05.08.2013 Views

How to evaluate vulnerability in changing environmental conditions

How to evaluate vulnerability in changing environmental conditions

How to evaluate vulnerability in changing environmental conditions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>How</strong> <strong>to</strong> Evaluate Vulnerability <strong>in</strong><br />

Chang<strong>in</strong>g Environmental<br />

Conditions?<br />

Edited by Roger A. Pielke, Sr. and Lelys Bravo de Guenni


Introduction<br />

Roger A. Pielke, Sr.<br />

The prevail<strong>in</strong>g paradigm has been that climate varia- exist<strong>in</strong>g paradigm for predict<strong>in</strong>g the future starts from<br />

bility and change can be projected decades or even a the global scale and then attempts <strong>to</strong> downscale <strong>to</strong> the<br />

century or more <strong>in</strong><strong>to</strong> the future (e.g. IPCC 1996, 2001). regional and local scales; it focuses on averages, is long-<br />

<strong>How</strong>ever, for several reasons -e.g. imperfect representerm, and depends on skilful prediction of the future. It<br />

tation of the full complexity of the Earth system, non- is therefore much less useful <strong>to</strong> policy-makers (Sarewitz<br />

l<strong>in</strong>ear spatial and temporal feedbacks, and imperfect et al. 2000). The <strong>in</strong>-depth discussion of why we need a<br />

foresight of human behaviour, it may not be possible <strong>to</strong> <strong>vulnerability</strong> approach that then follows will be illus-<br />

assess the range of potential future climate change actrated us<strong>in</strong>g water as an example.<br />

curately.<br />

Water is an essential component of life both <strong>in</strong> terms<br />

Therefore, a newer paradigm requires that our vul- of its quality and quantity; however, this resource is<br />

nerability <strong>to</strong> the entire spectrum of <strong>environmental</strong> threats threatened. For example, as reported <strong>in</strong> the Economist<br />

be assessed, <strong>in</strong>clud<strong>in</strong>g the rank<strong>in</strong>g of their seriousness. (May 29, 1999, p. 102), while 90% of the world's popula-<br />

Once vulnerabilities have been so <strong>evaluate</strong>d, whether or tion have enough water at present, it is estimated that<br />

not they can be quantitatively predicted for the future by 2050 more than 40% of the population will face some<br />

can then be tested. This part of the BAHC synthesis dis- water shortage (see also Sect. E.6.1). The lack of access<br />

cusses this perspective <strong>to</strong> assess risk associated with en- <strong>to</strong> safe water is even more serious. Accord<strong>in</strong>g <strong>to</strong> the same<br />

vironmental variability and change. In particular, we article <strong>in</strong> the Economist, develop<strong>in</strong>g countries often have<br />

should start the analysis by first assess<strong>in</strong>g <strong>vulnerability</strong>, very limited access <strong>to</strong> safe water supplies. Only about<br />

<strong>in</strong>stead of project<strong>in</strong>g possible climate change scenarios, 30% of the residents <strong>in</strong> rural Brazil, for example, cur-<br />

and then assess<strong>in</strong>g vulnerabilities based on that subset rently have access <strong>to</strong> safe water.<br />

of possible future climates.<br />

There is <strong>in</strong>creas<strong>in</strong>g recognition that threats <strong>to</strong> future<br />

This is a broader def<strong>in</strong>ition of <strong>vulnerability</strong> than that water quality and quantity are <strong>in</strong>fluenced by a wide va-<br />

used by the impacts community. As discussed later, this riety of <strong>environmental</strong> concerns. These concerns <strong>in</strong>volve<br />

approach <strong>in</strong>volves first assess<strong>in</strong>g all of the vulnerabilities effects both from natural and human orig<strong>in</strong>. Stahle et al.<br />

of an <strong>environmental</strong> (or other) resource <strong>to</strong> environmen- (2000), for example, document a 16th century megatal<br />

variability and change. Once these vulnerabilities are drought <strong>in</strong> western North America that dwarfs any<br />

determ<strong>in</strong>ed, estimates (with probabilities, if they can be drought s<strong>in</strong>ce then. Wilhite (2000) presents a series of<br />

quantified) of what scenarios would cause a vulnerabil- articles that demonstrates the extensive effect of drought<br />

ity threshold <strong>to</strong> be exceeded are specified. Also, unlike on human society. Kunkel et al. (1999) describe the im-<br />

the more narrowly def<strong>in</strong>ed concept of vUlnerability, nonportance of <strong>vulnerability</strong> <strong>to</strong> weather and climate exl<strong>in</strong>ear<br />

feedbacks between the resource be<strong>in</strong>g affected and tremes, and how this <strong>vulnerability</strong> changes <strong>in</strong> response<br />

the forc<strong>in</strong>gs are <strong>in</strong>cluded.<br />

<strong>to</strong> <strong>in</strong>creases <strong>in</strong> human exposure, even when extreme<br />

We will discuss first the relationship between pre- weather statistics rema<strong>in</strong> unchanged. Non-weather rediction<br />

and <strong>vulnerability</strong> <strong>in</strong> Chapt. E.2 and E.3. The scelated <strong>in</strong>fluences <strong>in</strong>clude land-use change effects on runnario<br />

approach will be reviewed later <strong>in</strong> Chapt. E.4 and off and stream flow, and deliberate eng<strong>in</strong>eer<strong>in</strong>g of wa-<br />

its shortcom<strong>in</strong>gs illustrated. The reasons why a vulnerter flow whereas human activities change the distribuability<br />

approach as presented <strong>in</strong> Chapt. E.5 is more aption and availability of water through eng<strong>in</strong>eer<strong>in</strong>g works.<br />

propriate for <strong>environmental</strong> assessments is because it is Examples of this k<strong>in</strong>d of human activity <strong>in</strong>clude rerout-<br />

regional and local <strong>in</strong> scale; it <strong>in</strong>volves the evaluation of <strong>in</strong>g of rivers, creat<strong>in</strong>g artificial surfaces (reservoirs),<br />

thresholds and the threat associated with extreme con- chang<strong>in</strong>g surface water content through irrigation of<br />

ditions; it can <strong>in</strong>clude a spectrum of threats, and can drylands or dra<strong>in</strong>age of wetlands, and through lift<strong>in</strong>g<br />

consider the effect of abrupt changes. In contrast, the groundwater <strong>to</strong> the surface.


Predictability and Uncerta<strong>in</strong>ty<br />

Roger A. Pielke, Sr. .Gerhard Petschel-Held .Pavel Kabat. Brad Bass. Michael F. Hutch<strong>in</strong>son<br />

Vijay Gupta. Roger A. Pielke, Jr. .Mart<strong>in</strong> Claussen. Dennis Shoji Ojima<br />

It is appropriate <strong>to</strong> consider water quantity and water<br />

quality as two facets of water resources. Both facets are<br />

<strong>in</strong>timately connected <strong>to</strong> the hydrological cycle, which itself<br />

is a component of the Earth's climate system. S<strong>in</strong>ce<br />

human activities and health are so connected <strong>to</strong> water<br />

resources, it is essential <strong>to</strong> determ<strong>in</strong>e how far <strong>in</strong><strong>to</strong> the<br />

future we can predict the condition of the water resources<br />

of a region with a sufficient level of confidence. When<br />

predictions are not possible, resilience must be built <strong>in</strong><strong>to</strong><br />

a water system so that human (and natural) needs are<br />

not negatively affected. Even when skillful predictions<br />

are possible, they are seldom completely accurate. Thus<br />

uncerta<strong>in</strong>ty needs <strong>to</strong> be <strong>in</strong>cluded when scientific analyses<br />

and predictions are used for water resource plann<strong>in</strong>g<br />

and management, particularly for issues such as adaptation<br />

or risk management. The prediction of weather and<br />

climate are essential aspects of plann<strong>in</strong>g for water resources<br />

<strong>in</strong> chang<strong>in</strong>g <strong>environmental</strong> <strong>conditions</strong>.<br />

Lorenz (1979) proposed the concept of forced and free<br />

variations of weather and climate. He refers <strong>to</strong> forced<br />

variations as those caused by external <strong>conditions</strong>, such<br />

as changes <strong>in</strong> solar irradiance. Volcanic aerosols also<br />

cause forced variations. He refers <strong>to</strong> free variations as<br />

those which "are generally assumed <strong>to</strong> take place <strong>in</strong>dependently<br />

of any changes <strong>in</strong> external <strong>conditions</strong>". Day<strong>to</strong>-day<br />

weather variation is presented as an example of<br />

free variations. He also suggests that "free climatic variations<br />

<strong>in</strong> which the underly<strong>in</strong>g surface plays an essential<br />

role may therefore be physically possible".<br />

<strong>How</strong>ever, if the ocean surface and/or land-surface<br />

changes over the same time period as the atmosphere<br />

changes, then the non-l<strong>in</strong>ear feedbacks (i.e. two-way<br />

fluxes) between the air, land and water, elim<strong>in</strong>ate an <strong>in</strong>terpretation<br />

of the ocean-atmosphere and land-atmosphere<br />

<strong>in</strong>terfaces as boundaries. Rather than "boundaries",<br />

these <strong>in</strong>terfaces become <strong>in</strong>teractive media (Pielke 1998a,<br />

2001). The two-way fluxes that occur between the atmosphere<br />

and ocean, and the atmosphere and the land- surface<br />

(as detailed <strong>in</strong> Part A of this book), must therefore<br />

necessarily be considered as part of the predictive system.<br />

On the time scale of what we typically call shortterm<br />

weather prediction (days), important feedbacks<br />

<strong>in</strong>clude biophysical (e.g. vegetation controls on the Bowen~<br />

,<br />

ratio), snow cover, clouds (e.g. <strong>in</strong> their effect on the surface<br />

energy budget), and precipitation (e.g. which changes<br />

the soil moisture) processes. This time scale is already<br />

considered <strong>to</strong> be an <strong>in</strong>itial value problem (Sivillo et al.<br />

1997> s<strong>in</strong>ce operational numerical weather prediction<br />

models are rout<strong>in</strong>ely re<strong>in</strong>itialised twice daily. Seasonal<br />

and <strong>in</strong>terannual weather prediction <strong>in</strong>clude the follow<strong>in</strong>g<br />

feedbacks: biogeochemical (e.g. vegetation growth and<br />

senescence); anthropogenic and natural aerosols (e.g.<br />

through their effect on the long- and short -wave radiative<br />

fluxes and their effects on cloud microphysics and hence<br />

the hydrological cycle); sea ice; and ocean sea surface temperature<br />

(e.g. changes <strong>in</strong> upwell<strong>in</strong>g such as those associated<br />

with an El N<strong>in</strong>o) effects. For even longer time periods<br />

(of years <strong>to</strong> decades and longer), the additional feedbacks<br />

<strong>in</strong>clude biogeographical processes (e.g. changes <strong>in</strong><br />

vegetation species composition and distribution), anthropogenic-caused<br />

land-use changes, and deep ocean circulation<br />

effects on the ocean surface temperature and sal<strong>in</strong>ity.In<br />

the context of Lorenz's (1979) term<strong>in</strong>ology, each<br />

of these feedbacks are free variations.<br />

We beg<strong>in</strong> <strong>to</strong> tackle this problem by us<strong>in</strong>g a hierarchy<br />

of models. We will consider two examples <strong>to</strong> illustrate<br />

this important po<strong>in</strong>t. First example is the O-dimensional<br />

dynamical model (hav<strong>in</strong>g no spatial dimensions, i.e.<br />

o-th order <strong>in</strong> space) which fully and non-l<strong>in</strong>early couples<br />

radiation, biota, and the hydrological cycle, with<br />

other components of the Earth climate system. This step<br />

is necessary <strong>to</strong> obta<strong>in</strong> a fundamental theoretical understand<strong>in</strong>g<br />

of the first-order effects on planetary climate.<br />

These first-order effects tend <strong>to</strong> be associated with both<br />

positive and negative feedbacks. It seems particularly<br />

important <strong>to</strong> <strong>in</strong>clude negative feedbacks, or the "homeostatic"<br />

mechanisms <strong>in</strong> the language of Watson and Lovelock<br />

(1983), <strong>in</strong> low-dimensional dynamical models.<br />

Negative feedbacks tend <strong>to</strong> be underrepresented <strong>in</strong> more<br />

complex <strong>in</strong>f<strong>in</strong>ite dimensional dynamical models, <strong>in</strong>volv<strong>in</strong>g<br />

one or more spatial dimensions, and therefore are<br />

less well unders<strong>to</strong>od.<br />

Insight from simple non-l<strong>in</strong>ear dynamical models<br />

should serve as foundations for the development of more<br />

complex models (Shackelyet al. 1998; Ghil and Childress<br />

1987>. Negative feedbacks com<strong>in</strong>g from coupl<strong>in</strong>g with~


486<br />

CHAPTER E.2 .Predictability and Uncerta<strong>in</strong>ty<br />

biota have been explored <strong>in</strong> models such as Daisyworld tionary (ergodic) or can change with time, respectively.<br />

(Meszaros and Palvolgyi 1990; Von Bloh et al. 1997, 1999; So far, all model simulaltions (e.g. Cubasch et al. 1994)<br />

Nevison et al. 1999; Weber 2001), though full coupl<strong>in</strong>g have shown that the global climate system seems <strong>to</strong> re-<br />

with other components of an Earth-like climate system spond almost l<strong>in</strong>early <strong>to</strong> greenhouse-gas forc<strong>in</strong>g, if the<br />

has yet <strong>to</strong> be explored. Still, even <strong>in</strong> simple models, new next several decades, perhaps up <strong>to</strong> a century, are con-<br />

non-l<strong>in</strong>ear effects are only now be<strong>in</strong>g discovered (Nordsidered. <strong>How</strong>ever, s<strong>in</strong>ce these are sensitivity model restrom<br />

et al. 2004), a po<strong>in</strong>t which serves <strong>to</strong> emphasize the sults, we do not know if this l<strong>in</strong>earity will rema<strong>in</strong> when<br />

importance of understand<strong>in</strong>g the role of positive and the entire spectrum of natural- and human-forc<strong>in</strong>gs on<br />

negative feedbacks on the climate system.<br />

these time scales are <strong>in</strong>cluded. At the regional scale, the<br />

The second example is the so-called EMICs (Earth Sys- climate clearly exhibits <strong>in</strong>transitive behaviour as shown<br />

tem Models of Intermediate Complexity; Claussen 2001). for the thermohal<strong>in</strong>e circulation <strong>in</strong> the North Atlantic<br />

These models explicitly simulate the <strong>in</strong>teractions among (e.g. Ganopolski and RaJl1ms<strong>to</strong>rf 2001), Sahelian ra<strong>in</strong>fall<br />

as many components of the natural Earth system as pos- (Wang and Eltahir 2000), and Northern African deserts<br />

sible. They <strong>in</strong>clude most of the processes described <strong>in</strong> (e.g. Claussen et al. 199fl). Thus at the global scale, <strong>in</strong>-<br />

comprehensive models of atmospheric and oceanic cirtransitive behaviour Ca11tnot be excluded, because most<br />

culation -usually referred <strong>to</strong> as "climate models" -al- models have not yet <strong>in</strong>c:orporated all feedbacks of the<br />

beit <strong>in</strong> a more reduced, i.e. a more parameterised form. climate system. This argument further supports the use<br />

Therefore, EMICs are considered <strong>to</strong> test scientific ideas of the term "sensitivity I~xperiment" <strong>in</strong>stead of"projec-<br />

<strong>in</strong> a geographically explicit model environment, not <strong>to</strong> tion", when referr<strong>in</strong>g <strong>to</strong> the IPCC results.<br />

make the most detailed and realistic prediction.<br />

There are actually tv.ro types of prediction with re-<br />

Regard<strong>in</strong>g predictability we can dist<strong>in</strong>guish between spect <strong>to</strong> water resources. The first type of prediction <strong>in</strong>-<br />

prediction, or forecast of the first and the second k<strong>in</strong>d volves an equilibrium impact of <strong>environmental</strong> change,<br />

(Lorenz 1975). An example of a commonly known forecast<br />

of the first k<strong>in</strong>d is short-term weather forecasts, i.e.<br />

01. We can write this ma1:hematically as<br />

the weather forecast for several days <strong>in</strong><strong>to</strong> the future is<br />

predicted given accurately moni<strong>to</strong>red <strong>in</strong>itial and bound-<br />

01= fJ(OA,OB, OC,. (E.!)<br />

ary <strong>conditions</strong>. A prediction of the second k<strong>in</strong>d occurs<br />

when boundary <strong>conditions</strong> determ<strong>in</strong>e the state of the<br />

or <strong>in</strong> some cases as an implicit function<br />

system, and <strong>in</strong>itial <strong>conditions</strong> are no longer important.<br />

Currently, longer term weather predictions of the first<br />

SI= h(SA, SB, SC, ..., S1) (E.2)<br />

k<strong>in</strong>d have been successful only <strong>in</strong> the case of forecast- where OA, on, etc., repl:esent a set of <strong>environmental</strong><br />

<strong>in</strong>g seasonal weather such as a six month forecast of EI perturbations from a ref~~rence state of basic variables A,<br />

N<strong>in</strong>o (Landsea and Knaff 2000) when the oceanographic B, etc. For example, 01 colwd be the effect on river flow at<br />

moni<strong>to</strong>r<strong>in</strong>g system had already <strong>in</strong>dicated an eastward a stream gauge (i.e. 1 is the river flow itself). oA could<br />

mov<strong>in</strong>g Kelv<strong>in</strong> wave of tropical warm water.<br />

then be the radiative effi~ct of <strong>in</strong>creased CO2 and other<br />

The Intergovernmental Panel on Climate Change anthropogenically-emit1:ed greenhouse gases with re-<br />

(IPCC) uses the term "projection" <strong>to</strong> <strong>in</strong>dicate that a clispect <strong>to</strong> the pre-<strong>in</strong>dustri~l1level. oB could be the biologimate<br />

forecast, of the second k<strong>in</strong>d is meant. <strong>How</strong>ever, the cal effect of <strong>in</strong>creased CIJ2; oC could be human-caused<br />

climate system of the future has not been shown <strong>to</strong> be land-use change; oD the direct radiative effect of anthro-<br />

<strong>in</strong>dependent, for example, of the <strong>in</strong>itial (current) Earth's pogenic aerosols; oE the <strong>in</strong>direct effect of these aerosols<br />

land cover. Moreover, we conclude that the term "pro- on cloud microphysics (cloud condensation nuclei, ice<br />

jection" is mislead<strong>in</strong>g, because it suggests some more or nuclei), etc. The choice of the perturbation depends on<br />

less complete prediction of the future. <strong>How</strong>ever, most what is the specific impal~t of concern. 01 can either rep-<br />

climate projections of the IPCC <strong>in</strong>clude only changes <strong>in</strong> resent a state variable or the statistics of a state variable<br />

the composition of the atmosphere, whereas other natu- such as a probability density function. 01 can be time<br />

ral and anthropogenic forc<strong>in</strong>gs, such as solar variabil- dependent (i.e. <strong>in</strong> noneqlillibrium as a result of a change<br />

ity, vegetation dynamics and land use (see Part A), are <strong>in</strong>.!;). When just one perturbation or a small number of<br />

likely <strong>to</strong> affect future climate. We therefore propose <strong>to</strong> perturbations on a subs~~t of perturbations is imposed,<br />

use the term "sensitivity experiments", when referr<strong>in</strong>g the effect on 01 is said <strong>to</strong> be a sensitivity experiment.<br />

<strong>to</strong> the IPCC model results.<br />

When all significant (on 01) perturbations are <strong>in</strong>cluded,<br />

Predictability of climate can be limited ow<strong>in</strong>g <strong>to</strong> the the effect on 01 is said <strong>to</strong> be a realisation. If a spectrum of<br />

non-l<strong>in</strong>earity of the Earth system. Follow<strong>in</strong>g Lorenz's perturbations are perforlmed, which represent all possi-<br />

(1968) term<strong>in</strong>ology, non-l<strong>in</strong>ear systems, even without ble situations, the experiment is referred <strong>to</strong> as an ensem-<br />

any external unsteady forc<strong>in</strong>g, can be "transitive" or "<strong>in</strong>ble. Anyone realisation selected from this ensemble is<br />

transitive", i.e. the statistics of the system can be sta-<br />

called a scenario. The uncerta<strong>in</strong>ty <strong>in</strong> terms of 01 will be


