiology &<br />

Hydrology<br />

Water & Nutrients<br />

Agriculture<br />

Deforestation, etc.<br />

Biogeochemical<br />

& Hydrological<br />

Cycles<br />

Landscape Modification Anthropogenic Activities<br />

Trace Gases &<br />

Pollutants<br />

Sec - Hours<br />

>1yr - 100yrs<br />

>1000yrs


Focus of Land Surface-<strong>Climate</strong> Work:<br />

Empirical Studies<br />

Impacts of changes in US Midwest land cover<br />

parameters (e.g. land cover, surface roughness,<br />

zones of land cover transitions) on convective<br />

cloudiness (Carleton et al., 2001 GRL Vol. 28, 1679-1684)<br />

Sensitivity of the AVHRR derived Normalized<br />

Difference Vegetation Index (NDVI) and the<br />

Fractional Vegetation Cover (FVC) to growing<br />

season surface moisture conditions (Adegoke and<br />

Carleton, 2002 JHM 4, 24-41).


Wetland<br />

0%<br />

Prairie<br />

2%<br />

Wetland<br />

5%<br />

Prairie<br />

29%<br />

water<br />

3%<br />

Land Use Changes in Illinois<br />

Forest<br />

93%<br />

River<br />

2%<br />

Agriculture<br />

68%<br />

Urban<br />

3%<br />

1820 1980<br />

water<br />

5%<br />

River<br />

0%<br />

Forest<br />

61%<br />

Jackson County<br />

Lake County<br />

Forest<br />

9%<br />

Urban<br />

34%<br />

Prairie<br />

0%<br />

Forest<br />

25%<br />

Wetland<br />

2%<br />

Agriculture<br />

52%<br />

Prairie<br />

0%<br />

Barren<br />

1%<br />

Wetland<br />

2%<br />

Water<br />

1%<br />

Water<br />

2%<br />

Barren<br />

1%<br />

[From Iverson & Risser, 1987]


Land Use/Land Cover Map of The Midwest<br />

Showing Sampling Locations of Convective<br />

Cloud Parameters<br />


GOES INFRA RED & VISIBLE IMAGES<br />

11 JUNE 1997 16:00 UTC


Stratification of Case Study Days: June-Aug. 1981-98<br />

Strong Flow / Weak Flow : 500 mb Vector Winds


a) Mean BWF VIS: Crop MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

b) Mean BWF VIS: Boundary MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

c) Mean BWF VIS: Forest MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

1pm<br />

1pm<br />

1pm<br />

3pm<br />

3pm<br />

3pm<br />

5pm<br />

5pm<br />

5pm<br />

295.00<br />

290.00<br />

285.00<br />

280.00<br />

275.00<br />

270.00<br />

265.00<br />

300.00<br />

290.00<br />

280.00<br />

270.00<br />

260.00<br />

250.00<br />

295.00<br />

290.00<br />

285.00<br />

280.00<br />

275.00<br />

270.00<br />

265.00<br />

260.00<br />

Mean BWF IR TEMP: Crop MI<br />

6am<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

Mean BWF IR TEMP: Boundary MI<br />

6am<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

Mean BWF IR TEMP: Forest MI<br />

6am<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

8pm<br />

8pm<br />

8pm


a) Mean BWF VIS: Crop IN<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

b) Mean BWF VIS: Boundary IN<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

c) Mean BWF VIS: Forest IN<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

1pm<br />

1pm<br />

1pm<br />

3pm<br />

3pm<br />

3pm<br />

5pm<br />

5pm<br />

5pm<br />

d) Mean BWF VIS: Crop MO<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

e) Mean BWF VIS: Boundary MO<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

f) Mean BWF VIS: Forest MO<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

1pm<br />

1pm<br />

1pm<br />

3pm<br />

3pm<br />

3pm<br />

5pm<br />

5pm<br />

5pm


a) Mean WF VIS: Crop MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

b) Mean WF VIS: Boundary MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

c) Mean WF VIS: Forest MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

1pm<br />

1pm<br />

1pm<br />

3pm<br />

3pm<br />

3pm<br />

5pm<br />

5pm<br />

5pm<br />

d) Data Range WF VIS: Crop MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

9am<br />

11am<br />

e) Data Range WF VIS: Boundary MI<br />

Albedo<br />

f) Data Range WF VIS: Forest MI<br />

Albedo<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

7am<br />

7am<br />

9am<br />

9am<br />

11am<br />

11am<br />

1pm<br />

1pm<br />

1pm<br />

3pm<br />

3pm<br />

3pm<br />

5pm<br />

5pm<br />

5pm


160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Mean SF VIS Brightness: Crop MI<br />

Mean SF VIS Brightness: Boundary<br />

MI<br />

Mean SF VIS Brightness: Forest MI<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Mean BWF VIS Brightness: Crop MI<br />