"L"3"6!;j<br />

-eueldx3 lO}) UO!JJ!P3ld}o<br />

s3ssep JU3l3JJ!P }O J!Jew3qJS<br />

(i:OOi: 3J[l3!d<br />

wall p3Jdope ~JX3J 33S SUO!J<br />

[~<br />

xog ~AOqv JO ~ZJS=V<br />

JO J..~!{!qllqold pUll) UO!~nq!l~S!P 3q~ wall p3U!Wl3~3p<br />

wall p3~dllpll 'rH 3m8!d "SO!l1IU3:>S 3q1 JO (3:>U3lln:>:>0<br />

"UO!~:>!P3ld Jo 3A!~:>3dsl3d S!q1 S3~lIl~Snm '('lOO'l) 3}{{3!d<br />

-8y 3q1 U! p3~lIl~Snm 3lll UO!~:>!P3ld Jo S3SSlI{:> lnod<br />

3ln~nJ 3{q!ssod {Jt! Jo 3Sl3A!Un 3q1 ':>!~lIW3q:>S S!q1 uI "3ln<br />

-{!q1l3q13{!qM 'n J..q U3A!8 3lll SUO!~!puo:> Jt!~U3WUOl!AU3<br />

-nJ 3q~ ~SlI:>3l0J o~ UO!~:>!p3ld Jo SSlI{:> lllIll:>!~llld 11 Jo l..),!<br />

mM 3m~nJ 3q1 ~lIqM ~:>!p3ld J..{Jt!n~:>lI o~ J..{3}{!{ SS3{ '3smo:><br />

Jo 'S! ~! n Jo 1I3lll {Jt!ws 11 Sl3AO:> V JI "V J..q P3UY3P S! 3m~<br />

3p!S~nO 3!{ PIlla:> V J..pn~s ~!A!~!SU3S 11 q~!M 'P33PUI "3q<br />

-qns 11 J..JUo S3!lllA J..pn~s l..),!A!~!SU3S 11 '3m8y 3q1 uI "n Jo<br />

-U! ~ou S30p lO/PUlI SUO!~lIqln~l3d Jt!~U3WUOl!AU3 Jo ~3S<br />

0!lllU3:>S V "S}{:>lIqp33J W3~SJ..S q1l11H ~Ut!~lodUl! {Jt! 3pn{:><br />

pUt! SuO!~lIqm~l3d Jt!~U3WUOl!AU3 ~Ut!~lodw! II1I S3pn{:>U!<br />

UO!~lIS!Jt!3l 3{8U!s 11 J..{UO S! ~nq 'S}{:>lIqp33J W3~SJ..S ~l1IH<br />

-:>!P3ld Jo wnl~:>3ds 3q~ wall (SUO!~lIS!Jt!3l Jo ~3sqns lO)<br />

-!Jt!3l {Jt! Jo 3{qW3su3 3q1) 3do{3AU3 3q1 U3qM J..{UO "W3~<br />

-sJ..s q1lllH :>!~ollq:> 'l1l3U!{-UOU 3q~ wall 3{q!ssod SUO!~<br />

S! 'P3U!1I~qO S! SUO!~!puo:> 3ln~nJ 3{q!ssod 3q~ Jo (SUO!~lIS<br />

-sn:>s!p Jt!UO!~!Ppll) UO!~:>3fold Jt!n~:>l1 Ut! UO!~:>!p3ld 3q1<br />

\'l00'l 3}{J3!d pUt! "lOO'l U3}{:>lIl::><br />

-:>lIW U! p3~U3S3ld 3lll UO!~:>!P3ld Jo S3SSlI{:> 3S3q1 Jo UO!S<br />

-A!~!SU3S 11 J..II1In~:>lI S! (9661) ::>::>dI 3q1 '3{dWtlX3 Ut! sy<br />

3q~ UO S~:>3JJ3 :>!u380dolq~UlI 1111 ~OU 3:>U!S J..pn~s J..~!<br />

-ulIwnq P3S1I3l:>U! JO ~:>3JJ3 3A!~1I!plll 3q~ p3pn{:>U! ~lod<br />

-3l ::>ddI 3qJ. "P3l3P!SUO:> 3l3M W3~SJ..S 3~1IUl!{:> s,q1l11H<br />

3pn{:>U! ~OU P!P ~nq 'S{OSOl311 pUt! s3s1I8 3snoqu33l8 ~ndU!<br />

::>::>dI 3q~ 3:>U!S 'l3A03l0W "}{Ooq S!q~ JO V ~llld U! p3SSn:><br />

-S!P SlI '38ulIq:> 3Sn-pUlI{ SlI q:>ns 'S~:>3JJ3 ~ulI~lodw! l3q10<br />

JO S3~lIW!~S3 Jt!UO!83l U!lI~qo o~ 8U!Jt!:>SUMOP p3Sn U3~<br />

SlI) JP/IP 'IP S3~1IUl!~S3 ~:>lIdUl! 3:>npOld S{3POW W::>D 3q1<br />

8uowlI s~Ills3l Jt!UO!83l Jo J..~!Sl3A!P 3~ '38ulIq:> 3~lIW!{:><br />

V JO 3Z!S 3q1 S3)[eW q:>!qM (tX3~ 8U!MOnOJ 3q1 u! p3SSn:>S!p<br />

Jt!qo{8 3q~ lOJ Ut!q~ '3Jt!:>S Jt!UO!83l 3q1l0J l3{Jt!WS U3A3<br />

S1~urn°J!AU3 :!Jmnd :![q!$Od IrY=!l<br />

q:J!M S~J~~S '~S~J~UO:> U! 'q:>~OJdd~ J..~!I!q~J3uynA 3q.L '3~:>S<br />

'u3q~ J..IUO 'pUt! '(0 Jo 3Z!S :>!~S!~3J wnw!X1Jw 3q:J 3~~W!~S3<br />

U~:> 3M S~ ~S3q S~) n U!q~!M S3n~A I~ JO ~U3WSS3SS~ 3q~<br />

'SJ3q:JO<br />

u~q:J J..I3~I 3JOW 3J~ s~:>~dw! q:>!qM 3U!WJ3~3p o~ S)f33S<br />

-O!q '3J3qdsow~~) S3J3qds ~Jn~~u 3q~ s3pnI:>u! q:>!qM<br />

W3~SJ..S :>!Wt!uJ..p ~ S~ p3J3P!SUO:> S! W3~SJ..S q:J~a 3q.L<br />

-UO:>3) 3J3qdsodOJ~Ut! 3q:J pUt! (":>~3 '3J3qdsolpJ..q '3J3qds<br />

'i..wo<br />

-Y3P 3q.L "(8661 J3qnquII3q:>S) W3q:J U33M:j3q SUO!~:>~J3~U!<br />

O!IBU3:>S pUt! '3Iqw3su3 'UO!~~S!~3J ~!A!~!SU3S ~ JO SUO!~!U<br />

J..q p3SS3SS~ 3q ~snw ~:>~dw! 3q~ U3qM 3W~S 3q~ U!l!W3J<br />

'(J)/ JO ~U3WSS3SS~ 3q:J ~3J.. W3~SJ..S :>!Wt!uJ..p ~ JO S!sJ..~Ut!<br />

"3S~:> S!q:J U! ~yn:>YJ!P<br />

3JOW q:>nw S3WO:>3q '3W!~ JO Uo!~:>unJ ~ S~ ~:>~dW! 3q~ "3"!<br />

Jp<br />

IP<br />

'~:>3ds~ ~!:>os-oq:>J..sd '3m~yn:> 'i..~3!:>OS<br />

«("a) «(J}/'"' " '(J);:> '(J)fl '(J)V)S =-<br />

-U3J3JJ!P ~ S~U3S3Jd3J ("a "ba J..q U3A!~ UO!~:>unJ 3q.L<br />

"ra "ba Ut!q~ 3AloS o~ ~yn:>YJ!P 3JOW S! q:>!qM uO!~~nb3 ~!~<br />

("a "ba U! UO!~d!J:>S3p :>!Wt!uJ..p 3q:J snq.L "1 JoJ ~U!AIOS pUt!<br />

0 = JP/IP ~U!~~3S J..q p3U!WJ3~3p S! wn!Jq!nnb3 ~~q~ 3~ON<br />

JO ra "ba U! wn!Jq!I!nb3 :>!~~~S 3q~ U~q:J ~J3U3~ 3JOW S!<br />

-SS3SS~ U~ SM°Ire UO!~d!J:>S3p 3q~ 'J~yn:>!~IBd uI "'t"a "ba<br />

S3!~J3dOJd 3:>u3!I!S3J JO J..~!nq~~s 3q~ JO 3p~W 3q O~ ~U3W<br />

3JOW S3WO:>3q ~U3WSS3SS~ 3q.L "s~u!od wn!Jq!I~b3 Jo<br />

'J~3U!I -uou S! S UO!~:>unJ 3q:J U3qM ~yn:>YJ!p<br />

~UW°.l!JUg 3.11T1fIJ [ImIJ8<br />

3q) }U:lS3Jd;J O} V Jo A}!I!QV<br />

3q~ pUt! (":>~3<br />

s3m~~3J 3:>U!S<br />

SO!J~U3:>S UO!~~:>JnJ!q x3Idwo:> JO UO!~OW :>!~o~q:> s~ q:>ns<br />

3W!~ J3AO In:>:>o U~:> "S3s!JdJns" S3S~:> 3S3q:J uI "3S!J~ Ut!:><br />

3Iq~~s ~ '3Idw~x3 JOd "~:>!p3Jd o~ 3Iq!ssodw! 3J~ q:>!qM<br />

'3Iq~~sun 3WO:>3q U~:> W3~SJ..SO:>3 Ut! U!q:J!M wn!Jq!I!nb3<br />

"W3~SJ..S 3q:J U! S3!~<br />

-J3doJd ~Jn~:>nJ~s M3U J..I3~3Idwo:> o~ P~31 ~q~!W q:>!qM<br />

~


488<br />

.<br />

CHAPTER E.2 .Predictability and Uncerta<strong>in</strong>ty<br />

The accurate prediction of oJ or dr/de requires that ft,h<br />

and g be accurate representations of reality. If, however,<br />

there are large uncerta<strong>in</strong>ties <strong>in</strong> the specification of the perturbations<br />

and/or <strong>in</strong> the form offt,h andg, the range of oJ<br />

and dr/de that results could be quite large. The choice of just<br />

one value of oJ or dr/de (or a limited subset of each) from a<br />

limited set of perturbations us<strong>in</strong>g It, h and g will be <strong>in</strong>complete,<br />

even if it is assumed thatft'h andg are accurate.<br />

As an alternative, <strong>in</strong> the case of equilibrium considerations,<br />

the <strong>vulnerability</strong> of the water resource (or other<br />

<strong>environmental</strong> resource) can be determ<strong>in</strong>ed by estimat<strong>in</strong>g<br />

what the maximum risks are. Equations E.l and E.2<br />

can be rewritten as<br />

10Ilmax= liI(OA, OR, OC, ...)Imax (E.4)<br />

10Ilmax= Ih(OA, OR, OC, ..., oJ)lmax<br />

where 10Ilmax is the largest effect that results from the<br />

perturbations of the <strong>environmental</strong> <strong>conditions</strong>. In order<br />

<strong>to</strong> determ<strong>in</strong>e the maxima, however, it is necessary <strong>to</strong> know<br />

the ranges of possible values of the <strong>in</strong>dependent variables<br />

OA, OR, etc. Yet one might also determ<strong>in</strong>e the maximum<br />

possible values of OJ when we assume only small<br />

changes <strong>in</strong> these variables. Mathematically this can be<br />

achieved by calculat<strong>in</strong>g the gradient of OJ with respect <strong>to</strong><br />

the <strong>in</strong>put variables, i.e.<br />

VA,B, ...,OJ= VA,B, ...,ft(OA,OB, ...) (E.S)<br />

and analogously for /2 (Ludeke et al. 1999).<br />

Fig.E.2.<br />

Ecological <strong>vulnerability</strong>!<br />

susceptibility l<strong>in</strong>ks <strong>in</strong> <strong>environmental</strong><br />

assessment as<br />

related <strong>to</strong> water resources<br />

(from Pielke and Guenni 1999)<br />

~.. ~<br />

\<br />

\<br />

\<br />

\<br />

\<br />

I \ '<br />

I '<br />

,.. \<br />

Animal and<br />

Insect<br />

[)ynamlcs I \<br />

\ \<br />

\ \<br />

When consider<strong>in</strong>g a dynamic system, an analogous<br />

analysis is possible by consider<strong>in</strong>g the <strong>in</strong>terval G(A, B, C,<br />

...,I) of possible values on the right hand side ofEq. E.3.<br />

We then obta<strong>in</strong> a so-called differential <strong>in</strong>clusion (Aub<strong>in</strong><br />

and Cell<strong>in</strong>a 1984), i.e.<br />

dI<br />

-E G(A,B,C,...,I) (E.6)<br />

dt<br />

which then allows a computation of the set of admissible<br />

"futures" of the possible trajec<strong>to</strong>ries 1( t) which are realisable<br />

by the assumed set of <strong>in</strong>dependent variables A, B,<br />

C, ...This allows an evaluation of the maximum impact,<br />

Imax' at any arbitrary po<strong>in</strong>t <strong>in</strong> time.<br />

Us<strong>in</strong>g these approaches, as long as ii, h and g are realistic<br />

representations of the climate system, policy-makers<br />

can concentrate their efforts at reduc<strong>in</strong>g the contributions<br />

of the perturbations that most contribute <strong>to</strong> 01<br />

or dlldt. If these perturbations cannot be manipulated,<br />

this <strong>in</strong>formation also needs <strong>to</strong> be communicated <strong>to</strong><br />

policy-makers.<br />

The accurate determ<strong>in</strong>ation of ii, hand g may not<br />

be possible. With respect <strong>to</strong> the future climate, general<br />

circulation models (GCMs) have been applied (e.g. IPCC<br />

1996), however, they have been used as sensitivity experiments<br />

s<strong>in</strong>ce, <strong>in</strong> general, only one or two perturbations<br />

have been <strong>in</strong>itiated i.e. the radiative effect of<br />

an anthropogenic <strong>in</strong>crease <strong>in</strong> CO2 and other anthropogenic<br />

greenhouse gases or the radiative effect of an<br />

anthropogenic <strong>in</strong>crease <strong>in</strong> aerosols. GCM and EMIC<br />

land-cover change simulations have also been per-<br />

'..<br />

, ..<br />

.. ..,<br />

-I<br />

I<br />

I<br />

1<br />

I<br />

I<br />

, I<br />

"',<br />

I<br />

~...<br />

I<br />

,<br />

Climate<br />

Change<br />

& Var1ablll1y<br />

Predictability requires:<br />

-the adequate quantttatlve understand<strong>in</strong>g of these InterocfIons<br />

-fhat the feedbacks are not substant1ally nonl<strong>in</strong>ear.<br />

I


formed as sensitivity experiments (e.g. Brovk<strong>in</strong> et al.<br />

1999; Claussen et al. 2001; Chase et al. 1996; Pitman et al.<br />

1999; Bounoua et al. 2000).<br />

An alternative approach is <strong>to</strong> determ<strong>in</strong>e what values<br />

of ~I or dI/dt result <strong>in</strong> undesirable impacts. What<br />

are the thresholds beyond which we should be concerned?<br />

This approach <strong>in</strong>volves start<strong>in</strong>g with the impacts<br />

model (what is sometimes termed an "endpo<strong>in</strong>t analysis"<br />

or "<strong>to</strong>lerable w<strong>in</strong>dow approach") and, without us<strong>in</strong>g<br />

II, h or g, determ<strong>in</strong>e the magnitude of ~I or j that<br />

must occur before an undesirable effect occurs. The<br />

impact functions lI,h and g are then used <strong>to</strong> estimate<br />

whether such thresholds could be reached under any<br />

possible <strong>environmental</strong> variability or change. The estimates<br />

for what is realistic, with respect <strong>to</strong> climate, would<br />

<strong>in</strong>clude the GCM results but would also utilise palaeorecords,<br />

his<strong>to</strong>rical data, worst case comb<strong>in</strong>ations from<br />

the his<strong>to</strong>rical data, and "expert" estimates. Such an<br />

approach would provide a risk assessment for policymakers<br />

that is not constra<strong>in</strong>ed by uncerta<strong>in</strong> predictions.<br />

c<br />

§ V)<br />

~""'<br />

Q.<br />

~ ~u<br />

as<br />

:=J<br />

u<br />

~<br />

~<br />

CHAI'TER E.2 .Predictability ilnd Uncerta<strong>in</strong>ty 489<br />

Figure E.2, from Pielke and Guernu (1999), illustrates a<br />

generic schematic as <strong>to</strong> how <strong>to</strong> assess ~I and dI/dt for<br />

water resources.<br />

Pielke and Uliasz (1998) and F'ielke (1998a) discuss<br />

this type of an approach <strong>to</strong> estimate uncerta<strong>in</strong>ty <strong>in</strong> air<br />

quality assessments. Lynch et al. (:~OOI) apply this technique<br />

<strong>to</strong> assess the sensitivity of ;a land-surface model<br />

<strong>to</strong> selected changes (plus and m<strong>in</strong>us) of atmospheric variables<br />

such as air temperature and precipitation. Hubbard<br />

and Flores-Mendoza (1995) assess the effect on corn,<br />

soybean, wheat and sorghum production of positive and<br />

negative changes of precipitation alild temperature <strong>in</strong> the<br />

United States. 16th et al. (1997> and Petschel-Held et al.<br />

(1999a) have used this "<strong>in</strong>verse concept" <strong>in</strong> the form of<br />

the dynamically <strong>to</strong>lerable w<strong>in</strong>dows approach with<strong>in</strong> an<br />

<strong>in</strong>tegrated assessment of climatE: change. Similarily,<br />

Alcamo and Kreilemans (1996) apptly the general idea of<br />

the end-po<strong>in</strong>t analysis with<strong>in</strong> theil' "safe land<strong>in</strong>g analysis"<br />

of near term climate protection strategies. Figure E.3<br />

illustrates an example where warmler and cooler condi-<br />

CLIMATE<br />

MODELS<br />

Fig. E.3. Simulated water budget responses <strong>to</strong> uniform change scenarios <strong>in</strong> the North Fork American river bas<strong>in</strong> of California. a, c, and d<br />

illustrate mean changes under scenarios <strong>in</strong> which mean temperatures are changed, and b provides the percentage changes as function of<br />

changes <strong>in</strong> both mean temperature and mean precipitation (con<strong>to</strong>urs for uniform change scenarios -dashed whl~re negative; symbols for<br />

GCM model sensitivity experiments; from Te<strong>to</strong>n et al.1999)


490<br />

CHAPTER E.2 .Predictability and Uncerta<strong>in</strong>ty<br />

tions are assessed <strong>in</strong> an impacts model <strong>to</strong> estimate the theory: <strong>in</strong>dividualistic, egalitarian and hierarchical.<br />

sensitivity of water resources <strong>in</strong> this region <strong>to</strong> this as- Different parameterisations of the model may then<br />

pect of climate variability and change.<br />

be determ<strong>in</strong>ed. There is also a strong water compo-<br />

In recent years there has been a grow<strong>in</strong>g number of nent with<strong>in</strong> this modell<strong>in</strong>g framework from which<br />

studies and modell<strong>in</strong>g attempts on global environmen- <strong>to</strong> compute the basic supply and demand issues of<br />

tal change which take uncerta<strong>in</strong>ty <strong>in</strong><strong>to</strong> account. With<strong>in</strong> water resources (Hoekstra 1996).<br />

these studies one might want <strong>to</strong> dist<strong>in</strong>guish between 3. There is a recent attempt <strong>to</strong> apply qualitative model-<br />

(1) classical probabilistic approaches, (2) new, quantitative l<strong>in</strong>g techniques <strong>to</strong> the analysis of <strong>environmental</strong><br />

approaches based on theoretical frameworks such as change. Orig<strong>in</strong>ally :,uggested by the German Advisory<br />

cultural theory and u) qualitative, yet formal approaches. Council on Global Change (WBGU 1994) and <strong>in</strong> cooperation<br />

with the Council, and further developed by<br />

1. More traditional approaches with<strong>in</strong> <strong>in</strong>tegrated assess- Schellnhuber et al. (1997) and Petschel-Held et al.<br />

ments of climate change are taken, for example, <strong>in</strong> the (1999b), the syndrome approach tries <strong>to</strong> identify ma-<br />

PAGE 95 model (Plambeck and Hope 1996) or <strong>in</strong> the jor patterns of civilisation-nature <strong>in</strong>teractions, which<br />

ICAM 2.0 and 2.5 models (Dowlatabadi and Morgan govern the dynamics of <strong>environmental</strong> change. Most<br />

1995) which use probability distribution functions <strong>to</strong> <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> the present context is the 1997 Annual<br />

represent uncerta<strong>in</strong>ties <strong>in</strong> parameters and functional Report of the Council (WBGU 1999) which focuses<br />

relationships. The implication of learn<strong>in</strong>g as the major<br />

process <strong>in</strong> reduc<strong>in</strong>g uncerta<strong>in</strong>ties is central <strong>to</strong> the<br />

on the susta<strong>in</strong>able use of freshwater resources.<br />

studies by Kolstad and Kelly (1999).A recent overview As discussed here, a <strong>vulnerability</strong> assessment provides<br />

on the issue of uncerta<strong>in</strong>ty <strong>in</strong> climate change assess- a comprehensive framework with<strong>in</strong> which <strong>to</strong> estimate<br />

ments is given <strong>in</strong> Schellnhuber and Yohe (1998) or <strong>environmental</strong> risk. This is <strong>in</strong> contrast <strong>to</strong> start<strong>in</strong>g with a<br />

Dowlatabadi (1999).<br />

scenario approach which limits the spectrum of estimates<br />

2. An <strong>in</strong>novative approach is taken with<strong>in</strong> the TARGETS <strong>to</strong> what can actually occur <strong>in</strong> the future. With the sce-<br />

modell<strong>in</strong>g framework (Rotmans and de Vries 1997; nario approach, for example, <strong>environmental</strong> "surprises"<br />

Hilder<strong>in</strong>k et al.1999) where uncerta<strong>in</strong>ties are related (Canadell 2000) will b,e missed. These two divergent ap-<br />

<strong>to</strong> three different world views, based on cultural<br />

proaches are discussed further <strong>in</strong> the next chapter.


Contrast between Predictive and Vulnerability Approaches<br />

Roger A. Pielke, Jr. Thomas J. S<strong>to</strong>hlgren<br />

While efforts <strong>to</strong> predict natural phenomena have be- These considerations suggest that the usefulness of<br />

come an important aspect of the Earth sciences, the value scientific prediction for policy mak<strong>in</strong>g and the reso-<br />

of such efforts, as judged especially by their capacity <strong>to</strong> lution of societal problems dept~nds on relationships<br />

improve decision mak<strong>in</strong>g and achieve policy goals, has among several variables, such as the timescales under<br />

been questioned by a number of constructive critics. The consideration, the scientific complexity of the phenom-<br />

relationship between prediction and policy mak<strong>in</strong>g is ena be<strong>in</strong>g predicted, the political and economic context<br />

not straightforward for many reasons. In practice, con- of the problem, and the availability of alternative sciensolidative<br />

and explora<strong>to</strong>ry models are often confused tific and political approaches <strong>to</strong> the problem.<br />

by both scientists and policy-makers alike, thus a cen- In light of the likelihood of complex <strong>in</strong>terplay among<br />

tral challenge fac<strong>in</strong>g the community is the appropriate these variables, decision makers and scientists would<br />

use of such models and result<strong>in</strong>g predictions (Sarewitz benefit from criteria that would allow them <strong>to</strong> judge the<br />

and Pielke 1999).<br />

potential value of scientific prediction and predictive<br />

Among the reasons for this criticism is that accurate modell<strong>in</strong>g for different types of political and social prob-<br />

prediction of phenomena may not be necessary <strong>to</strong> relems related <strong>to</strong> Earth processes arid the environment.<br />

spond effectively <strong>to</strong> political or socio-economic problems Pielkeet al.(1999) provide the fcMow<strong>in</strong>g six guidel<strong>in</strong>es<br />

created by such phenomena (for example, see Pielke et al.<br />

1999). Indeed, phenomena or process~s of direct concern<br />

for the effective use of prediction :<strong>in</strong> decision mak<strong>in</strong>g.<br />

<strong>to</strong> policy-makers may not be easily predictable or useful. 1. Predictions must be generated primarily with the<br />

Likewise, predictive research may reflect discipllne-spe"",- needs of the user <strong>in</strong> m<strong>in</strong>d. For stakeholders <strong>to</strong> parcific<br />

scientific perspectives that do not provide "answers" ticipate usefully <strong>in</strong> this process, they must work closely<br />

<strong>to</strong> policy problems s<strong>in</strong>ce these may be complex mixtures and persistently with the scientists <strong>to</strong> communicate<br />

of facts and values, and which are perceived differently their needs and problems.<br />

by different policy-makers (for example, see Jamieson 2. Uncerta<strong>in</strong>ties must be clearly articulated (and under-<br />

and Herrick 1995).<br />

In addition, necessary political action may be deferred<br />

s<strong>to</strong>od) by the scientists, so that users understand their<br />

implications. Failure <strong>to</strong> understand uncerta<strong>in</strong>ties has<br />

<strong>in</strong> anticipation of predictive <strong>in</strong>formation that is not forth- contributed <strong>to</strong> poor decisions that then underm<strong>in</strong>e<br />

com<strong>in</strong>g <strong>in</strong> a time frame compatible with such action. relations among scientists and decision makers. But<br />

Similarly, policy action may be delayed when scientific merely understand<strong>in</strong>g the uncerta<strong>in</strong>ties does not<br />

uncerta<strong>in</strong>ties associated with predictions become politi- mean that the predictions will be useful. If policycally<br />

charged as <strong>in</strong> the issue of global climate change, for makers truly unders<strong>to</strong>od the uncerta<strong>in</strong>ties associated<br />

example (Rayner and Malone 1997>.<br />

with predictions of, for example, global climate<br />

Predictive <strong>in</strong>formation may also be subject <strong>to</strong> manip- change, they might decide that strategies for action<br />

ulation and misuse, either because the limitations and should not depend on predictions (Rayner and Ma-<br />

uncerta<strong>in</strong>ties associated with predictive models are not lone 1997>.<br />

readily apparent or because the models are applied <strong>in</strong> a 3. Experience is an important fa(:<strong>to</strong>r <strong>in</strong> how decision<br />

climate of political controversy and high economic makers understand and use prt~dictions.<br />

stakes. In addition, emphasis on predictive sciences 4. Although experience is important and cannot be re-<br />

moves both f<strong>in</strong>ancial and <strong>in</strong>tellectual resources away placed, the prediction process can be facilitated <strong>in</strong><br />

from other types of research that might better help <strong>to</strong> other ways, for example by fully consider<strong>in</strong>g alterna-<br />

guide decision mak<strong>in</strong>g as, for example, <strong>in</strong>cremental or tive approaches <strong>to</strong> prediction, such as "no-regrets"<br />

adaptive approaches <strong>to</strong> <strong>environmental</strong> management that<br />

require moni<strong>to</strong>r<strong>in</strong>g and assessment <strong>in</strong>stead of predic-<br />

public policies, adaptation, and better plann<strong>in</strong>g and<br />

eng<strong>in</strong>eer<strong>in</strong>g. Indeed, alternatives <strong>to</strong> prediction must<br />

tion (see Lee and Black 1993).<br />

be <strong>evaluate</strong>d as a part of the prE~diction process.


492<br />

CHAPTER E.3 .Contrast between Predictive and Vulnerability Approaches<br />

5. To ensure an open prediction process, stakeholders<br />

must question predictions. For this question<strong>in</strong>g <strong>to</strong> be<br />

effective, predictions should be as transparent as<br />

possible <strong>to</strong> the user. In particular, assumptions, model<br />

limitations, and weaknesses <strong>in</strong> <strong>in</strong>put data should be<br />

forthrightly discussed. Even so, lack of experience<br />

means that many types of predictions will never be<br />

well unders<strong>to</strong>od by decision makers.<br />

6. Last, predictions themselves are events that cause impacts<br />

on society. The prediction process must <strong>in</strong>clude<br />

mechanisms for the various stakeholders <strong>to</strong> fully consider<br />

and plan what <strong>to</strong> do after a prediction is made.<br />

Scenarios of the future such as projections of climate<br />

change, forest production, animal migration, or disease<br />

spread are -by def<strong>in</strong>ition -subsets of all possible outcomes<br />

(Cohen 1996). Most projections have much <strong>in</strong><br />

common with the typical five-day weather forecast on<br />

the nightly news:<br />

.they are based on data from the recent past;<br />

.they <strong>in</strong>corporate relatively few response variables (e.g.<br />

temperature and precipitation);<br />

.they are more accurate for some response variables<br />

than others (i.e. m<strong>in</strong>imum temperature versus preci-<br />

pitation amounts);<br />

.no level of certa<strong>in</strong>ty or probability is provided or im-<br />

plied;<br />

.short-term projections are typically more accurate<br />

than long-term projections; and<br />

.their use for plann<strong>in</strong>g is limited <strong>to</strong> a narrowly def<strong>in</strong>ed<br />

set of questions (e.g. should snow ploughs be<br />

positioned near highways <strong>in</strong> anticipation of a snows<strong>to</strong>rm;<br />

Sarewitz et al. 2000).<br />

Seasonal forecasts, such as those predict<strong>in</strong>g greater<br />

or less precipitation over the next few months, are based<br />

on larger-scale phenomena such as ocean temperatures<br />

and jet stream patterns, but have additional limitations<br />

and uncerta<strong>in</strong>ties about the spatial and temporal accuracy<br />

of the projections (Glantz 2001).<br />

There is more uncerta<strong>in</strong>ty beh<strong>in</strong>d long-term climate<br />

change scenarios with 30- <strong>to</strong> 100-year timeframes compared<br />

<strong>to</strong> seasonal forecasts. Long-term climate scenarios<br />

have considerably more limitations and higher levels of<br />

uncerta<strong>in</strong>ty due <strong>to</strong> coarse-scale spatial resolution, natural<br />

spatial and temporal variation, <strong>in</strong>sufficient understand<strong>in</strong>g<br />

of multiple climate forc<strong>in</strong>gs, longer-term biological<br />

physical feedbacks <strong>in</strong> the models, and lack of s<strong>to</strong>chastic<br />

extreme events. Globally averaged results would<br />

be expected <strong>to</strong> be more reliable than local and regional<br />

results. Reliance on scenarios is reliance on predictions<br />

with all their limitations and uncerta<strong>in</strong>ties (Sarewitz<br />

et al. 2000).<br />

The value of predictions for <strong>environmental</strong> decisionmak<strong>in</strong>g<br />

therefore emerges from the complex dynamics<br />

of the prediction process, and not simply from the technical<br />

efforts that generate the prediction product (which<br />

are themselves an <strong>in</strong>tegral part of the prediction process).<br />

An alternative <strong>to</strong> the scenario-prediction approach<br />

is <strong>to</strong> <strong>evaluate</strong> <strong>vulnerability</strong> based on a more comprehensive<br />

assessment of multiple stresses, multiple response<br />

variables, and their <strong>in</strong>teractions. For example, natural<br />

ecosystems are often affected by multiple stresses <strong>in</strong>clud<strong>in</strong>g<br />

land-use change, loss of biodiversity, altered<br />

disturbance regimes, <strong>in</strong>vasive non-<strong>in</strong>digenous species,<br />

pollution, and rapid climate change (S<strong>to</strong>hlgren 1999b).<br />

Land managers are concerned about many natural and<br />

cultural resources, local economies, and stakeholder<br />

concerns for specific resources. The <strong>in</strong>teractions of the<br />

multiple stresses and response variables are important<br />

and urgent considerations. A warm<strong>in</strong>g climate, for example,<br />

might alter the competitive advantage of exotic<br />

annual grasses only if nitrogen from air pollution were<br />

available, graz<strong>in</strong>g were limited, and forest canopies rema<strong>in</strong>ed<br />

fairly open. The effects of decreased precipitation<br />

on aquatic biota might be more of a problem where<br />

water was over-subscribed, low flows were adversely affected<br />

by water diversion, and exotic fish <strong>in</strong>habited the<br />

streams. Human-dom<strong>in</strong>ated and natural ecosystems,<br />

and their <strong>in</strong>teract<strong>in</strong>g components and processes, can<br />

rarely be assessed by evaluat<strong>in</strong>g stresses <strong>in</strong>dependently.<br />

It is often possible, however, <strong>to</strong> identify vulnerabilities<br />

or sensitivities <strong>in</strong> cases where prediction is impractical<br />

or impossible.<br />

Vulnerability assessments, of course, also have limitations.<br />

Detailed <strong>in</strong>formation on stresses, resources, and<br />

<strong>in</strong>teractions is often scant, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased uncerta<strong>in</strong>ty.<br />

In general, the level of uncerta<strong>in</strong>ty is constra<strong>in</strong>ed<br />

by focus<strong>in</strong>g on short-term plann<strong>in</strong>g horizons and high<br />

priority issues at local and regional scales. <strong>How</strong>ever, a<br />

<strong>vulnerability</strong> assessment is easily made consistent with<br />

the needs of decision makers. It is not a new concept,<br />

and is variously referred <strong>to</strong> <strong>in</strong> the literature as "adaptive<br />

management", "<strong>vulnerability</strong> assessment", "boundedly<br />

rational decision mak<strong>in</strong>g", and "successive <strong>in</strong>cremental<br />

approximations" .<br />

An important first step <strong>in</strong> consider<strong>in</strong>g the implications<br />

for research and policy is <strong>to</strong> recognise the role of<br />

models and predictions for purposes of both science and<br />

action. Bankes (1993) def<strong>in</strong>es two types of models, consolidative<br />

and explora<strong>to</strong>ry, differentiated by their uses.<br />

.A consolidative model seeks <strong>to</strong> <strong>in</strong>clude all relevant<br />

facts <strong>in</strong><strong>to</strong> a s<strong>in</strong>gle package and use the result<strong>in</strong>g system<br />

as a surrogate for the actual system.<br />

The canonical example is that of the controlled labora<strong>to</strong>ry<br />

experiment (Sarewitz and Pielke 1999). Other examples,<br />

<strong>in</strong>clude weather forecast and eng<strong>in</strong>eer<strong>in</strong>g design<br />

models. Such models are particularly relevant <strong>to</strong> deci-


E.3.1 .Societal Needs 493<br />

sion mak<strong>in</strong>g because the system be<strong>in</strong>g modelled can be emphasis on near-future responses associated with ex-<br />

treated as be<strong>in</strong>g closed, i.e. one "<strong>in</strong> which all the compotreme events, <strong>in</strong>formation on a filII range of climate charnents<br />

of the system are established <strong>in</strong>dependently and acteristics, and <strong>in</strong>teractions frorn multiple environmen-<br />

are known <strong>to</strong> be correct" (Oreskes et al.1994). The creatal stresses that they deal with on a daily basis.<br />

tion of such a model generally follows two phases: first, This suggests a rebalanc<strong>in</strong>g of priorities <strong>to</strong>wards ad-<br />

model construction and evaluation and second, operaaptation and <strong>vulnerability</strong>/sensitivity assessments; away<br />

tional usage of a f<strong>in</strong>al product. Such models can be used from consolidative modell<strong>in</strong>g aIJd <strong>to</strong>ward more explora-<br />

<strong>to</strong> <strong>in</strong>vestigate diagnostics (i.e. "what happened?"), proc<strong>to</strong>ry efforts. Such research has the potential <strong>to</strong> contribess<br />

("why did it happen?"), or prediction ("what will hapute <strong>to</strong> a range of important societal needs.<br />

pen?").<br />

When the prediction process is fostered by effective,<br />

participa<strong>to</strong>ry <strong>in</strong>stitutions, and v~hen a healthy decision<br />

.An explora<strong>to</strong>ry model- or what Bankes (1993) calls a environment emerges from these <strong>in</strong>stitutions, the prod-<br />

"prosthesis for the <strong>in</strong>tellect" -is one <strong>in</strong> which all comucts of predictive science may e'ren become less imporponents<br />

of the system be<strong>in</strong>g modelled are not estabtant. Earthquake prediction was once a policy priority;<br />

lished <strong>in</strong>dependently or are not known <strong>to</strong> be correct. now it is considered technically <strong>in</strong>feasible, at least <strong>in</strong> the<br />

near future. <strong>How</strong>ever, <strong>in</strong> California the close, <strong>in</strong>stitution-<br />

In such a case, the model allows for computational alised communication among sciientists, eng<strong>in</strong>eers, state<br />

experiments <strong>to</strong> <strong>in</strong>vestigate the consequences for mod- and local officials, and the private sec<strong>to</strong>r has led <strong>to</strong> conelled<br />

outcomes of various assumptions, hypotheses, and siderable advances <strong>in</strong> earthquake preparedness and a<br />

uncerta<strong>in</strong>ties associated with the creation of and <strong>in</strong>puts much decreased dependence on prediction. On the other<br />

<strong>to</strong> the model. These experiments can contribute <strong>to</strong> at least hand, <strong>in</strong> the absence of an <strong>in</strong>tegrated and open decision<br />

three important functions (Bankes 1993). First, they can environment, the scientific merit of predictions can be<br />

shed light on the existence of unexpected properties as- rendered politically irrelevant, as has been seen with nusociated<br />

with the <strong>in</strong>teraction of basic assumptions and clear waste disposal and acid r.l<strong>in</strong>. In short, if no ad-<br />

processes (e.g. complexity or surprises). Second, <strong>in</strong> cases equate decision environment exists for deal<strong>in</strong>g with an<br />

where explana<strong>to</strong>ry knowledge is lack<strong>in</strong>g, explora<strong>to</strong>ry event or situation, a scientificall~'{ successful prediction<br />

models can facilitate hypothesis generation. Third, the<br />

model can be used <strong>to</strong> identify limit<strong>in</strong>g, worst-case, or<br />

may be no more useful than an unsuccessful one.<br />

special scenarios under various assumptions of and un- .These recommendations fly ill the face of much curcerta<strong>in</strong>ty<br />

associated with the model experiment. The limrent practice where, typically, policy-makers recogit<strong>in</strong>g<br />

"worst cases" generated <strong>in</strong> such a model are explonise a problem, scientists then go away and do rerations<br />

of the boundaries of the universe of model outsearch <strong>to</strong> predict natural beh.lviour associated with<br />

puts, and mayor may not have significance for under- the problem, and predictions are f<strong>in</strong>ally delivered <strong>to</strong><br />

stand<strong>in</strong>gs of the real world. Frequently consolidative and decision makers with the expectation that they will<br />

explora<strong>to</strong>ry models are confused <strong>in</strong> this regard. Such ex- be both useful and well used. This sequence, which<br />

periments can be motivated by observational data ~. isolates prediction research but makes policy depend-<br />

econometric and hydrological models), scientific hypotheses<br />

(e.g. general circulation models), or by a desire <strong>to</strong><br />

understand the properties of the model or class of modent<br />

on it, rarely functions well <strong>in</strong> practice.<br />

els <strong>in</strong>dependent of real-world data or hypotheses. E.3.1 Societal Needs<br />

.A shift <strong>in</strong> the culture of research is also needed. Research<br />

must be truly <strong>in</strong>terdiscipl<strong>in</strong>ary (rather than<br />

multidiscipl<strong>in</strong>ary).<br />

Assess<strong>in</strong>g multiple stresses requires a broad spectrum<br />

of expertise without los<strong>in</strong>g sight of the complex <strong>in</strong>teractions<br />

among the sciences. Scientists must also learn<br />

<strong>to</strong> work <strong>in</strong>teractively with stakeholders so that the highest<br />

priority needs are met first. To date, climate change<br />

research has been heavily focused at the global-scale<br />

and longer timeframes, as evidenced by the reliance on<br />

GCMs, projected changes <strong>in</strong> mean temperature and precipitation,<br />

and <strong>to</strong>o-year or double-CO2 model timeframes.<br />

There is often a huge "disconnect" with local and<br />

regional stakeholders who have demanded a greater<br />

Recently, L<strong>in</strong>s and Slack (1999) published a paper show<strong>in</strong>g<br />

that <strong>in</strong> the United States <strong>in</strong> the 20th century, there<br />

have been no significant trends U]p or down <strong>in</strong> the highest<br />

levels of streamflow. This follows a series of papers<br />

show<strong>in</strong>g that over the same period "extreme" precipitation<br />

<strong>in</strong> the United States has <strong>in</strong>(:reased (e.g. Karl and<br />

Knight 1998a; Karl et al. 1995).<br />

The differences <strong>in</strong> the two sets of f<strong>in</strong>d<strong>in</strong>gs have led<br />

some <strong>to</strong> suggest the existence of an apparent paradox:<br />

<strong>How</strong> can it be that on a national s(:ale extreme ra<strong>in</strong>fall is<br />

<strong>in</strong>creas<strong>in</strong>g while peak streamflow' is not? Resolv<strong>in</strong>g the<br />

paradox is important for policy debate because the impacts<br />

of an enhanced hydrologicill cycle are an area of<br />

speculation under the Intergovernmental Panel on Cli-<br />

mate Change (IPCC 1996).