6am<br />

6am<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

Mean BWF VIS Brightness:<br />

Boundary MI<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

Mean BWF VIS Brightness: Forest<br />

MI<br />

6am<br />

8am<br />

10am<br />

12Noon<br />

2pm<br />

4pm<br />

6pm<br />

8pm<br />

8pm<br />

8pm


Average Cloud Top Brightness Temperature: MI & MO<br />

102.00<br />

100.00<br />

98.00<br />

96.00<br />

94.00<br />

92.00<br />

90.00<br />

88.00<br />

110.00<br />

108.00<br />

106.00<br />

104.00<br />

102.00<br />

100.00<br />

98.00<br />

BWF Average Maximun Brightness Temp<br />

(MI)<br />

Crop Boundary Forest<br />

BWF Average Maximun Brightness Temp<br />

(MO)<br />

Crop Boundary Forest


Thermodynamic indices for selected “weak flow” days:<br />

12Z Radiosonde Data: MI vs MO<br />

Michigan<br />

Missouri<br />

CCL<br />

(mb)<br />

749<br />

827<br />

CCL-EL<br />

(mb)<br />

480<br />

528<br />

K-Index<br />

(mb)<br />

12<br />

29<br />

Tc ( o C)<br />

32<br />

26.8<br />

Mean<br />

Tv ( o C)<br />

16<br />

20.5<br />

Mean<br />

T-Tv<br />

( o C)<br />

3.7<br />

2.7<br />

RH o / o<br />

68<br />

78<br />

Water<br />

Content<br />

.18<br />

.33


Sensible and Latent Heating of the Atmosphere Required for<br />

Initiation of Convective Clouds vs. Bowen Ratio [Rabin et al., 1990]


Summary of Cloud Research Findings<br />

Analyses of Visible and IR GOES cloud data for<br />

contrasting circulation regimes indicate some<br />

cloud-land cover associations across major<br />

crop-forest boundaries.<br />

Land cover boundary zones are shown to be<br />

favored areas for enhanced cloud development<br />

under moderate mid-tropospheric (< 30 m/s) flow<br />

conditions. The boundary zones tend to behave<br />

like regions of differential vertical circulations (i.e.,<br />

NCMCs)


Focus of Land Surface-<strong>Climate</strong> Work:<br />

Modeling Studies<br />

Improving the representation of land surface<br />

heterogeneity (land cover; soil moisture; soil type) in<br />

the Colorado State University Regional Atmospheric<br />

Modeling System (RAMS)<br />

(Adegoke et al. 2003; Strack et al. 2003; Rozoff et al., 2003)<br />

Developing protocols for a more realistic description<br />

of seasonally and interannually varying vegetation<br />

cover and growth rates in regional climate models<br />

(Adegoke et al. 2004; Eastman et al. 2001; Lixin Lu et al., 2002).


Lessons Learned<br />

Realistic representation of spatial heterogeneity of land<br />

surface parameters improves model simulation of<br />

regional-scale effects of agriculture-related land use<br />

changes on climate and terrestrial biophysical<br />

processes.<br />

Key Parameters:<br />

- Land Cover<br />

- Soil Moisture<br />

-LAI<br />

-Soil Type<br />

- Soil Temperature


Over High Plains, if<br />

model soil moisture is<br />

low<br />

– Forecast CAPE too<br />

low, about half the<br />

observed CAPE<br />

– Forecast of instability<br />

insufficient<br />

Soil Moisture Impacts


Soil Moisture Simulation with Different Soil (a);<br />

Matching Soil (b)<br />

(a)<br />

LDAS Evaluation Team: Alan Robock et al., 2004<br />

(b)


Soil Moisture<br />

LDAS Evaluation Team: Alan Robock et al., 2004


Recent Improvements in RAMS-LEAF2<br />

1. Protocols for ingesting variable soil moisture<br />

2. Incorporation of high-resolution land cover data<br />

(30 m) from the USGS NLCD database<br />

3. Specification of variable soil type from the FAO soil<br />

type database<br />

4. Protocols for ingesting NDVI and derivation of LAI<br />

from NDVI<br />

5. RAMS-Century coupling for explicit modeling of the<br />

seasonal evolution of vegetation in the simulation<br />

of seasonal climate.


Map of U.S. High Plains Aquifer


Acreage of Rain fed & Irrigated Corn Farming in<br />

Nebraska (1950-1988)<br />

Area (ha)<br />

3000000<br />

2500000<br />

2000000<br />

1500000<br />

1000000<br />

500000<br />

0<br />

1950-51<br />

1954-55<br />

1958-59<br />

1962-63<br />

1966-67<br />

1970-71<br />

Rainfed<br />

Irrigated<br />

1974-75<br />

Year<br />

1978-79<br />

1982-83<br />

1986-87<br />

1990-91<br />

1994-95<br />

1998-99


Nebraska Irrigation Modeling Project<br />

Complex changes in the lower atmosphere (PBL)<br />

radiation budget can result from large-scale land use<br />

changes of this magnitude (e.g., vapor flux CAPE)<br />

This study was designed to evaluate the changes in<br />

the summertime surface energy budget & convective<br />

rainfall parameters due to irrigation in Nebraska using<br />

RAMS.