494<br />

CHAPTER E.3 .Contrast between Predictive and Vulnerability Approaches<br />

There does exist some question as <strong>to</strong> whether compar<strong>in</strong>g<br />

the two sets of f<strong>in</strong>d<strong>in</strong>gs is appropriate. Karl and<br />

Knight (1998b) note that "As yet, there does not appear<br />

<strong>to</strong> be a good phys-ical explanation as <strong>to</strong> how peak flows<br />

could show no change (other than a sampl<strong>in</strong>g bias), given<br />

that there has been an across-the-board <strong>in</strong>crease <strong>in</strong> extreme<br />

precipitation for 1- <strong>to</strong> 7-day extreme and heavy<br />

precipitation events, mean streamflows, and <strong>to</strong>tal and<br />

annual precipitation. "<br />

Karl et al. (1995) document that the <strong>in</strong>crease <strong>in</strong> precipitation<br />

occurs mostly <strong>in</strong> spr<strong>in</strong>g, summer, and autumn,<br />

but not <strong>in</strong> w<strong>in</strong>ter. H. L<strong>in</strong>s (1999, pers. comn.) notes that<br />

peak streamflow is closely connected <strong>to</strong> w<strong>in</strong>ter precipitation<br />

and that "precipitation <strong>in</strong>creases <strong>in</strong> summer and<br />

autumn provide runoff <strong>to</strong> rivers and streams at the very<br />

time of year when they are most able <strong>to</strong> carry the water<br />

with<strong>in</strong> their banks. Thus, we see <strong>in</strong>creases <strong>in</strong> the lower<br />

half of the streamflow distribution. "<br />

Karl's reference <strong>to</strong> a sampl<strong>in</strong>g bias arises because of Furthermore,McCabe and Wolock (1997) suggest that<br />

the differences <strong>in</strong> the areal coverage of the L<strong>in</strong>s and Slack detection of trends <strong>in</strong> runoff, a determ<strong>in</strong><strong>in</strong>g fac<strong>to</strong>r <strong>in</strong><br />

study and those led by Karl. L<strong>in</strong>s and Slack (1999) focus streamflow, are more difficult <strong>to</strong> observe than trends <strong>in</strong><br />

on streamflow <strong>in</strong> bas<strong>in</strong>s that are "climate sensitive" (Slack precipitation: "the probability of detect<strong>in</strong>g trends <strong>in</strong><br />

and Landwehr 1992). Karl suggests that these bas<strong>in</strong>s are measured runoff (i.e. streamflow) may be very low, even<br />

not uniformly distributed over the United States, lead<strong>in</strong>g<br />

<strong>to</strong> questions of the validity of the L<strong>in</strong>s and Slack f<strong>in</strong>d-<br />

if there are real underly<strong>in</strong>g trends <strong>in</strong> the data such as<br />

trends caused by climate change. " McCabe and Wolock<br />

<strong>in</strong>gs on a national scale (T. Karl 1999, pers. comn.). While focus on detection of trends <strong>in</strong> mean runoff! streamflow,<br />

further research is clearly needed <strong>to</strong> understand the con- so there is some question as <strong>to</strong> its applicability <strong>to</strong> peak<br />

nections between precipitation and streamflow, a study flows. If the fmd<strong>in</strong>gs do hold at the higher levels of run-<br />

by Pielke and Down<strong>to</strong>n (2000) on the relationship of preoff-streamflow, then this would provide another reason<br />

cipitation and flood damages suggests that the relation- why the work of L<strong>in</strong>s and Slack is not <strong>in</strong>consistent with<br />

ship between precipitation and flood damages provides that of Karl et al., as it would be physically possible that<br />

<strong>in</strong>formation that is useful <strong>in</strong> develop<strong>in</strong>g relevant hypoth- the two sets of analyses are complementary.<br />

eses and plac<strong>in</strong>g the precipitation-streamflow debate <strong>in</strong><strong>to</strong> In any case, an analysis of the damage record shows<br />

a broader policy context (cf. Changnon 1998).<br />

that at a national level any trends <strong>in</strong> extreme hydrologi-<br />

Pielke and Down<strong>to</strong>n (2000) offer an analysis that cal floods are not large <strong>in</strong> comparison <strong>to</strong> the growth <strong>in</strong><br />

helps <strong>to</strong> address the apparent paradox. They relate trends societal <strong>vulnerability</strong>. Even so, there is a documented<br />

<strong>in</strong> various measures of precipitation with trends <strong>in</strong> flood relationship between precipitation and flood damages,<br />

damage <strong>in</strong> the United States. The study f<strong>in</strong>ds that the <strong>in</strong>dependent of growth <strong>in</strong> national population: as pre-<br />

<strong>in</strong>crease <strong>in</strong> precipitation (however measured) is <strong>in</strong>sufcipitation <strong>in</strong>creases, so does flood damage.<br />

ficient <strong>to</strong> expla<strong>in</strong> <strong>in</strong>creas<strong>in</strong>g flood damages or variabil- From these results it is possible <strong>to</strong> argue that <strong>in</strong>terity<br />

<strong>in</strong> flood damages. The study strongly suggests that pretations <strong>in</strong> the policy debate of the various recent stud-<br />

societal fac<strong>to</strong>rs -growth <strong>in</strong> population and wealth -are ies of precipitation and streamflow have been mislead-<br />

partly responsible for the observed trend <strong>in</strong> flood dam<strong>in</strong>g. On the one hand, <strong>in</strong>creas<strong>in</strong>g "extreme" precipitaages.<br />

The analysis shows that a relatively small fraction tion has not been the most important fac<strong>to</strong>r <strong>in</strong> docu-<br />

of the <strong>in</strong>crease <strong>in</strong> damages can be associated with the mented <strong>in</strong>creases <strong>in</strong> flood damage. On the other hand,<br />

small <strong>in</strong>creas<strong>in</strong>g trends <strong>in</strong> precipitation. Indeed, after evidence of a lack of trends <strong>in</strong> peak flows does not mean<br />

adjust<strong>in</strong>g damages for the change <strong>in</strong> national wealth, that policy-makers need not worry about <strong>in</strong>creas<strong>in</strong>g pre-<br />

there is no significant trend <strong>in</strong> damages. This would tend cipitation or future floods. Advocates push<strong>in</strong>g either l<strong>in</strong>e<br />

<strong>to</strong> support the assertion by L<strong>in</strong>s and Slack (1999) that of argument <strong>in</strong> the policy arena risk misus<strong>in</strong>g what the<br />

<strong>in</strong>creas<strong>in</strong>g precipitation is not <strong>in</strong>consistent with an ab- scientific record actually shows. What has thus far been<br />

sence of upward trends <strong>in</strong> extreme streamflow. In other largely missed <strong>in</strong> the debate is that the solutions <strong>to</strong> the<br />

words, there is no paradox. As they write, "We suspect flood problems <strong>in</strong> the USA lie not only <strong>in</strong> a better un-<br />

that our streamflow f<strong>in</strong>d<strong>in</strong>gs are consistent with the prederstand<strong>in</strong>g of the hydrological and atmospheric ascipitation<br />

f<strong>in</strong>d<strong>in</strong>gs of Karl and his collabora<strong>to</strong>rs (1995, pects of flood<strong>in</strong>g, but also <strong>in</strong> a better understand<strong>in</strong>g of<br />

1998). The reported <strong>in</strong>creases <strong>in</strong> precipitation are mod- the societal aspects of flood damage (see Pielke and<br />

est, although concentrated <strong>in</strong> the higher quantiles.<br />

Moreover, the trends described for the extreme precipitation<br />

category (> 50.4 mm d-l) are not necessarily suf-<br />

Down<strong>to</strong>n 2000, for further discussion).<br />

ficient <strong>to</strong> generate an <strong>in</strong>crease <strong>in</strong> flood<strong>in</strong>g. It would be E.3.2 Quantify<strong>in</strong>g Uncerta<strong>in</strong>ty Us<strong>in</strong>g a<br />

useful <strong>to</strong> know if there are trends <strong>in</strong> 24-hour precipitation<br />

<strong>in</strong> the> 100 mm and larger categories. The term<br />

Bayesian Approach<br />

"extreme", <strong>in</strong> the context of these thresholds, may have As new <strong>in</strong>formation on <strong>vulnerability</strong> and changes <strong>in</strong><br />

more mean<strong>in</strong>g with respect <strong>to</strong> changes <strong>in</strong> flood hydrol- the probability distribution of extreme values become<br />

ogy."<br />

better known, risk estimates should be updated. We


discuss below a procedure for handl<strong>in</strong>g this problem<br />

by us<strong>in</strong>g a Bayesian approach <strong>to</strong> <strong>in</strong>corporate uncerta<strong>in</strong>ty.<br />

Go<strong>in</strong>g beyond the consideration of a damag<strong>in</strong>g event<br />

<strong>in</strong> the def<strong>in</strong>ition of hazard. let us consider. for example.<br />

the quantity of <strong>in</strong>terest (from Chapt. E.2) <strong>to</strong> be 51. which<br />

is def<strong>in</strong>ed as the amount of <strong>environmental</strong> change <strong>in</strong><br />

the context of water resources (e.g. amount of water recharge<br />

<strong>to</strong> an aquifer; <strong>to</strong>xic metal content or silt<strong>in</strong>g degree<br />

of a reservoir). We are <strong>in</strong>terested <strong>in</strong> the thresholds<br />

of 51 beyond which there are undesirable impacts. usually<br />

unders<strong>to</strong>od as undesirable effects on the human<br />

well-be<strong>in</strong>g. In probabilistic terms the values of <strong>in</strong>terest<br />

are <strong>in</strong> the tail of the correspond<strong>in</strong>g probability distribution.<br />

S<strong>in</strong>ce 51 is the result of different perturbations<br />

5A. 5B. 5i and these perturbations have an <strong>in</strong>herent uncerta<strong>in</strong>ty<br />

associated with each. f<strong>in</strong>al uncerta<strong>in</strong>ty of 51<br />

will be the result of a comb<strong>in</strong>ation of uncerta<strong>in</strong>ties as<br />

def<strong>in</strong>ed by functions II and h given above. as well as the<br />

<strong>in</strong>herent uncerta<strong>in</strong>ty associated with the validity of these<br />

functions. All these considerations imply that 51 is a<br />

highly-dimensional quantity dependent on several parameters<br />

which might also be unknown. In probabilistic<br />

terms 51 is a random variable <strong>in</strong> a highly dimensional<br />

space.<br />

Despite these complexities. a <strong>vulnerability</strong> assessment<br />

of a water resource would be <strong>in</strong>complete if a measure of<br />

uncerta<strong>in</strong>ty is not given <strong>to</strong> the event of 51 be<strong>in</strong>g below<br />

or above a threshold value considered as a potentially<br />

E.3.2 .Quantify<strong>in</strong>g Uncerta<strong>in</strong>ty Us<strong>in</strong>g a Bayesian Approach 495<br />

This last step can be quite complex s<strong>in</strong>ce it might <strong>in</strong>volve<br />

the def<strong>in</strong>ition of a high dimensional jo<strong>in</strong>t probability<br />

distribution. <strong>How</strong>ever, modern computational<br />

techniques such as Markov cha<strong>in</strong> Monte Carlo methods<br />

(Casella and George 1992) have made possible accurate<br />

representations of the jo<strong>in</strong>t posterior distributions of<br />

the parameters of complex statistical models.<br />

The advantages of a Bayesian approach rely on the<br />

possibility of updat<strong>in</strong>g the jOirlt posterior distribution<br />

of the model parameters when new <strong>in</strong>formation becomes<br />

available (someth<strong>in</strong>g that is needed <strong>in</strong> transient risk estimation<br />

as proposed above). A hierarchical modell<strong>in</strong>g<br />

approach can also be naturally implemented with-<strong>in</strong> the<br />

Bayesian framework by us<strong>in</strong>g the powerful <strong>to</strong>ol of condition<strong>in</strong>g<br />

on the components Ol~ parameters of a previous<br />

step of the system. This is specially useful when uncerta<strong>in</strong>ties<br />

related <strong>to</strong> the spatial scale of scenarios need<br />

<strong>to</strong> be resolved. By add<strong>in</strong>g a downs~al<strong>in</strong>g layer <strong>to</strong> the analysis,<br />

under some circumstances (e"g. numerical short-term<br />

weather prediction), it is sometirl1es possible <strong>to</strong> deal with<br />

the uncerta<strong>in</strong>ty of go<strong>in</strong>g from a 1~rid box <strong>to</strong> a po<strong>in</strong>t value<br />

<strong>to</strong> better represent sub-grid scale variability.<br />

In order <strong>to</strong> estimate realistic thresholds of Sf associated<br />

with <strong>environmental</strong> perturbations, coherence of<br />

surface variability at the relativt~ly f<strong>in</strong>e space and time<br />

scales is of particular relevanct:. S<strong>in</strong>ce this estimation<br />

should be done <strong>in</strong> probabilistic l:erms, calibration of at-<br />

mospheric variability by simply parameterised spatiotemporal<br />

s<strong>to</strong>chastic models has proven <strong>to</strong> be a very useful<br />

<strong>to</strong>ol for ra<strong>in</strong>fall and tempel~ature, as discussed <strong>in</strong><br />

Sect. C.4.1. Extension of these mt!thods with<strong>in</strong> the Bayesian<br />

paradigm (Sans6 and Guenni 1999) provide <strong>to</strong>ols<br />

for <strong>in</strong>clud<strong>in</strong>g the uncerta<strong>in</strong>ties dliscussed above.<br />

A good example of how <strong>to</strong> <strong>in</strong>corporate different<br />

sources of uncerta<strong>in</strong>ty by us<strong>in</strong>g a Bayesian framework<br />

hazardous situation. The reason for this is that policymakers<br />

are always <strong>in</strong>terested <strong>in</strong> expected losses and these<br />

need <strong>to</strong> be quantified <strong>in</strong> a proper way.<br />

Bayesian statistical methods are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

important <strong>in</strong> evaluat<strong>in</strong>g uncerta<strong>in</strong>ty related with<br />

<strong>environmental</strong> change (Adams et al. 1984; Pate-Cornell<br />

1996; Tol and de Vos 1998;Wikle et al. 1998). Given a sta- is presented by Krzysz<strong>to</strong><strong>to</strong>wicz (1999). He proposes a<br />

tistical model for a variable or a set of variables depend- Bayesian forecast<strong>in</strong>g system (BFS) by which the <strong>to</strong>tal un<strong>in</strong>g<br />

on a given set of parameters. the Bayesian paradigm certa<strong>in</strong>ty about a hydrological pr,~dictant (as river stage,<br />

<strong>in</strong>volves three ma<strong>in</strong> steps:<br />

"'discharge<br />

or runoff volume) is decomposed <strong>in</strong><strong>to</strong> <strong>in</strong>put<br />

uncerta<strong>in</strong>ty (e.g. time series of precipitation amounts<br />

I. Consider a prior distribution for the model param- needed as an <strong>in</strong>put <strong>to</strong> a hydrological model) and hydroeters<br />

based on prior (as for example subjective <strong>in</strong>forlogical uncerta<strong>in</strong>ty, which considers all sources of unmation<br />

by experts) knowledge and before us<strong>in</strong>g the certa<strong>in</strong>ty beyond random <strong>in</strong>puts (e.g. model, parameters,<br />

data. When prior <strong>in</strong>formation is not available non- estimation and measurement erl~ors).<br />

<strong>in</strong>formative (diffuse) priors could be used.<br />

Van Noortijk et al. (1997> also use a Bayesian approach<br />

2. Obta<strong>in</strong> an expression of the jo<strong>in</strong>t probability distri- <strong>to</strong> quantify different sources of uncerta<strong>in</strong>ty <strong>in</strong> the procbutions<br />

of the observations conditioned on the model ess of tak<strong>in</strong>g optimal decisions <strong>to</strong> reduce flood damage<br />

parameters (this is known as the likelihood function along the Meuse river <strong>in</strong> the Netherlands (near the Dutch<strong>in</strong><br />

classical statistics) which implies a proposed sta- Belgian border). Their approach attempts <strong>to</strong> quantify the<br />

tistical model for the variable of <strong>in</strong>terest.<br />

expected economic losses due <strong>to</strong> flood damage at differ-<br />

3. Obta<strong>in</strong> the posterior probability distribution of the ent discharge thresholds. This rnethodology fits very<br />

model parameters by comb<strong>in</strong><strong>in</strong>g prior <strong>in</strong>formation nicely with the <strong>vulnerability</strong> perspective proposed <strong>in</strong> this<br />

with the likelihood function us<strong>in</strong>g the Bayes rule. part of the book.


The Scenario Approach<br />

Lelys Bravo de Guenni<br />

The scenario approach uses a range of plausible future<br />

<strong>environmental</strong> <strong>conditions</strong> <strong>to</strong> assess their effects on water<br />

quality, river flows and other hydrological components.<br />

Examples of effects on water resource availability<br />

<strong>in</strong>clude the life span of a reservoir, a water supply system,<br />

and water management-related decisions. Most of<br />

these effects are usually assessed by us<strong>in</strong>g impact models<br />

which allow for the translation of changes <strong>in</strong> the components<br />

of the hydrological cycle (e.g. changes <strong>in</strong> river<br />

flow) <strong>in</strong><strong>to</strong> changes <strong>in</strong> the water resource system (e.g.<br />

hydropower generation). Changes <strong>in</strong> the environment<br />

(<strong>in</strong>clud<strong>in</strong>g climate and land-use changes) will affect the<br />

hydrological cycle and the vegetation patterns, which <strong>in</strong><br />

turn will affect the environment <strong>in</strong>clud<strong>in</strong>g the climate<br />

system (Kite 1993). An <strong>in</strong>tegrated approach <strong>to</strong> assess the<br />

impact of <strong>environmental</strong> and land-use changes on water<br />

resources <strong>in</strong> different biomes requires a wide range of<br />

scenarios, hydrological models and impact models <strong>in</strong>volv<strong>in</strong>g<br />

socio-economic aspects such as population<br />

growth and changed water management objectives.<br />

Most of the scenario approaches up <strong>to</strong> the present<br />

that are used <strong>to</strong> assess impacts on water resources are<br />

numerical and s<strong>to</strong>chastic modell<strong>in</strong>g-based sensitivity<br />

experiments with a focus on atmospheric (weather)<br />

changes and variability. Moreover, these modell<strong>in</strong>g experiments<br />

should more accurately be described as sensitivity<br />

studies, as discussed <strong>in</strong> Chapt. E.2, s<strong>in</strong>ce the spectrum<br />

of human disturbances <strong>to</strong> the climate system is<br />

not <strong>in</strong>cluded. Such experiments have been used for impact<br />

studies on water resources and agriculture and have<br />

been developed <strong>to</strong> <strong>in</strong>vestigate the impact of climate<br />

change where the radiative effect of anthropogenically<strong>in</strong>creased<br />

greenhouse gases is the dom<strong>in</strong>ant <strong>environmental</strong><br />

perturbation of the climate system. Exist<strong>in</strong>g procedures<br />

<strong>to</strong> construct scenarios are more general and <strong>in</strong>clude<br />

arbitrary scenarios, his<strong>to</strong>rical analogues, palaeoclimatic<br />

records, as well as General Circulation Model<br />

(GCM) perturbation experiments, and Regional Climate<br />

Models (RCM) (Rosenzweig and Hillel 1998).<br />

Arbitrary scenarios assume prescribed changes <strong>in</strong> climatic<br />

variables as for example temperature and/or precipitation.<br />

These changes might be applied <strong>to</strong> the mean<br />

(e.g. Rosenzweig et al.1996), variance (e.g. Mearns et al.~<br />

1997) or other statistical characteristics and are normally<br />

used <strong>to</strong> identify sensitivities of the system <strong>to</strong> the prescribed<br />

changes. <strong>How</strong>ever, changes <strong>in</strong> one variable may<br />

be accompanied by changes <strong>in</strong> other variable(s) and<br />

some care must be taken <strong>to</strong> provide meteorologically<br />

plausible <strong>conditions</strong>.<br />

Weather scenarios from his<strong>to</strong>rical records are used<br />

<strong>to</strong> construct possible realisations consider<strong>in</strong>g, for example,<br />

worst case situations (cool or warm periods, dry or<br />

wet periods). They can provide some <strong>in</strong>sight on anomalous<br />

<strong>conditions</strong> and their usefulness is conditioned by<br />

the length of records available. Palaeoclimatic scenarios<br />

use records of pollen, ice cores, lake-levels and others.<br />

These records are useful <strong>to</strong> understand past atmospheric<br />

dynamics.<br />

Weather change sensitivity from GCMs are produced<br />

under different forc<strong>in</strong>g mechanisms (e.g. double-CO2<br />

scenarios). These experiments are appropriately referred<br />

<strong>to</strong> as sensitivity experiments, s<strong>in</strong>ce only a subset of anthropogenic<br />

perturbations <strong>to</strong> the climate system have<br />

been <strong>evaluate</strong>d us<strong>in</strong>g these models. Equilibrium or transient<br />

projections can be designed depend<strong>in</strong>g on whether<br />

the forc<strong>in</strong>g <strong>conditions</strong> are <strong>in</strong>stantaneous or are chang<strong>in</strong>g<br />

with time. In the last case GCMs are used <strong>to</strong> simulate<br />

the response of the climate system <strong>to</strong> a cont<strong>in</strong>uous <strong>in</strong>crease<br />

<strong>in</strong> greenhouse gases, rather than <strong>to</strong> an <strong>in</strong>stantaneous<br />

change. Although GCMs provide valuable <strong>in</strong>sight<br />

<strong>in</strong><strong>to</strong> the dynamics of the atmosphere and the oceans, it is<br />

well known that they are not able <strong>to</strong> represent even current<br />

climate at local scales (Cubasch et al. 1996; Risbey<br />

and S<strong>to</strong>ne 1996) and their spatial resolution is still very<br />

coarse for impact studies. Sub-grid scale <strong>to</strong>pography, land<br />

cover and water bodies, for example, have major impacts<br />

on local maximum and m<strong>in</strong>imum temperatures, precipitation,<br />

<strong>in</strong>cident radiation and humidity. The variability<br />

<strong>in</strong> these fac<strong>to</strong>rs needs <strong>to</strong> be well represented when used<br />

as <strong>in</strong>puts <strong>to</strong> water resource impact models.<br />

Downscal<strong>in</strong>g approaches have played a role as the<br />

ma<strong>in</strong> procedures <strong>to</strong> provide high spatial resolution data<br />

from the very coarse <strong>in</strong>formation from the GCMs (von<br />

S<strong>to</strong>rch 1994). Different approaches are available: s<strong>to</strong>chastic<br />

(Bardossy and Plate 1992; von S<strong>to</strong>rch et al. 1993;<br />

Conway and Jones 1998; Bellone et al. 2000); dynamic


498<br />

CHAPTER E.4 .The Scenario Approach<br />

ditions for a regional numerical weather prediction<br />

model. This is not true with the GCMs where observed<br />

data do not exist <strong>to</strong> <strong>in</strong>fluence the predictions. A regional<br />

model cannot re<strong>in</strong>sert model skill when it is so dependent<br />

on lateral boundary <strong>conditions</strong>, no matter how good<br />

the regional model is.<br />

If this conclusion is disagreed with, the first step <strong>to</strong><br />

demonstrate that the regional climate model has predictive<br />

skill is <strong>to</strong> <strong>in</strong>tegrate an atmospheric GCM with<br />

observed sea-surface temperatures (SSTs) for several<br />

seasons <strong>in</strong><strong>to</strong> the future. The GCM output would then be<br />

downscaled us<strong>in</strong>g the regional climate model. There is<br />

expected <strong>to</strong> be some regional skill and this needs <strong>to</strong> be<br />

quantified. This level of skill, however, will necessarily<br />

represent the maximum skill theoretically possible with<br />

AOGCMs (Atmosphere-Ocean General Circulation<br />

Model) as applied <strong>to</strong> forecasts years and decades <strong>in</strong><strong>to</strong><br />

the future s<strong>in</strong>ce SSTs must also be predicted and not<br />

specified for these periods. Such experiments have not<br />

been systematically completed. Indeed, does the concept<br />

of predictive skill even make sense when we cannot<br />

verify the models until decades <strong>in</strong><strong>to</strong> the future?<br />

The statistical downscal<strong>in</strong>g, besides requir<strong>in</strong>g that the<br />

GCMs are accurate predictions of the future, also requires<br />

that statistical equations used for downscal<strong>in</strong>g<br />

rema<strong>in</strong> <strong>in</strong>variant under changed regional atmospheric<br />

and land-surface <strong>conditions</strong>. There is no way <strong>to</strong> test this<br />

hypothesis. In fact, it is unlikely <strong>to</strong> be valid s<strong>in</strong>ce the<br />

regional climate is not passive with rt1Pect <strong>to</strong> the largerscale<br />

climate condition but is expect~ <strong>to</strong> change over<br />

time and feedback <strong>to</strong> the larger scales.<br />

A critical issue <strong>in</strong> these methodologies, therefore, is<br />

how <strong>to</strong> handle the uncerta<strong>in</strong>ty associated with the climate<br />

system due <strong>to</strong> its complex non-l<strong>in</strong>earity (Shukla<br />

1998) and lack of predictability years and decades <strong>in</strong><strong>to</strong><br />

the future. Because of the <strong>in</strong>complete knowledge of the<br />

climate system and the "unknowable" knowledge <strong>in</strong>herent<br />

<strong>in</strong> the future of the human society, scenarios are<br />

meant <strong>to</strong> provide a range of possible climatic <strong>conditions</strong><br />

(Hulme and Carter 1999). Extremes and "surprises" are<br />

an important part of this uncerta<strong>in</strong>ty s<strong>in</strong>ce they can<br />

cause substantial damages <strong>to</strong> society. S<strong>to</strong>chastic approaches<br />

have a lot <strong>to</strong> offer on the grounds of uncerta<strong>in</strong>ty<br />

evaluation s<strong>in</strong>ce global climate models are not<br />

actually formulated <strong>to</strong> perform an uncerta<strong>in</strong>ty analysis<br />

and <strong>in</strong> most cases this is carried out as an afterthought<br />

(Katz 1999).<br />

Indeed, based on the different methodologies for scenario<br />

construction (<strong>in</strong>clud<strong>in</strong>g climate) that have been<br />

made, a quantitative assessment of what are the temporal<br />

and spatial limits of predictive skill is required. It is<br />

also concluded that none of the exist<strong>in</strong>g procedures <strong>to</strong><br />

construct scenarios are able <strong>to</strong> represent the spectrum<br />

of plausible future <strong>environmental</strong> <strong>conditions</strong> on the local,<br />

regional (and even the global) spatial scales.


The Vulnerability Approach<br />

Lelys Bravo de Guenni .Roland E. Schulze. Roger A. Pielke, Sr. Michael F. Hutch<strong>in</strong>son<br />

E.5.1 Risk, Hazard and Vulnerability: Concepts<br />

Risk, <strong>in</strong> layman's terms, is the "chance of disaster" (Fairman<br />

et aI. 1998). More formally<br />

Risk is a quantitative measure of a def<strong>in</strong>ed hazard,<br />

which comb<strong>in</strong>es the probability or frequency of occurrence<br />

of the damag<strong>in</strong>g event (i.e. the hazard) and<br />

the magnitude of the consequences (i.e. expected<br />

losses) of the occurrence.<br />

Embedded with<strong>in</strong> this defmition is the term hazard,<br />

and implied <strong>in</strong> the phrase "consequences of the occurrence"<br />

is the concept of <strong>vulnerability</strong> <strong>to</strong> the hazard. These<br />

two terms are therefore described next, before re-visit<strong>in</strong>g<br />

broader issues of risk.<br />

A hazard is commonly described as the "potential <strong>to</strong><br />

do harm". Def<strong>in</strong>ed more rigorously (Zhou 1995; Smith<br />

1996; Fairman et al.1998; Down<strong>in</strong>g et al.1999)<br />

A hazard is a naturally occurr<strong>in</strong>g, or human <strong>in</strong>duced,<br />

physical process or event or situation, that <strong>in</strong> particular<br />

circumstances has the potential <strong>to</strong> create damage<br />

or loss. It has a magnitude, an <strong>in</strong>tensity, a duration,<br />

has a probability of occurrence and takes place with<strong>in</strong><br />

a specified location.<br />

The above def<strong>in</strong>ition serves <strong>to</strong> highlight the concept<br />

that a physical process only becomes a hazard when it<br />

threatens <strong>to</strong> create some sort of loss (such as loss of life<br />

or damage <strong>to</strong> property) with<strong>in</strong> the human environment<br />

(Smith 1996). This is therefore essentially an anthropocentric<br />

view of the concept of hazard and does not<br />

take <strong>in</strong><strong>to</strong> account the effect that an extreme natural event<br />

can have op an un<strong>in</strong>habited area (Suter 1993). The assessment<br />

of losses and the determ<strong>in</strong>ation of the detrimental<br />

effects on future overall susta<strong>in</strong> ability <strong>in</strong> un<strong>in</strong>habited<br />

areas are extremely difficult <strong>to</strong> undertake and<br />

they generally fall under the concept of ecological risk<br />

assessment (Suter 1993). Here, the magnitude of a hazard<br />

is thus determ<strong>in</strong>ed by the extent <strong>to</strong> which the physi-<br />

cal event can disrupt the human environment, i.e. a hazard<br />

is the comb<strong>in</strong>ation of both the active physical exposure<br />

<strong>to</strong> a natural process and the passive <strong>vulnerability</strong><br />

of the human system with which it is <strong>in</strong>teract<strong>in</strong>g (Plate<br />

1996).<br />

The physical exposure is essentially the damagecaus<strong>in</strong>g<br />

potential of the natural process and is a function<br />

of both its <strong>in</strong>tensity and duration. The natural process<br />

becomes a hazard when it produces an event that<br />

exceeds<br />

.thresholds, i.e. the critical limits (bounds) that the environment<br />

can normally <strong>to</strong>lerate before a negative<br />

impact is produced on a system or activity (Down<strong>in</strong>g<br />

et al. 1999). In the case of ra<strong>in</strong>fall, <strong>to</strong>o much produces<br />

a flood hazard and <strong>to</strong>o little a drought hazard. In<br />

Fig. E.4 the shaded area represents the <strong>to</strong>lerance limits<br />

of the variation about the average, with<strong>in</strong> which a<br />

resource such as water can be used beneficially for<br />

social and economic activities with<strong>in</strong> the human environment<br />

(Plate 1996). The magnitude by which an<br />

event exceeds a given threshold determ<strong>in</strong>es the damage-caus<strong>in</strong>g<br />

potential of such an event.<br />

.Intensity refers <strong>to</strong> the severity, or damage-caus<strong>in</strong>g potential,<br />

of a natural process, e.g. ra<strong>in</strong>fall at 20 mm h-l<br />

is generally less damag<strong>in</strong>g than 100 mm h-l over the<br />

same time period. The hazard <strong>in</strong>tensity is determ<strong>in</strong>ed<br />

by the peak deviation beyond the threshold (vertical<br />

scale <strong>in</strong> Fig. E.4).<br />

.Duration, the other variable determ<strong>in</strong><strong>in</strong>g the damagecaus<strong>in</strong>g<br />

potential of an event, implies exposure <strong>to</strong> an<br />

event, and the longer the exposure the greater the damage-caus<strong>in</strong>g<br />

potential (Zhou 1995; Plate 1996; Smith<br />

1996). Hazard duration is determ<strong>in</strong>ed by the length of<br />

time the threshold is exceeded (horizontal scale is<br />

Fig. E.4).<br />

Response <strong>to</strong> a hazard, as discussed <strong>in</strong> more detail later,<br />

is either by<br />

.adaptation, i.e. the long-term arrangement of human<br />

activity <strong>to</strong> take account of natural events (e.g. becom-


500<br />

CHAPTER E.5 .The Vulnerability Approach<br />

Fig. E.4.<br />

The magnitude of <strong>environmental</strong><br />

hazard expressed as a<br />

function of the variability of<br />

a physical element with<strong>in</strong><br />

the limits of <strong>to</strong>lerance (after<br />

Smith 1996)<br />

<strong>in</strong>g more dependent on groundwater than on more erratic<br />

surface water resources <strong>in</strong> more arid zones), or<br />

.mitigation, i.e. the <strong>in</strong>tentional response <strong>to</strong> cope with<br />

a hazard (e.g. only construct<strong>in</strong>g build<strong>in</strong>gs beyond a<br />

demarcated 1: 50 year flood l<strong>in</strong>e).<br />

Vulnerability implies the need for protection. From<br />

an anthropogenic viewpo<strong>in</strong>t<br />

Vulnerability is the characteristic of a person or group<br />

or component of a natural system <strong>in</strong> terms of its capacity<br />

<strong>to</strong> resist and!or recover from and/or anticipate and!<br />

or cope with the impacts of an adverse event (Blaikie<br />

et al.1994; Down<strong>in</strong>g et al.1999).<br />

Vogel (1998) describes <strong>vulnerability</strong> <strong>in</strong> terms of the<br />

resilience and susceptibility of a system, <strong>in</strong>clud<strong>in</strong>g its<br />

physical, social and human dimensions, while Plate<br />

(1996) adds the reliability of the system <strong>to</strong> its attributes.<br />

.Resilience (Vogel 1998) is the capacity of a system (e.g.<br />

a dam) <strong>to</strong> absorb and recover from a hazardous event<br />

(e.g. a drought). Resilience therefore implies that there<br />

are thresholds of <strong>vulnerability</strong>.<br />

.Reliability, on the other hand, is the probability that<br />

the system, or a component of a system, will perform<br />

its <strong>in</strong>tended function for a specified period of time<br />

(e.g. what is the probability that the dam will be able<br />

<strong>to</strong> supply water <strong>to</strong> a city over the next 50 years?).<br />

In terms of <strong>vulnerability</strong>, systems may be subjected <strong>to</strong><br />

.assault events (e.g. heavy ra<strong>in</strong>fall; flood peak; pollution<br />

levels above a certa<strong>in</strong> concentration), <strong>in</strong> which<br />

case the <strong>vulnerability</strong> threshold is determ<strong>in</strong>ed by the<br />

system absorption and redirection capacities (e.g. a<br />

heavy ra<strong>in</strong>fall saturat<strong>in</strong>g a soil and the soil then dra<strong>in</strong><strong>in</strong>g<br />

the excess water rapidly enough, or a dam fill<strong>in</strong>g<br />

<strong>to</strong> capacity and the spillway cop<strong>in</strong>g adequately with<br />

Average<br />

c~~ Band of <strong>to</strong>lerance<br />

the flood discharge). Systems may, accord<strong>in</strong>g <strong>to</strong> Smith<br />

(1996), also be subjected <strong>to</strong><br />

.deprivation events (e.g. drought, soil erosion or leach<strong>in</strong>g<br />

of fertilisers out of the soil), <strong>in</strong> which case the<br />

thresholds of <strong>vulnerability</strong> are determ<strong>in</strong>ed by the retention<br />

and replacement capacities of the system (e.g.<br />

the buffer of deeper soil depth <strong>to</strong> s<strong>to</strong>r<strong>in</strong>g moisture<br />

for a plant dur<strong>in</strong>g a drought, or the rate of weather<strong>in</strong>g<br />

<strong>to</strong> replace soil lost by erosion).<br />

Vulnerability therefore <strong>in</strong>vanably embraces an<br />

.external dimension (Vogel 1998), i,e. the threat of an<br />

event, that may <strong>in</strong>creas<strong>in</strong>gly predispose people <strong>to</strong> risk<br />

(e.g. climate change and its impacts on water resources),<br />

as well as an<br />

.<strong>in</strong>ternal dimension, i.e. the <strong>in</strong>ternal capacity <strong>to</strong> withstand<br />

or respond <strong>to</strong> an event, such as the defenselessness<br />

<strong>to</strong> cope with a hazard (e.g. poor people liv<strong>in</strong>g on<br />

a floodpla<strong>in</strong>) or the lack of means <strong>to</strong> cope with the<br />

aftermath of damag<strong>in</strong>g loss.<br />

People may thus face the same potential risk, but are<br />

not equally vulnerable because they may face different<br />

consequences <strong>to</strong> the same hazard.<br />

Although <strong>in</strong>tuitively simple, the <strong>vulnerability</strong> concept<br />

requires quantitative <strong>to</strong>ols which are only now be<strong>in</strong>g developed.<br />

The issue of <strong>vulnerability</strong> is discussed <strong>in</strong> UNEP<br />

(2000), for example. One new aspect <strong>to</strong> the <strong>vulnerability</strong><br />

perspective is that the affected resource can itself<br />

feedback <strong>to</strong> <strong>in</strong>fluence its environment. An attempt <strong>to</strong><br />

quantify <strong>vulnerability</strong> <strong>in</strong> terms of the proportion of people<br />

affected under extreme ra<strong>in</strong>fall <strong>conditions</strong> <strong>in</strong> South<br />

America has been presented by Guenni et al. (2001).<br />

They assumed that the proportion of people affected (or<br />

vulnerable) <strong>to</strong> extreme ra<strong>in</strong>fall <strong>conditions</strong> is a random<br />

variable that can be calibrated by us<strong>in</strong>g available <strong>in</strong>formation<br />

on the conseqences of extreme events on the<br />

population <strong>in</strong> different South American countries.


Fig.E.S.<br />

A schematic illustration <strong>in</strong><br />

which risk changes due <strong>to</strong> variations<br />

<strong>in</strong> the physical system<br />

and the socio-economic system.<br />

In all the cases risk <strong>in</strong>creases<br />

over time (with modifications<br />

after Smith 1996)<br />

Risk Revisited<br />

If risk is the probability of a specific hazard occurr<strong>in</strong>g<br />

and the loss caused by that hazard <strong>in</strong> regard <strong>to</strong> the level<br />

of <strong>vulnerability</strong> of the affected people or places, then<br />

several possibilities exist that give rise <strong>to</strong> <strong>in</strong>creased risk.<br />

These are illustrated <strong>in</strong> Fig. E.5 (Smith 1996):<br />

.Case A represents a scenario where the <strong>to</strong>lerance and<br />

the variability rema<strong>in</strong> constant, but there is a gradual<br />

change over time <strong>in</strong> the mean value. In this particular<br />

case the frequency of extreme events at one end<br />

of the scale <strong>in</strong>creases, as would be the case of a mean<br />

decrease <strong>in</strong> ra<strong>in</strong>fall, or a decrease <strong>in</strong> runoff associated<br />

with upstream afforestation.<br />

.Case B shows a scenario <strong>in</strong> which both the mean and<br />

the band of <strong>to</strong>lerance rema<strong>in</strong> constant, but the variability<br />

<strong>in</strong>creases. In this particular case the frequency<br />

of potentially damage produc<strong>in</strong>g events <strong>in</strong>creases at<br />

both ends of the scale.<br />

.In Case C the physical variable, e.g. runoff, does not<br />

change, but the band of <strong>to</strong>lerance narrows, i.e. the <strong>vulnerability</strong><br />

of the human system <strong>in</strong>creases (e.g. because<br />

of <strong>in</strong>creased water demands on a river from people<br />

liv<strong>in</strong>g directly <strong>in</strong> the floodpla<strong>in</strong>). In this particular<br />

situation the frequency of damage-caus<strong>in</strong>g events <strong>in</strong>creases<br />

at both ends of the scale (e.g. <strong>to</strong>o little water<br />

dur<strong>in</strong>g dry periods; <strong>vulnerability</strong> <strong>to</strong> flood damage<br />

dur<strong>in</strong>g high flows).<br />

.In Case D, there is an abrupt change <strong>in</strong> the mean, but<br />

the variability rema<strong>in</strong>s the same. Such a rapid transition<br />

provides little time <strong>to</strong> adopt <strong>to</strong> a change (such<br />

as might be possible with Case A).<br />

A<br />

B<br />

c<br />

D<br />

E.S.1 .Risk, Hazard and Vulnerability: Concepts 501<br />

In view<strong>in</strong>g risk as hav<strong>in</strong>g a human component, <strong>in</strong><br />

addition <strong>to</strong> its probabilistic one, three tiers of risk have<br />

been identified by Zhou (1995):<br />

.a lower band of risk, which is acceptable <strong>to</strong> the affected<br />

people and where, for example, the benefits of<br />

do<strong>in</strong>g noth<strong>in</strong>g or little outweigh the disadvantages<br />

of carry<strong>in</strong>g an unacceptable cost burden,<br />

.a middle band of risk, where decisions have <strong>to</strong> be made<br />

which trade off the costs of reduc<strong>in</strong>g the risk versus<br />

the benefits of the risk reduction, and<br />

.an upper band of risk, where do<strong>in</strong>g noth<strong>in</strong>g is completely<br />

unacceptable, irrespective of cost.<br />

Each of these three tiers of risk is related <strong>to</strong> the balanc<strong>in</strong>g<br />

of benefits v. costs. This is usually done through<br />

risk management, which on the one hand has <strong>to</strong> be regulated<br />

by professional standards and legal measures while<br />

on the other hand it conta<strong>in</strong>s a large element of subjec-<br />

tivity.<br />

The <strong>vulnerability</strong> approach described above provides<br />

a methodology by which the public <strong>in</strong> general and the<br />

policy-makers <strong>in</strong> particular will ga<strong>in</strong> a better <strong>in</strong>sight <strong>in</strong><strong>to</strong><br />

which thresholds and limits <strong>in</strong> <strong>environmental</strong> changes<br />

might potentially cause stress or damage. They would<br />

have a better estimate of the uncerta<strong>in</strong>ty associated with<br />

the occurrence of these thresholds and they could better<br />

quantify the expected losses for specific hazards.<br />

A cost-benefit analysis must necessarily be a next step<br />

for policy-makers <strong>to</strong> take the required actions <strong>in</strong> high<br />

<strong>vulnerability</strong> situations. In the follow<strong>in</strong>g sections, specific<br />

examples of <strong>environmental</strong> variability and changes<br />

and multiple stresses <strong>to</strong> ecosystems with their expected<br />

impacts are presented.