RAMS Modeling Domain<br />

Coarse Grid: 40 km ; Fine Grid:10 km; Domain Height: 20km


a) Kuchler Potential Vegetation b) OGE – Dry Run<br />

c) OGE + Current Irrigation – Control Run<br />

(a)<br />

(b) (c)


Summary of Model Results<br />

Significant inner domain area-averaged difference<br />

between the Control and Dry runs:<br />

- 36% increase in surface latent heat flux<br />

- 15% decrease in surface sensible heat flux<br />

- 28% increase in water vapor flux at 500m<br />

-2.6 o C elevation in dew point temperature<br />

-1.2 o C decrease in near surface temperature<br />

Greater differences observed between the Control<br />

and Natural Vegetation runs e.g.,<br />

- Near ground temperature was 3.3 o C warmer &<br />

surface sensible heat 25% higher in the Natural run.<br />

[Adegoke et al., 2003 Monthly Weather Review 131(3), 556-564.]


ClimRAMS Coupled with CENTURY<br />

(Lu et al., 2001, Journal of <strong>Climate</strong>)<br />

RAMS{temp, swin, prcp, rh, (u,v,w)}<br />

CENTURY{LAI, roots, Zo,<br />

evap, transp, vegfrac, vegalb}


Satellite-derived Leaf Area Index<br />

Derived from AVHRR 10day<br />

composite NDVI<br />

NDVI ⇒ LAI following<br />

Sellers et al. (1996) and<br />

Nemani et al. (1996)<br />

Lu et al., 2001<br />

Derived LAI for Central U.S. in dry (1988),<br />

average(1989), and wet (1993) years.<br />

Average JJA NDVI for Central U.S.


STRONG DIFFERENCES<br />

Magnitude of LAI<br />

Heterogeneity of LAI<br />

SOME DIFFERENCE<br />

Seasonality of LAI<br />

Comparison of LAI Forcing<br />

Lu et al., 2001<br />

Default LAI in Inner (50 km) Grid NDVI-derived LAI in Inner (50 km) Grid


Good Agreement between Model<br />

Predictions & Observations<br />

e.g. Domain-average<br />

maximum and<br />

minimum air<br />

temperature and<br />

precipitation for inner<br />

grid during 1989<br />

(selected as an<br />

“average” year) for<br />

the run with NDVIderived<br />

LAI<br />

Lu et al., 2001


Runs Broadly Agree With Observations<br />

e.g. Distribution of maximum and minimum temperature and<br />

precipitation for inner grid for the run with NDVI-derived LAI<br />

January-March 1989 June-August 1989<br />

Lu et al., 2001


Physical Mechanism for Precipitation Increase<br />

• Lower domainaveraged<br />

LAI allows<br />

more solar radiation<br />

to reach the surface,<br />

increasing CAPE<br />

• Spatial variability in<br />

LAI triggers<br />

mesoscale<br />

circulations.


RAMS-Century Coupling Strategy and Design<br />

• Differences in spatial and<br />

temporal resolutions:<br />

RAMS: 3-D, CENTURY: 1-D<br />

time step: minute vs. day<br />

• Internet Stream Socket<br />

Client/Server mechanism<br />

• Both atmospheric forcings and<br />

biospheric parameters are<br />

prognostic variables<br />

Lu et al., 2001


Coupled Model Captures 2-way Feedbacks<br />

Default<br />

Coupled<br />

LAI response of<br />

CENTURY is different<br />

after harvest when run in<br />

coupled mode. The<br />

coupled model gives a<br />

response in modeled<br />

precipitation.<br />

Lu et al., 2001


Coupled Model Simulated <strong>Climate</strong><br />

Lu et al., 2001


Conclusions From Lu et al. 2001<br />

Both satellite-derived and model-calculated LAI<br />

produce a significant impact on the modeled<br />

seasonal climate<br />

In both cases, the climate is cooler and produces<br />

more precipitation relative to using RAMS default LAI<br />

The effect of heterogeneity in LAI appears to be the<br />

dominant factor in producing these differences<br />

Including realistic description of heterogeneous<br />

vegetation phenology influences the prediction of<br />

seasonal climate.


Looking Ahead<br />

The challenge: Fully coupled crop-climate model<br />

capable of investigating the 2-way interactions of cropclimate<br />

system under a wide range of conditions.<br />

Must include feedbacks of crop growth on surface<br />

climate<br />

Will require much stronger cross-disciplinary<br />

interaction/collaboration between Agricultural and<br />

Atmospheric <strong>Science</strong>s


Discussion Issues/Questions<br />

Crop models tend to operate at the field/plot<br />

spatial scale while climate models typically have<br />

horizontal resolutions of a few km to 100~200 km.<br />

Addressing this spatial scale disparity is not trivial.<br />

Are there additional local terrain and<br />

surface/vegetation characteristics that should be<br />

considered in crop-climate simulations that may<br />

not currently reflected in climate models?<br />

Crop growth parameterization issues: Century vs<br />

CERES-maize model vs General Large Area Model<br />

for annual crops (GLAM)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!