502<br />

CHAPTER E.5 .The Vulnerability Approach<br />

Rik Leemans All these LUC-LCC aspects, <strong>in</strong>teractions and feedbacks<br />

E.5.2 Anthropogenic Land-use<br />

and Land-cover Changes<br />

The Importance of Land-use and Land-cover Change<br />

Issues related <strong>to</strong> water, water quality and availability, and<br />

water management are important on the <strong>in</strong>ternational<br />

political agenda. But these <strong>to</strong>pics do not operate <strong>in</strong> a<br />

vacuum. There are strong <strong>in</strong>teractions between hydrological,<br />

atmospheric and biospheric processes on the one<br />

hand, and land use and water management on the other<br />

hand. Land and water are thus both systemic components<br />

of the Earth system, but simultaneously are<br />

strongly affected by <strong>environmental</strong> change. Land use and<br />

land-use change and its consequences for land cover<br />

(LUC-LCC) are therefore essential components <strong>in</strong> the<br />

development of comprehensive scenarios for the follow<strong>in</strong>g<br />

reasons:<br />

.Society strongly depends on the cont<strong>in</strong>ued availability<br />

of renewable resources, such as food, fibre and fresh<br />

water. Humans already dom<strong>in</strong>ate the use of most biological<br />

productivity (Vi<strong>to</strong>usek et al. 1997) and are a<br />

crucial fac<strong>to</strong>r <strong>in</strong> def<strong>in</strong><strong>in</strong>g fresh-water availability and<br />

quality (Matthews et al. 1997; Hoekstra 1998; Arnell<br />

1999). The cont<strong>in</strong>ued supply of these resources can<br />

only be guaranteed by susta<strong>in</strong>able land uses but these<br />

are easily jeopardised by short-sighted or <strong>in</strong>appropriate<br />

human activities (Doos 1994). An <strong>in</strong>tegrated approach<br />

encompass<strong>in</strong>g water, land and atmosphere<br />

with human behaviour is thus urgently needed;<br />

.LUC-LCC alters the Earth's surface characteristics and<br />

thus climatic processes and patterns (e.g. Bonan 1997;<br />

Claussen and Gayler 1997, see also Chapt. A.5 or A.8).<br />

This also can alter water demand and supply or quality<br />

and availability;<br />

.LUC-LCC are important determ<strong>in</strong>ants of carbon, water<br />

and energy fluxes (Braswell et al. 1997> and non-<br />

CO2 greenhouse-gas emissions (e.g. Fl<strong>in</strong>t 1994; IPCC<br />

1996). These fluxes and emissions directly <strong>in</strong>fluence<br />

atmospheric composition and radiative-forc<strong>in</strong>g properties<br />

and, consequently, global and regional atmospheric<br />

and hydrological patterns;<br />

.LUC-LCC are an important fac<strong>to</strong>r determ<strong>in</strong><strong>in</strong>g the<br />

response of species, ecosystems and landscapes <strong>to</strong><br />

<strong>environmental</strong> change and variability (Peters and<br />

Lovejoy 1992; Leemans 1999). Land-cover modification<br />

and conversion through, for example, nitrogen<br />

addition by air pollution, dra<strong>in</strong>age of wetlands and<br />

deforestation change the behaviour of ecosystems;<br />

.F<strong>in</strong>ally, LUC-LCC are, <strong>in</strong> their own right, an important<br />

component of global change (Turner et al.1995).<br />

are important and need <strong>to</strong> be considered and addressed<br />

<strong>in</strong> creat<strong>in</strong>g scenarios of Earth system dynamics.<br />

LUC-LCC aspects, however, are difficult <strong>to</strong> def<strong>in</strong>e<br />

regionally and globally. LUC-LCC is strongly dependent<br />

on local <strong>environmental</strong> <strong>conditions</strong> and diverse societal,<br />

economic and cultural characteristics and evolves from<br />

diverse human activities (e.g. food and fibre production,<br />

m<strong>in</strong><strong>in</strong>g, recreation and nature conservation) that are<br />

heterogeneous <strong>in</strong> their spatial (e.g. stand and landscape),<br />

temporal (e.g. diurnal, seasonal, annual and <strong>in</strong>terannual)<br />

and societal dimensions (e.g. household, village, region<br />

and country). LUC-LCC dynamics are therefore fundamentally<br />

complex and amalgamate biogeochemical, hydrological,<br />

atmospheric and ecological processes with<br />

human behaviour and societal <strong>in</strong>stitutions. All these components<br />

have, by def<strong>in</strong>ition, their specific properties and<br />

act on a typical scale level (Fig. E.6). Regionally and globally,<br />

only the cumulative consequences of all these diverse<br />

local and regional LUC-LCC developments <strong>in</strong>fluence<br />

the Earth system <strong>in</strong> a systemic manner. But <strong>in</strong> (global)<br />

<strong>environmental</strong>-change or Earth-system studies it is<br />

these coarse aggregation levels that matter.<br />

Exist<strong>in</strong>g Land-use and Land-cover Datasets<br />

and Scenarios ,<br />

The start<strong>in</strong>g po<strong>in</strong>t of LUC-LCC scenarios is always a description<br />

of current or his<strong>to</strong>rical LUC-LCC patterns. Landcover<br />

databases are used <strong>to</strong> <strong>in</strong>itialise the models required<br />

<strong>to</strong> develop the scenarios. <strong>How</strong>ever, there are large discrepancies<br />

among different land-cover data-bases (Townshend<br />

et al. 1991; Leemans et al. 1996). Some list only potential<br />

natural vegetation, others <strong>in</strong>clude one or more<br />

land-use classes, but none <strong>in</strong>cludes land use comprehen-<br />

Fig. E.6. Interactions between different societal and ecosystems<br />

dimensions


The<br />

sively. Further, most databases are compiled from diverse irrigation water can easily be met when economic reand<br />

heterogeneous sources and cannot be l<strong>in</strong>ked <strong>to</strong> a spe- sources are available (e.g. Rosegrant 1997). Global-change<br />

cific time period. The determ<strong>in</strong>ation of change is there- assessments, however, require broader LUC-LCC scefore<br />

extremely difficult. Most of these datasets are of narios than those do. Adequate scenarios should <strong>in</strong>cordubious<br />

quality. <strong>How</strong>ever) more recent statistical data porate land-use activities and land-cover characteristics<br />

sources on land use were improved and their <strong>in</strong>ternal <strong>in</strong> order <strong>to</strong> make comprehensive estimates of the role of<br />

consistency is enhanced (e.g. FAO 1999). Also the high- land and land use <strong>in</strong> def<strong>in</strong><strong>in</strong>g the dynamics of the Earth<br />

resolution spatially explicit global database, DISCOVER, system. Currently) the only approaches <strong>to</strong> deliver such<br />

has become available (Loveland and Belward 1997> and capability are Integrated Assessment Models (lAMs:<br />

is frequently used <strong>in</strong> global-change research. This data- Weyant et al. 1996). Some of these lAMs are the Asianbase<br />

is derived from satellite data from the early n<strong>in</strong>eties Pacific Integrated Model (AIM: Matsuoka et al. 1994),<br />

and consists of land-cover classes useful for <strong>in</strong>itialis<strong>in</strong>g Integrated Model <strong>to</strong> Assess the Global Environment (IMland-cover<br />

scenarios. Further, several attempts have been AGE 2: Alcamo 1994; Alcamo et al. 1998) and Integrated<br />

made <strong>to</strong> develop his<strong>to</strong>rical land-use and land-cover Climate Assessment Model (ICAM: Brown and Rosenberg<br />

databases (Kle<strong>in</strong> Goldewijk and Battjes 1997; Ramankutty 1999). These models already <strong>in</strong>corporate modules <strong>to</strong> simuand<br />

Foley 1998). These attempts use his<strong>to</strong>rical proxyvari- late the consequences for LUC-LCC) which generate LUCables,<br />

such as his<strong>to</strong>rical maps, population-density esti- LCC scenarios on a resolution rang<strong>in</strong>g from a coarse grid (IMmates)<br />

and the location of cities and other <strong>in</strong>frastruc- AGE 2 and AIM) or for socio-economic regions (ICAM).<br />

ture, <strong>to</strong> reconstruct likely his<strong>to</strong>rical land-cover patterns The start<strong>in</strong>g po<strong>in</strong>t for most of these models are crop-profor<br />

the last centuries. Although it is difficult <strong>to</strong> determ<strong>in</strong>e duction models with different degrees of precision and<br />

the validity and reliability of these his<strong>to</strong>rical databases, focus. Most lAMs focus on arable agriculture and neglect<br />

all these improved databases are of utmost importance pasturalism, forestry and other relevant land uses. None<br />

for <strong>in</strong>itialis<strong>in</strong>g and validat<strong>in</strong>g regional and global models. of them, however, satisfac<strong>to</strong>rily <strong>in</strong>corporate regional wa-<br />

Many different scenarios for LUC- LCC exist. Many ter supply and demand issues. The feedback on land-use<br />

of them focus on local and regional issues and only a change on the overly<strong>in</strong>g weather has also not been <strong>in</strong>few<br />

are global <strong>in</strong> scope. <strong>How</strong>ever) most of the available cluded <strong>in</strong> these studies. Only the IMAGE-2 group is cur-<br />

LUC-LCC scenarios are not developed <strong>to</strong> determ<strong>in</strong>e global<br />

and regional <strong>environmental</strong> change, but more <strong>to</strong><br />

rently develop<strong>in</strong>g such capability (Alcamo et al. 2000).<br />

<strong>evaluate</strong> the dynamics and <strong>environmental</strong> consequences '<br />

of different agrosystems (e.g. Koruba et al. 1996), agricultural<br />

policies (e.g. Moxey et al. 1995») food security<br />

(e.g. Penn<strong>in</strong>g de Vries et al.1997), and projections of ag-<br />

Construction of Land-use Change and Land-coverChange<br />

Scenarios<br />

ricultural production, trade and food availability (e.g. Initially the consequences of land-use change were of-<br />

Alexandra<strong>to</strong>s 1995; Rosegrant et al.1995).Moreover)these ten only depicted as caus<strong>in</strong>g changes <strong>in</strong> the CO2-emisstudies<br />

do not well def<strong>in</strong>e the actual implications for sions from tropical deforestation. The conversion of<br />

land-cover patterns. At best they def<strong>in</strong>e an aggregated these forests is one of the important human sources of<br />

amount of arable land, pastures and other land uses. CO2. Early carbon-cycle models used simply prescribed<br />

LUC-LCC scenario studies use different approaches. deforestation rates and emission fac<strong>to</strong>rs <strong>to</strong> estimate fu-<br />

Most of them are based on regression and process- based ture emissions. Land-use scenarios could only provide<br />

simulation models. Alexandra<strong>to</strong>s (1995) has comb<strong>in</strong>ed the relevant estimates. Dur<strong>in</strong>g the last decade a more<br />

and expanded these approaches by <strong>in</strong>teractively <strong>in</strong>clud- comprehensive view emerged embrac<strong>in</strong>g the diversity<br />

<strong>in</strong>g expert judgement. Regional and national experts of driv<strong>in</strong>g forces and regional heterogeneity. The curreviewed<br />

the model results. If such a panel determ<strong>in</strong>ed rent driv<strong>in</strong>g forces of most LUC-LCC scenarios are de<strong>in</strong>consistencies<br />

with observed trends or likely trends) rived from population, <strong>in</strong>come and productivity asthe<br />

scenarios were changed until a satisfac<strong>to</strong>ry solution sumptions for agriculture and forestry. The first two are<br />

emerged for all regions. The result<strong>in</strong>g scenario can there- commonly assumed <strong>to</strong> be exogenous variables (i.e. scefore<br />

be <strong>in</strong>terpreted as a consensus scenario. This ap- nario assumptions), while productivity is determ<strong>in</strong>ed<br />

proach generally leads <strong>to</strong> conservative estimates of pos- dynamically by the models used.<br />

sible trends, because the importance of new develop- In most scenarios) population is generally split <strong>in</strong><strong>to</strong><br />

ments are underestimated. urban and rural; each class is characterised by its spe-<br />

Unfortunately) most of these LUC-LCC scenario stud- cific needs and land uses. The demand for agricultural<br />

ies do not consider changes <strong>in</strong> water supply. Some <strong>in</strong>- products (both the quantity and composition as speciclude<br />

weather change (e.g. Alcamo et al. 1998) and oth- fied by diet) is generally assumed <strong>to</strong> be a function of <strong>in</strong>ers<br />

assume that an <strong>in</strong>creased demand for, for example) come and regional preferences. With <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>comes


504<br />

CHAPTER E,S" The Vulnerability Approach<br />

there is a shift from gra<strong>in</strong>-based diets <strong>to</strong>wards more meat- <strong>in</strong> all regions, except Africa and Asia. Pastures expandmore<br />

based diets. Such a shift has large consequences for land rapidly than arable land. There are, however, largeregional<br />

use (Leemans 1999). Similar functional relations are as- differences. One of the important assumptions<br />

sumed <strong>to</strong> determ<strong>in</strong>e the demand for non-food products, <strong>in</strong> this scenario is that biomass will become a suitable<br />

such as timber, fibre and biomass-based fuels. Produc- energy source. The cultivation of such biomass crops<br />

tivity is determ<strong>in</strong>ed by the locally or regionally pr~vail- requires additional land. Similar changes <strong>in</strong> future land<br />

<strong>in</strong>g <strong>environmental</strong> <strong>conditions</strong>. Soil and atmospheric con- use can develop if carbon sequestration forests are plantditions<br />

defme potential yields of each <strong>in</strong>dividual crop. ed. Land use will thus respond <strong>to</strong> new needs for addi-tional<br />

In the calculation of potential yields, changes <strong>in</strong> weather<br />

and CO2 are frequently <strong>in</strong>cluded. The actual yields are a<br />

fraction of the potential due <strong>to</strong> losses associated with<br />

products and services.<br />

improper management, limited water and nutrient availability,<br />

pests and diseases, and pollutants (Penn<strong>in</strong>g de<br />

Uncerta<strong>in</strong>ties <strong>in</strong> the Interpretation of Scenarios<br />

Vries et al. 1997). Dur<strong>in</strong>g scenarios development, there- Diverse applications of LUC-LCC scenarios have been<br />

fore, assumptions have <strong>to</strong> be made on the actual yield developed. The different approaches are all very sensi-<br />

levels as a function of agricultural management, such as tive <strong>to</strong> the underly<strong>in</strong>g assumptions of future changes <strong>in</strong><br />

yield <strong>in</strong>creases (e.g. fertilisation and irrigation) and pro- agricultural productivity. Estimat<strong>in</strong>g demand is relatection<br />

measures (e.g. weed<strong>in</strong>g and pest control). Irrigatively straightforward, because it depends on the number<br />

tion is rarely considered explicitly or dynamically evalu- of people and their diet. Productivity <strong>in</strong> most scenarios<br />

ated from realistic water supplies, nor is the effect of ir- is calculated through potential and actual yields (i.e. the<br />

rigation on the local weather, such as described by S<strong>to</strong>hl- <strong>in</strong>teraction between <strong>environmental</strong> <strong>conditions</strong> and aggren<br />

et al. (1998). Further, most yield calculations assume ricultural management; Rabb<strong>in</strong>ge and van Oijen 1997>.<br />

constant soil <strong>conditions</strong>. In reality, many land uses lead Large differences <strong>in</strong> productivity exist between scenarios<br />

<strong>to</strong> land degradation, which affects yields and <strong>in</strong> turn lim- and it is not always clear if potential or actual yields are<br />

its and changes land use (Barrow 1991). Estimat<strong>in</strong>g fu- used. This leads <strong>to</strong> large differences <strong>in</strong> the conclusion of<br />

ture yield developments is thus difficult because of its different LUC-LCC scenario studies. For example, the<br />

dependence on management. Many contrast<strong>in</strong>g percep- FAO scenarios study (Alexandra<strong>to</strong>s 1995) concluded that<br />

tions therefore exist <strong>in</strong> the literature.<br />

land availability was not a limi':<strong>in</strong>g fac<strong>to</strong>r <strong>in</strong> most coun-<br />

The demand for land-use products and the calculated tries, while IMAGE-2 scenarios (Alcamo et al.1998) show<br />

productivities are then translated <strong>in</strong><strong>to</strong> the actual land that <strong>in</strong> Asia and Africa, land rapidly becomes limited<br />

use and correspond<strong>in</strong>g land-cover patterns. In this step over the same time period. In the IMAGE-2 scenario,<br />

large methodological difficulties emerge. Agricultural relatively fast changes <strong>to</strong>wards more meat-based diets<br />

land uses <strong>in</strong> certa<strong>in</strong> regions <strong>in</strong>tensify (i.e. <strong>in</strong>crease lead <strong>to</strong> a rapid expansion of graz<strong>in</strong>g systems on which<br />

yields), while <strong>in</strong> others they expand <strong>in</strong> area. The causal productivity only slowly <strong>in</strong>creases. This strongly <strong>in</strong>flu-<br />

fac<strong>to</strong>rs <strong>in</strong> different regions are different and the spatial ences the simulated extent of land use. The FAO study<br />

and temporal consequences cannot be determ<strong>in</strong>ed un- does not consider <strong>in</strong>creases <strong>in</strong> graz<strong>in</strong>g systems. This exambiguously.<br />

For example, deforestation is driven by ample shows that not clearly specify<strong>in</strong>g the actual as-<br />

timber extraction <strong>in</strong> Asia and by the conversion <strong>to</strong>wards sumptions can lead <strong>to</strong> discrepancies and <strong>in</strong>consisten-<br />

pasture <strong>in</strong> Lat<strong>in</strong> America. In Europe, <strong>in</strong>creas<strong>in</strong>g produccies <strong>in</strong> scenario <strong>in</strong>terpretation. Unfortunately most landtivity<br />

and a level<strong>in</strong>g demand drives the contraction of use scenario studies focus on agricultural production<br />

agricultural land and the subsequent expansion of for- on arable land and few at the same time <strong>in</strong>clude graz<strong>in</strong>g<br />

ested land. Additionally, land-cover conversions are not systems. Other important land uses, such as forestry,<br />

a cont<strong>in</strong>uous process. Shift<strong>in</strong>g cultivation is a common <strong>in</strong>frastructure (i.e. urban land uses) and nature conser-<br />

practice, but <strong>in</strong> many regions agricultural land has also vation, and new land uses, such as biomass and carbon<br />

been abandoned (e.g. Foster et al.1998) or is abandoned plantations, are generally not considered, nor is the <strong>in</strong>-<br />

regularly (Skole and Tucker 1993). Such dynamic and fluence of these changes <strong>in</strong> the climate system consid-<br />

complex aspects of LUC-LCC make the development of ered. In most scenario studies, <strong>in</strong>tegration of all land<br />

comprehensive high-resolution LUC-LCC scenarios uses is not yet accomplished.<br />

challeng<strong>in</strong>g, especially when simultaneously new land Reconcil<strong>in</strong>g demand and supply leads <strong>to</strong> different<br />

uses (e.g. biomass plantations) are emerg<strong>in</strong>g.<br />

land-use and land-cover patterns (cf. Fig. E.7>. This is<br />

The result of most LUC-LCC scenarios is land-cover often done by heuristic rules that l<strong>in</strong>k {<strong>in</strong>ter)national<br />

change. This is illustrated by an IMAGE-2 scenario socio-economic drivers with patterns of resource avail-<br />

(Fig. E.7). This scenario illustrates some of the complexiability. Cellular au<strong>to</strong>mata, for example, explicitly resolve<br />

ties <strong>in</strong> the underly<strong>in</strong>g land-use dynamics. Deforestation such rules by assign<strong>in</strong>g probabilities for different land<br />

cont<strong>in</strong>ues globally. Only <strong>in</strong> the latter half of this century uses <strong>to</strong> each cell. These probabilities can change through<br />

is it expected that the forested area will <strong>in</strong>crease aga<strong>in</strong> time (e.g. White et al. 1997). The amount of land used is


506<br />

CHAPTER E.5 .The Vulnerability Approach<br />

The purpose of the scenario development, its underly<strong>in</strong>g<br />

assumptions and approaches used should be carefully<br />

and critically <strong>evaluate</strong>d before the result<strong>in</strong>g landcover<br />

patterns are applied <strong>in</strong> other studies. In addition<br />

the feedbacks between LUC-LCC and other components<br />

of the Earth system (e.g. the weather, the hydrological<br />

cycle, etc.) needs <strong>to</strong> be <strong>in</strong>vestigated, as described elsewhere<br />

<strong>in</strong> this volume. Despite the obvious limitations of<br />

current LUC-LCC scenarios, recent scenario developments<br />

show how useful organised th<strong>in</strong>k<strong>in</strong>g (i.e. detailed<br />

consistency checks between scenario assumptions and<br />

outcomes and explicit <strong>in</strong>corporation of <strong>in</strong>teractions and<br />

feedbacks) about the future can be. <strong>How</strong>ever, a better<br />

perspective on how <strong>to</strong> use land-use and land-cover<br />

change as a driv<strong>in</strong>g force <strong>to</strong> <strong>environmental</strong> change is<br />

strongly required. This requires the further development<br />

of high-resolution <strong>in</strong>tegrated assessment models and<br />

comprehensive scenario studies, <strong>in</strong>tegrat<strong>in</strong>g other aspects<br />

of the Earth system, such as specifically land,land<br />

use and water issues.<br />

Burkhard Frenzel<br />

E.5.3 Procedures <strong>to</strong> Assess the Effect of<br />

Environmental Conditions on Water<br />

Resources: Natural landscape Changes<br />

Introduction<br />

When deal<strong>in</strong>g with the long-term palaeoecological processes<br />

that might <strong>in</strong>fluence present-day water budgets, it<br />

must be noted that climatic fac<strong>to</strong>rs may have very longlast<strong>in</strong>g,<br />

but unexpected series of consequences. An example<br />

of this is the immigration his<strong>to</strong>ry of forest plantspecies<br />

<strong>in</strong><strong>to</strong> vast regions of higher latitude after the end<br />

of the last glaciation (Bernabo and Webb 1977; Gliemeroth<br />

1995; Huntley and Birks 1983). These migrations,<br />

which were triggered by Late-glacial and early Holocene<br />

climatic changes, cont<strong>in</strong>ued until other decisive fac<strong>to</strong>rs<br />

such as stronger competi<strong>to</strong>rs or adverse geological or<br />

climatical situations f<strong>in</strong>ally s<strong>to</strong>pped the immigration<br />

process.<br />

This immigration and reorganisation process of the<br />

various forest communities <strong>in</strong>fluenced the water budgets<br />

of the regions <strong>in</strong><strong>to</strong> which they immigrated but the<br />

decisive climatic fac<strong>to</strong>r was at first the transition from<br />

the Late-glacial <strong>to</strong> the Holocene. probably nearly all the<br />

other processes that <strong>to</strong>ok place dur<strong>in</strong>g immigration were<br />

biotic consequences, which could not be predicted exactly<br />

if only the quality and <strong>in</strong>tensity of the Late-glacial<br />

<strong>to</strong> Holocene climatic change was measured. It is scientifically<br />

very difficult <strong>to</strong> understand and <strong>to</strong> quantify these<br />

long-last<strong>in</strong>g, <strong>in</strong>direct climatic <strong>in</strong>fluences correctly, and<br />

demands reliable quantification of the climatic change<br />

triggers at a regional scale and with high and reliable<br />

temporal resolution. The feedback of the surface <strong>environmental</strong><br />

changes with<strong>in</strong> the climate system also needs<br />

<strong>to</strong> be assessed. <strong>How</strong>ever, the normal physical dat<strong>in</strong>g<br />

procedures can give only approximate data. Therefore,<br />

warve-count<strong>in</strong>gs, dendrochronology or age determ<strong>in</strong>ations<br />

from annually-layered ice have <strong>to</strong> be used <strong>in</strong>stead.<br />

This <strong>in</strong> turn means that much more comprehensive studies<br />

are needed. Moreover, it will often become important<br />

<strong>to</strong> look for marker horizons that can clearly identify synchronously-formed<br />

sediments with<strong>in</strong> the ocean, <strong>in</strong> lakes<br />

and on the cont<strong>in</strong>ents; <strong>in</strong> general, these will be w<strong>in</strong>dtransported<br />

substances like volcanic ash, etc.<br />

Vegetation Changes: Consequences for Water Budgets<br />

It is evident that changes <strong>in</strong> the vegetation pattern and<br />

<strong>in</strong> the prevail<strong>in</strong>g plant communities may be triggered<br />

by atmospheric change or by biotic and pedogenetic<br />

changes, or even by graz<strong>in</strong>g and trampl<strong>in</strong>g animals<br />

(Gossow 1976; Peer 2000; Samjaa et al. 2000; Schaller<br />

1998; Turner 1975). The approach is <strong>to</strong> study the vegetation<br />

and its ongo<strong>in</strong>g or past changes on a broad regional<br />

scale, which helps <strong>to</strong> differentiate between more regional<br />

or local processes. This means, <strong>in</strong> general, that the various<br />

vegetation types with<strong>in</strong> a landscape, e.g. a complete<br />

catchment, have <strong>to</strong> be studied <strong>in</strong> space and time <strong>in</strong> such<br />

a way that it opens up start<strong>in</strong>g po<strong>in</strong>ts for ecological <strong>in</strong>vestigations<br />

or calcul~ions, i.e. one has <strong>to</strong> try <strong>to</strong> map or<br />

reconstruct the vari6us important plant communities<br />

which existed or which had changed with<strong>in</strong> the catchment<br />

area be<strong>in</strong>g studied. One has <strong>to</strong> determ<strong>in</strong>e whether<br />

these changes had been triggered by long-term changes<br />

<strong>in</strong> weather or by biotic processes only, e.g. by the immigration<br />

of stronger competi<strong>to</strong>rs or by pedogenesis, as<br />

far as this is <strong>in</strong>dependent from vegetation (Frenzel 1994).<br />

Plant ecologists <strong>in</strong> general determ<strong>in</strong>e the water budgets<br />

of only certa<strong>in</strong> plant species then, if necessary, extrapolate<br />

<strong>to</strong> whole plant communities. Hydrologists, on<br />

the other hand, generally <strong>in</strong>vestigate the water budgets<br />

of whole catchments, which might be covered by several,<br />

quite different, plant communities. Neither of these<br />

approaches yields reliable data for understand<strong>in</strong>g what<br />

happens <strong>to</strong> the water budgets of a specific region, if certa<strong>in</strong><br />

plant communities are chang<strong>in</strong>g. To overcome these<br />

difficulties, at present it is only possible <strong>to</strong> rely on the<br />

evaporation data of identical plant communities at comparable<br />

sites, or at least <strong>to</strong> use data from related plant<br />

communities, even though the specific soil, water and<br />

atmospheric <strong>conditions</strong> may be different at <strong>in</strong>dividual<br />

sites. These difficulties <strong>in</strong>crease when reconstruct<strong>in</strong>g<br />

former plant communities with no homologues (or at<br />

least analogues) <strong>to</strong> be found <strong>in</strong> modern vegetation; or if<br />

they do exist, do so under quite different <strong>environmental</strong><br />

<strong>conditions</strong>. Such an example would be the early Holo-


sa6ul!lj) adl!JspUl!lll!Jn~I!N :saJJnosaij Ja~I!M uo SUO!~!PUo) II!~UaWUOJ!AU3 :10 ~Ja:l:l3 alj~ ssassv o~ saJnpaJoJd " £'5"3<br />

SUO!~;}l ~S1!A JO J!~S!l;}~J1!l1!qJ OS 'S~S;}lOJ qJ1!q-;}U!d ;}U;}J<br />

AIUO ;}11! S;}n~OreU1! ;}SOqM ';}l;}qdS!W;}H U1;}q~10N ;}q~ JO<br />

10 'SPI;}Y ;}Unp ;})(!I SUO!~!PUOJ ;}~!S re!J;}dS l;}pUn punOJ<br />

;}Soq~ O~ SUO!~!PUOJ re~U;}WU01!AU;} ~U;}l;}JJ!P ;}~!nb l;}pun<br />

;}~ ~1!~ ';}lOJ;}l;}q~ 'U;};}S ;}q U1!J ~I .p;}!pn~s UO!~;}l ;}q~ JO<br />

-1!M ~U1!A;}I;}l ;}q~ ~U!~Jru~SUOJ;}l U! A~U!1!~l;}JUn JO ;};}l~;}P<br />

;}~!nb U;}~O U1! U! ;}S1!;}JJU! A1!W S~;}~pnq-1;}~<br />

sa:JJnosalj JaJDM U! PUD JSOJjDWJad U! Sa6UD4.J<br />

~SOJJ~wJ~d Jo UJ~u~d uo!~nq!J~sw pu~ ~:>U~JJn:>:>O ~ql<br />

J~qt~~M WJ~~-~UOI ~~~J~A~ ~qt uo ~u~pu~d~p J..~UOJ~S S!<br />

JOf~w ~ s~q osre ~SOJJ~WJ~d '~W!~ J~AO ~~mq:> S~! uo pu~<br />

~! ~J~qM SUO!~~J ~qt Jo s~~~pnq J~~~M ~qt uo ~:>u~nIJU!<br />

-~JJ~~U! ~qt ~~J.. '(fL61 uJnqqs~M. '~'~) sd!qsUO!~~I~JJ~~U!<br />

~s~q~ uo ~Jn~~J~~!1 ~A!su~q~Jdwo:> J..J~A ~ S! ~J~ql 'SJn:>:>o<br />

U! SUO!~~J ~soqt Jo s~~~pnq J~~~M ~qt qt!M sd!qsUO!~~1<br />

P~~~~!~S~AU! ~OU ~J~ ~u!J1!~dd~s!p S! ~SOJJ~wJ~d q:>!qM<br />

-!Joq nos J~ddn ~qt ~~qt ~:>~J ~qt JO M~!A UI 'J..pU~!:>mns<br />

%og-ov U!~~uo:> ~!J~q!S s~ q:>ns S~~J~ ~SOJJ~wJ~d U! SUOZ<br />

-J~d JO ~U!~I~w u~ppns ~A!~~I~J ~ '~:>! s~ ~wnlOA J!~qt Jo<br />

qs~JJ JO S~SS~W ~~nq p~~nq!J~uo:> ~A~q pynoqs ~SOJJP.W<br />

uo '~!J~q!S UJ~~S~~ pm reJ~U~:> JO SUO!~~J J~~J~1 ~qt JOJ<br />

p~~~W!~S~ u~~q J~A~U s~q S!ql 'SJ~A!J pu~ S~}f1!1 O~ J~~~M<br />

J~A!J J~WJoJ U! p~WJoJ S! ~SOJJP.wJ~d J! 'pu~q J~q<strong>to</strong> ~qt<br />

pynoqs s~~JnA!J pu~ s~}f1!1 J~WJoJ WOJJ JjounJ 'S~:>~JJ~~<br />

-sn~:> UJn~ U! S!q~ '~wnloA U! ~S~~J:>U! ~q~ J..q p~p~dw! ~q<br />

-JnS U! UO!~~Jn~~S-J~AO pm SUO!~~ynwn:>:>~ ~U~W!p~S ~U!<br />

JO UO!~:>nJ~S~p q:>~3: '~Z~~JJ Osre J..~w q:>!qM J~~~M ~:>~J<br />

~qt ~q mM ~A~~q-~SOJd 's~xnIJ ~~~q ~:>u~nIJu! J..nJ1!Ss~:>~u<br />

n!M ~~J~ ~SOJJ~wJ~d ~ U! UO!~~~~~~A ~S~JOJ J~WJOJ ~qt<br />

-JOJ snOJ~J!UO:> re~JoqJO J~U!1 ~q~ 'pu~q J~q<strong>to</strong> ~qt UO 'Jjo<br />

-unJ J~dw~q U!~~~ n!M q:>!qM '(g'3: '~!d) s~:>u~nb~suo:><br />

SI!I{ ~S3l0d 'l!!l3q!S '1!!~no}j1!}.<br />

J1Il~U3:> JO UO!S3l ~SOlJI!Wl3d<br />

'8'3'6!~<br />

3:>U3nb3SUO:><br />

3~1!!p3WW! 31{~ 3ll! spunow<br />

-~SOlJ ~UI!W J.q p3l\!3p U33q<br />

xnIJ-~113q 11 s3:JnpoJd 'q:JJ11{ PU11 3u!d J..{J11yn:J!~J11d 'S~S3<br />

UO!Smdx3 3q~ ~ll!mOA11} snq~ 'SJ3J..11{ nos J3d33p ~ll!~11J~3<br />

-u3d q~WJ11M J3WWnS S~U3A3Jd q:J!qM J3J..11{ ~u!p3dw!<br />

lS0JjeWJ3d }O<br />

sa.JJnosab' JaJDM /D!JJsaJJal<br />

al/J uo sa.Juan/Ju/ J!al/l PUD Sa6UDl/) /aAa/-Das 'A1!M UMOU:>yUn<br />

-03S 3~ UO PU1I '3{11:)S pUt! A~!:)°13A J!3q~ uo Su!pu3d3Q<br />

JJounJ J3~1IMpUnOJS PU1I 3:)1IJJnS 3:)u3nyU! AI3A!~1IS3U<br />

JO AI3A!~!sod pynOM S3SU1Iq:) 13A31-1I3S 'uo!~1In~!s {1I:)!SOI<br />

'{11 ~3 UU1IW13~u1Ig ~'l661 '{11 ~3 nIl) SUO!S3J J3SJ1Il WOJJ<br />

'~unO:):)11 O~U! U3}]1!~ 3q o~ 3A1Iq S3SU1Iq:) 13A31<br />

-1I3S :)!~1I~SOS! PU1I :)!~1I~Sn3 3SJno:) JO '('lS"61 U!MpOf) ~Vg61<br />

-Jo 3J1! SJO~:)1IJ ~U1IA313J 3~ 1{11 ~3A ~u3P!A3-JI3s S! S!q.L<br />

Jo ~ndu! ~U3W!p3S 3~ J! 3~1I!~U3J3mp o~ ~yn:)YJ!p i..J3A U3~<br />

13A31-1I3S 'uo!~1In~!s 3q~ SU!~1I:)!ldwo:) S! SUO!S3J 3U!J<br />

-1IW Su!u!ofp1l 3q~ pUt! S3!J1!n~S3 J!3~ O~U! SJ3A!J J3SJ1Il<br />

-1IJ3dw3~ 3q~ U! S3SUt!q:) Aq '31dw1Ix3 JoJ 'p3Sn1l:) S3SUt!q:)<br />

-U! U1I:) ~11~ JO~:)1IJ J3~0Ut! 3J1I SJ3~1IM U1I3:)0 3~ Jo 3Jn~<br />

'J3A03JOW 'SUO!S3J {1I~S1I0:) Jo s~3Spnq J3~1IM 3~ 3:)u3ny<br />

-!AU3 {1I!J~S3JJ3~ Su!U!ofp1l Jo J..S°I°lpAq 3~ 3:)u3nyU! AI<br />

-SUOJ~S U1I:) ~Jodsu1IJ~ ~U3W!P3S 3U!J1IW {1I~S1I0:) 3JOqS-IJo<br />

'UO!~1Iyn:)J!:) J3~1IMpUnOJS SU!~:)3IJ1I sn~ PU1I 's3!qd1lJSOd<br />

-o~ 3JOqS pUt! 3U!J1!wqns 3~ ~oq SU!Su1Iq:) Aq S~U3WUOJ<br />

snOU3S0JqwO PU1I snou3Sodo~ 3q~ 3J1I SJO~:)1IJ J3~0<br />

o~ U1I3:)0 WOJJ UO!~!sUt!J~ 3q~ ~11 WJoJ U1I:) ~11~ sSoq-~1I3d<br />

-old AluO ~ou o~ 31q1l 3J1I A3q.L '(Vg61'{11 ~3 }]:)1ISSO)l) pu1Il<br />

-U! OS{1I ~nq SWJO~S PU1I S3A1IM ~SU!1IS1I 3U!PS1I0:) 3~ ~:)3~<br />

-!SOIO:)30311{11d ~S1IA 3~ ~3A 'JJOUnJ {1I!J~S3JJ3~ 3~ 3:)U3ny<br />

-J!P MOq S3~1IJ~SUOW3p sSoq-~1I3d 3S3q~ UO 3Jn~1IJ3~!1 {11:)<br />

-3SUO:) PU1I S3Sn1l:) U33~3q 3~1I!~U3J3JJ!P O~ S! ~! ~ln:)y<br />

"{Vg61 '{11 ~3 }]:)1ISSO)l) UO!~1IWJOJ J!3q~ JO S3:)U3nb<br />

Lo~


508<br />

CHAPTER E.5 .The Vulnerability Approach<br />

Migrat<strong>in</strong>g Dunes and Their Influence on Water Budgets<br />

1\'10 types of migrat<strong>in</strong>g dune fields have <strong>to</strong> be taken <strong>in</strong><strong>to</strong><br />

consideration: those on the lowland coasts and those<br />

with<strong>in</strong> the cont<strong>in</strong>ents. Causes and consequences of the<br />

action of coastal dune fields are directly connected with<br />

the processes go<strong>in</strong>g on along the lowland coasts. Concern<strong>in</strong>g<br />

the cont<strong>in</strong>ental dune fields, one has <strong>to</strong> differentiate<br />

between those of arid <strong>to</strong> semi-arid climates aga<strong>in</strong>st<br />

those of more temperate climates. The latter were mostly<br />

formed dur<strong>in</strong>g glacial times and their migrations<br />

s<strong>to</strong>pped by plant growth dur<strong>in</strong>g the Holocene. In general,<br />

they will become active aga<strong>in</strong> if the protective vegetation<br />

cover is destroyed. This can occur due <strong>to</strong> landscape<br />

conversion by people. In colder climates, where<br />

plant growth is not rapid, fire and river action can cause<br />

terrestrial sand dunes <strong>to</strong> migrate aga<strong>in</strong>. In arid and semiarid<br />

regions on the other hand, cont<strong>in</strong>ental sand dunes<br />

will nearly always be able <strong>to</strong> migrate, provided the geological<br />

situation is favourable. Here, migrat<strong>in</strong>g sand<br />

dunes can block rivers and cause lakes <strong>to</strong> be formed.<br />

This is not restricted <strong>to</strong> modern arid <strong>to</strong> semi-arid regions<br />

only, but may also have happened dur<strong>in</strong>g full-glacial<br />

or late-glacial times of various Pleis<strong>to</strong>cene glaciations<br />

<strong>in</strong> what are now temperate climates.<br />

Dur<strong>in</strong>g palaeoecological <strong>in</strong>vestigations these dunemade<br />

lakes or swamps may easily be taken as <strong>in</strong>dica<strong>to</strong>rs<br />

of the weather becom<strong>in</strong>g moister, though this has not<br />

always been the case. Comparable effects can be observed<br />

even <strong>to</strong>day <strong>in</strong> temperate climates, as for example <strong>in</strong> the<br />

lowlands of the River Leba, northern Poland (Tobolski<br />

1982; Fig. E.9). Here, migrat<strong>in</strong>g dunes are <strong>in</strong>vad<strong>in</strong>g a peatbog<br />

or an alder carr. Aga<strong>in</strong>, the palaeoecological impression<br />

would be that the weather had become moister but<br />

Fig.E.9.<br />

Leba-lowland, northern Poland.<br />

A sanddune <strong>in</strong>vades an<br />

ombrogenous peatbog, caus<strong>in</strong>g<br />

an <strong>in</strong>undation of the bog<br />

<strong>in</strong> fact the drown<strong>in</strong>g of the peat bog and of the alder carr<br />

was only caused by migrat<strong>in</strong>g dunes imped<strong>in</strong>g the runoff<br />

and press<strong>in</strong>g groundwater out of the sediments.<br />

Such migrat<strong>in</strong>g dunes, both at the coast and with<strong>in</strong><br />

the cont<strong>in</strong>ents, conta<strong>in</strong> a lot of groundwater, thus favour<strong>in</strong>g<br />

peat-bogs <strong>to</strong> grow between the dune ridges or even<br />

lakes <strong>to</strong> be formed (Pachur and Hoelzmann 1991). These<br />

water masses with<strong>in</strong> the dune sands can also be <strong>in</strong>fluenced<br />

by permafrost. Moreover, it is <strong>in</strong>adequate <strong>to</strong> rely<br />

on only one study site or small region. The <strong>in</strong>vestigation<br />

of the his<strong>to</strong>ry of the migrat<strong>in</strong>g dunes <strong>in</strong> the lowlands of<br />

the River Leba, as already mentioned, exemplifies this<br />

very well (Tobolski 1982). Only by a regional, comprehensive<br />

<strong>in</strong>vestigation, could it be conv<strong>in</strong>c<strong>in</strong>gly shown that<br />

the middle <strong>to</strong> late Holocene start of the migration of these<br />

dunes was caused by man; this <strong>in</strong> turn <strong>in</strong>fluenced the<br />

morphology of the nearby sea coast, and the water budgets<br />

and vegetation types, without any atmospheric impact!<br />

A scientifically broad <strong>in</strong>vestigation of present-day<br />

ecological and hydrological <strong>conditions</strong> <strong>in</strong> homologue<br />

ecological situations is, therefore, of utmost importance<br />

for understand<strong>in</strong>g what has happened and for avoid<strong>in</strong>g<br />

<strong>in</strong>correct palaeo- or ecological conclusions <strong>to</strong> be drawn.<br />

Pedogenesis and Chang<strong>in</strong>g Water Resources<br />

It is well known that pedogenesis is governed decisively<br />

by atmospheric <strong>conditions</strong>, by the hydrological situation<br />

and by the biosphere. With water resources, the most<br />

important processes are the formation of f<strong>in</strong>er-gra<strong>in</strong>ed,<br />

m<strong>in</strong>erogenic particles and the narrow<strong>in</strong>g of or even<br />

block<strong>in</strong>g of pores that might conta<strong>in</strong> and conduct water.<br />

Soil formation is one long-duration process which<br />

is often <strong>in</strong>fluenced by much older climatic or geological


processes. A broad literature <strong>in</strong>forms about the wealth<br />

of difficulties <strong>in</strong> dat<strong>in</strong>g reliably the beg<strong>in</strong>n<strong>in</strong>g and the<br />

various steps of pedogenesis <strong>in</strong> a given area (Morozova<br />

1981). Where soils have been fossilised dur<strong>in</strong>g the past<br />

by natural or anthropogenic processes (e.g. the erection<br />

of large burial mounds, etc.) the outl<strong>in</strong>es of their formation-his<strong>to</strong>ry<br />

can be traced <strong>to</strong> some extent. Yet it has<br />

always <strong>to</strong> be taken <strong>in</strong><strong>to</strong> consideration that even modern<br />

pedogenesis can penetrate deep <strong>in</strong><strong>to</strong> the soil, thus <strong>in</strong>fluenc<strong>in</strong>g<br />

former soil horizons. In this context it must be<br />

stressed that the spontaneous or anthropogenic changes<br />

<strong>to</strong> vegetation will <strong>in</strong>fluence soil formation <strong>in</strong>tensively<br />

thus <strong>in</strong>fluenc<strong>in</strong>g water resources <strong>in</strong>directly.<br />

F<strong>in</strong>al Remarks<br />

The task is <strong>to</strong> assess the consequences of natural landscape<br />

changes on water resources. From the discussion<br />

here, it will be seen that these natural landscape changes<br />

are <strong>in</strong> general very complex and complicated processes,<br />

<strong>in</strong> which the trigger<strong>in</strong>g mechanisms may be simple (<strong>in</strong><br />

general they are not) but the consequences and the <strong>in</strong>terrelationships<br />

of processes are extremely non-l<strong>in</strong>ear<br />

and complicated. This be<strong>in</strong>g so, one should always restra<strong>in</strong><br />

from simple, uni-directional explanations. Instead,<br />

the great variety of <strong>in</strong>teract<strong>in</strong>g processes has <strong>to</strong> be taken<br />

<strong>in</strong><strong>to</strong> consideration. The palaeoecological and ecologicalliteratures<br />

show that, however, a uni-directional way<br />

of th<strong>in</strong>k<strong>in</strong>g is widely accepted. Very often we are a long<br />

way from a reliable understand<strong>in</strong>g of what had happened<br />

palaeoecologic ally and thus what might have <strong>in</strong>fluenced<br />

-and still <strong>in</strong>fluences -the environment, <strong>in</strong>clud<strong>in</strong>g<br />

water resources. The only way <strong>to</strong> avoid these traps is<br />

<strong>to</strong> complete a scientifically and regionally very broad,<br />

very comprehensive, <strong>in</strong>vestigation of the palaeoecological<br />

and ecological processes act<strong>in</strong>g <strong>in</strong> a given landscape.<br />

This is a very difficult task but is essential if we are <strong>to</strong><br />

understand how human be<strong>in</strong>gs alter the natural environment.<br />

Thomas J. S<strong>to</strong>hlgren<br />

E.5.4 An Example of the Vulnerability Approach:<br />

Ecosystem Vulnerability<br />

Rocky Mounta<strong>in</strong> National Park and adjacent areas <strong>in</strong> the<br />

Front Range of the Rocky Mounta<strong>in</strong>s <strong>in</strong> Colorado, USA,<br />

like all bio-regions <strong>in</strong> the country, suffer from multiple<br />

stresses simultaneously <strong>in</strong>clud<strong>in</strong>g: rapidly chang<strong>in</strong>g cultural<br />

his<strong>to</strong>ry, rapid human population growth, habitat loss<br />

and loss of species, altered disturbance regimes, <strong>in</strong>vasive<br />

species, and air and water pollution (S<strong>to</strong>hlgren 1999a).<br />

Rapid climate change is an additional stress that may<br />

<strong>in</strong>teract <strong>to</strong> a greater or lesser degree with these other<br />

stresses. There is a need <strong>to</strong> assess the risks associated<br />

E.S.4 .An Example of the Vulnerability Approach: Ecosystem Vulnerability 509<br />

with such changes, and the resilience of the ecosystem <strong>to</strong><br />

resist negative impacts due <strong>to</strong> these changes.<br />

Despite the recent attention that global climate change<br />

and potential long-term effects of <strong>in</strong>creas<strong>in</strong>g greenhouse<br />

gases <strong>in</strong> the atmosphere received, other <strong>environmental</strong><br />

stresses are higher priority issues and concerns for land<br />

managers <strong>in</strong> the area (e.g. Rocky Mounta<strong>in</strong> National Park<br />

Resources Management Plan 1999). The economy of the<br />

regions is transform<strong>in</strong>g from extraction-based <strong>in</strong>dustries<br />

(forestry, m<strong>in</strong><strong>in</strong>g) <strong>to</strong> <strong>to</strong>urism (natural areas and wildlife).<br />

The human population is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> the region at<br />

2-3% yr-l (a doubl<strong>in</strong>g rate <strong>in</strong> 20 years), and annual visitation<br />

<strong>to</strong> Rocky Mounta<strong>in</strong> National Park now exceeds<br />

3 million people (S<strong>to</strong>hlgren 1999a).Entire ponderosa p<strong>in</strong>e<br />

(P<strong>in</strong>us ponderosa) forests, decimated byturn-of-the-century<br />

logg<strong>in</strong>g and fire, have re-grown <strong>to</strong> create massive<br />

fuel loads, that due <strong>to</strong> a half-century of fire suppression,<br />

are ripe for catastrophic wildfire at the forest-suburb<br />

<strong>in</strong>terface (Veblen et al. 2000). There is a very strong l<strong>in</strong>k<br />

of El N<strong>in</strong>o-Southern Oscillation on fire frequency and<br />

size throughout the Front Range (Veblen et a1.2000).Also<br />

demand<strong>in</strong>g immediate management attention, are extralarge<br />

herds of elk, without native preda<strong>to</strong>rs (grizzly bear.<br />

wolves). Many dra<strong>in</strong>ages have been altered by the nearcomplete<br />

extirpation of beaver, alter<strong>in</strong>g vegetation succession,<br />

nutrient cycl<strong>in</strong>g, soil erosion, and wildlife habitat.<br />

Invasive annual grasses and noxious weeds are <strong>in</strong>vad<strong>in</strong>g<br />

these riparian zones, meadows, and low-elevation<br />

forests, which as a result, urgently require control actions.<br />

Air pollution adds more than 4 kg ha-l yr-l <strong>to</strong> terrestrial<br />

systems <strong>in</strong> this region (Baron et al. 2000), contributes <strong>to</strong><br />

visibility problems, and potentially enhances the spread<br />

of <strong>in</strong>vasive species. Even without changes <strong>in</strong> climate, these<br />

multiple stresses would rema<strong>in</strong> <strong>to</strong>p research and resource<br />

management priorities.<br />

Assess<strong>in</strong>g the <strong>vulnerability</strong> of Rocky Mounta<strong>in</strong> National<br />

Park and adjacent lands <strong>to</strong> climate change requires<br />

a full understand<strong>in</strong>g of ecosystem components and processes,<br />

exist<strong>in</strong>g stresses, and their <strong>in</strong>teractions. Land managers<br />

are often bombarded by so many current and nearfuture<br />

problems and stakeholder demands, that longterm,<br />

subtle, chronic stresses like <strong>in</strong>creas<strong>in</strong>g greenhouse<br />

gases <strong>in</strong> the atmosphere are of less importance <strong>to</strong> them.<br />

Still, the long-term conservation of natural resources and<br />

healthy economies requires short- and long-term plann<strong>in</strong>g.<br />

A common sense approach might <strong>in</strong>clude: (1) direct<br />

and immediate attention <strong>to</strong> the most urgent and<br />

costly stresses; (2) additional research on the role of ecosystem<br />

components and processes with<strong>in</strong> the climate<br />

system, and (3) some research attention on improv<strong>in</strong>g<br />

long-term scenarios. An alternative approach is <strong>to</strong> proportion<br />

research, management, and cop<strong>in</strong>g efforts at<br />

various scales (i.e. local, regional, national, global) <strong>to</strong><br />

assure that various stakeholder needs are met at the appropriate<br />

scale. In any case, multiple stresses must be<br />

assessed simultaneously.


Introduction<br />

The central Rocky Mounta<strong>in</strong>s, like all bio-regions <strong>in</strong> the<br />

USA, suffer from multiple stresses simultaneously <strong>in</strong>clud<strong>in</strong>g:<br />

rapidly chang<strong>in</strong>g cultural his<strong>to</strong>ry, rapid human<br />

population growth, habitat loss and loss of species, altered<br />

disturbance regimes, <strong>in</strong>vasive species, and air and<br />

water pollution (S<strong>to</strong>hlgren 1999b). Rapid large-scale atmospheric<br />

circulation change is an additional stress that<br />

may <strong>in</strong>teract <strong>to</strong> a greater or lesser degree with these other<br />

stresses. Assess<strong>in</strong>g the immediate and long-term needs<br />

of stakeholders, native biodiversity, the economy, and<br />

There are strong suspicions that the episodes of<br />

warm<strong>in</strong>g and cool<strong>in</strong>g were abrupt rather than gradual<br />

changes (Fall 1988; Schuster et al. 2000). Tree-r<strong>in</strong>g<br />

records nearby <strong>in</strong> the south-western US show numerous<br />

abrupt changes <strong>in</strong> precipitation between 800 and<br />

2000 years ago (Graumlich 1993; Hughes and Graumlich<br />

1996), and the ice cores <strong>in</strong> Greenland (Groots et al.1993;<br />

Alley et al. 1993) and Wyom<strong>in</strong>g (Schuster et al. 2000)<br />

have documented changes <strong>in</strong> mean annual temperature<br />

by as much as 10 °C <strong>in</strong> a few years. Background rates of<br />

climate change <strong>in</strong> the <strong>to</strong>pographically complex Rocky<br />

Mounta<strong>in</strong>s have been abrupt, bidirectional and unpredictable<br />

(Schuster et al. 2000). The present rates of<br />

change can be gauged aga<strong>in</strong>st these background levels.<br />

ecosystems requires that we understand all these stresses<br />

and set appropriate priorities for prevention, control,<br />

mitigation, and res<strong>to</strong>ration. After a brief review of the<br />

<strong>in</strong>dividual stresses, potential <strong>in</strong>teractions are discussed<br />

<strong>in</strong> this example, and strategies <strong>to</strong> assess priorities are<br />

Rapidly Chang<strong>in</strong>g Cultural His<strong>to</strong>ry<br />

presented.<br />

Cultural his<strong>to</strong>ry has changed rapidly <strong>in</strong> the past 200 years<br />

It is often helpful <strong>to</strong> <strong>evaluate</strong> climate trends <strong>in</strong> a hav<strong>in</strong>g significant effects on the natural resources,land-<br />

palaeoclimate context. The s<strong>to</strong>ry that emerges <strong>in</strong> the scapes, and ecosystems <strong>in</strong> the central Rocky Mounta<strong>in</strong>s<br />

central Rocky Mounta<strong>in</strong>s is one of tremendous tempo- (Buchholtz 1983). The discovery of gold <strong>in</strong> 1859 resulted<br />

ral and spatial variability, and bi-directional changes <strong>in</strong> <strong>in</strong> an exponential <strong>in</strong>crease <strong>in</strong> the human population,<br />

climate and vegetation (Nichols 1982; Alexander 1985; which changed the regional economy and greatly altered<br />

Whitlock 1993; S<strong>to</strong>hlgren 1999a,b; Schuster et al. 2000). nearly every ecosystem. Economic development began<br />

The vary<strong>in</strong>g treel<strong>in</strong>e locations provide evidence of <strong>to</strong> centre on m<strong>in</strong><strong>in</strong>g, forestry, agriculture, recreation, and<br />

drastic changes <strong>in</strong> climate. Dur<strong>in</strong>g the P<strong>in</strong>edale glacia- the service <strong>in</strong>dustries that support these other economic<br />

tion (22400 <strong>to</strong> 12200 years ago), the treel<strong>in</strong>e <strong>in</strong> the activities (Lavender 1975). These activities required wa-<br />

southern Rocky Mounta<strong>in</strong>s <strong>in</strong> Colorado was 500 m (Niter s<strong>to</strong>rage and re-distribution projects proportionate<br />

chols 1982) <strong>to</strong> 1500 m (Fall 1988) below the present-day with human population growth (S<strong>to</strong>hlgren 1999a).<br />

treel<strong>in</strong>e, and annual temperatures were 7 <strong>to</strong> 13 °C cooler. The extraction-based culture <strong>in</strong> the Rocky Mounta<strong>in</strong>s<br />

The lower limit of permafrost was 1 000 m lower <strong>in</strong> Colo- ga<strong>in</strong>ed momentum by m<strong>in</strong><strong>in</strong>g copper, gold, lead, morado<br />

(Fall 1988). Dur<strong>in</strong>g the late-glacial period (15000 lybdenum, silver, tungsten and z<strong>in</strong>c, result<strong>in</strong>g <strong>in</strong> the con-<br />

<strong>to</strong> 11000 years ago), annual temperatures were 3 <strong>to</strong> 4.5 °, t<strong>in</strong>ued contam<strong>in</strong>ation of many lands and waterways.<br />

cooler than <strong>to</strong>day, and the treel<strong>in</strong>e was about 500 m <strong>to</strong> Forestry was a major <strong>in</strong>dustry, though the rapid cutt<strong>in</strong>g<br />

700 m below the modern treel<strong>in</strong>e (Fall 1988). Dur<strong>in</strong>g the of old-growth timber, relatively slow growth rates, and<br />

Holocene transition (12000 <strong>to</strong> 8000 years ago), subal- a shift <strong>to</strong> <strong>to</strong>urism has reduced the emphasis on forestry<br />

p<strong>in</strong>e forests probably migrated upslope, and montane <strong>in</strong> many areas. Agriculture <strong>in</strong>cludes dryland and irri-<br />

forests of lodgepole p<strong>in</strong>e and Douglas-fir began <strong>to</strong> exgated farm<strong>in</strong>g and lives<strong>to</strong>ck graz<strong>in</strong>g. Lives<strong>to</strong>ck are frepand<br />

<strong>in</strong> the lower elevations. There was a climatic optiquently moved between high-elevation summer and<br />

mum from 9000 <strong>to</strong> 7000 years ago; mean annual tem- low-elevation w<strong>in</strong>ter pastures. Tourism is now the maperatures<br />

<strong>in</strong>creased 5 <strong>to</strong> 7.5 °C from the late-glacial <strong>in</strong><strong>to</strong> jor <strong>in</strong>dustry <strong>in</strong> the region -centered on Rocky Moun-<br />

the Holocene. As the climate warmed between 9 000 and ta<strong>in</strong> National Park, several national forests, major ski<br />

4500 years ago, the upper treel<strong>in</strong>e advanced <strong>to</strong> as high resorts, and summer vacation use <strong>in</strong> nearly all moun-<br />

as 300 m above its present position dur<strong>in</strong>g the warmest ta<strong>in</strong> <strong>to</strong>wns. It is aga<strong>in</strong>st this backdrop of rapid cultural<br />

period (Fall 1988). Cool<strong>in</strong>g and treel<strong>in</strong>e lower<strong>in</strong>g oc- change that rapid human population growth has become<br />

curred aga<strong>in</strong> between 4500 and 3100 years ago (Fall<br />

1988) followed by another warm<strong>in</strong>g period from 3000<br />

<strong>to</strong> 2000 years ago, and a cool<strong>in</strong>g trend 2000 years ago<br />

a major concern <strong>in</strong> many areas (Riebsame 1997).<br />

(Elias et al. 1986). The Little Ice Age from around 1550 <strong>to</strong><br />

1845 A.D. ended very abruptly (Schuster et al. 2000) and<br />

Human Population Growth<br />

forced a descend<strong>in</strong>g of the upper treel<strong>in</strong>e and perhaps human population grew rapidly between 1950 and<br />

lengthened <strong>in</strong>tervals between fires. Tree r<strong>in</strong>gs evidence 1990 with a 40-year <strong>in</strong>crease of about 150% <strong>in</strong> Colorado.The<br />

a warm<strong>in</strong>g trend <strong>in</strong> recent decades, but only <strong>in</strong> some population <strong>in</strong> Estes Park and visi<strong>to</strong>r use of Rocky<br />

areas (Weisberg and Baker 1995).<br />

Mounta<strong>in</strong> National Park has almost doubled s<strong>in</strong>ce 1960


fnvasive<br />

(S<strong>to</strong>hlgren 1999a). Current rates of human population<br />

change are 2 <strong>to</strong> 3% for many areas <strong>in</strong> the Rocky Mounta<strong>in</strong>s<br />

with urban sprawl and development <strong>in</strong> mounta<strong>in</strong><br />

communities. Population growth <strong>in</strong>creases demands for<br />

water, power, and natural resources. Runoff and snowmelt<br />

from the peaks supply the Arkansas, South Platte,<br />

Colorado, and San Juan rivers with the water supply for<br />

most western states (Riebsame 199]). Human population<br />

growth and agriculture demands on water have<br />

many of these rivers "over-subscribed". Evaluat<strong>in</strong>g the<br />

effects of near-future weather and local land-use changes<br />

on the quality, quantity, and tim<strong>in</strong>g of water are a primary<br />

concern of stakeholders.<br />

Range of Colorado show a tenfold <strong>in</strong>crease <strong>in</strong> ponderosa<br />

p<strong>in</strong>e biomass s<strong>in</strong>ce 1890 <strong>in</strong> many stands (M. Arbaugh,<br />

US Forest Service, unpublished data; Veblen and Lorenz<br />

1991). This has res<strong>to</strong>red habitat for many wildlife species.<br />

<strong>How</strong>ever, more than 60 years of fire suppression has created<br />

hazardous fuels <strong>in</strong> a forest community that naturally<br />

burned at 20-60-year <strong>in</strong>tervals <strong>in</strong> many areas<br />

(Veblen et al. 2000). Fire suppression has been effective:<br />

perhaps <strong>to</strong>o effective for some species. For example, the<br />

number of three-<strong>to</strong>ed woodpeckers <strong>in</strong>creases greatly for<br />

three <strong>to</strong> five years <strong>in</strong> burned stands, as the birds feed on<br />

larval spruce beetles. These woodpeckers may have a profound<br />

affect on nearby forest stands by reduc<strong>in</strong>g the severity<br />

of spruce beetle epidemics. Herbaceous plant di-<br />

Habitat Loss and Loss <strong>in</strong> Biodiversity<br />

versity skyrockets after a burn. Seventeen years after the<br />

390-ha Ouzel burn <strong>in</strong> Rocky Mounta<strong>in</strong> National Park,<br />

twice as many unders<strong>to</strong>rey species can be found <strong>in</strong> the<br />

Another <strong>to</strong>p priority <strong>environmental</strong> issue <strong>in</strong> the Rocky<br />

Mounta<strong>in</strong>s, and one of the most urgent for land managers<br />

throughout the west, is habitat loss and loss of biodiversity.<br />

Most of the species on the endangered species<br />

list are there because of habitat loss (mostly associated<br />

with land exploitation) or <strong>in</strong>vasive species (Flather et al.<br />

1984). Beavers (Cas<strong>to</strong>r canadensis) that once played important<br />

roles <strong>in</strong> shap<strong>in</strong>g vegetation patterns <strong>in</strong> riparian<br />

and meadow ecosystems <strong>in</strong> the Rocky Mounta<strong>in</strong>s are virtually<br />

absent <strong>in</strong> many areas (Chadde and Kay 1991; Knight<br />

burned area than can be found <strong>in</strong> adjacent unburned forest<br />

stands (S<strong>to</strong>hlgren et al. 1997>. Species dependent on<br />

post-disturbance stands suffer habitat loss with each suppressed<br />

fire.<br />

All rivers <strong>in</strong> the Rocky Mounta<strong>in</strong> region have been<br />

altered by reservoirs or other water projects (transbas<strong>in</strong><br />

canals, irrigation ditches, and small water impoundments).A<br />

majortransbas<strong>in</strong> water import project <strong>in</strong> Colorado<br />

carries about 370 Mm3 yr-l from the Colorado River<br />

(west of the Cont<strong>in</strong>ental Divide) through a 7.8-km tun-<br />

1994). Top preda<strong>to</strong>rs such as grizzly bears and grays were<br />

hunted relentlessly by European settlers and have been<br />

extirpated from most of the Rockies. Amphibians have<br />

decl<strong>in</strong>ed through habitat loss, predation by non-native<br />

nel <strong>to</strong> the Big Thompson River (east of the Cont<strong>in</strong>ental<br />

Divide). Ten reservoirs were built <strong>to</strong> support the project.<br />

In the catchments of the Arapaho-Roosevelt forests<br />

<strong>in</strong> Colorado are approximately 40 major reservoirs<br />

sport fishes, timber harvest, <strong>in</strong>creased ultraviolet radiation,<br />

and disease (Corn and Fogelman 1984; Bury et al.<br />

1995). Nearly all native fisheries <strong>in</strong> the Rocky Mounta<strong>in</strong>s<br />

have been compromised by <strong>in</strong>troduced fishes (Trotter<br />

1987; Behnke 1992). Populations of bighorn sheep are at<br />

only about 2% <strong>to</strong> 8% of their populations at the time of<br />

European settlement (S<strong>in</strong>ger 1995). Long-term changes<br />

<strong>in</strong> weather have not been implicated <strong>in</strong> the loss of any<br />

(C. Chambers, US Forest Service, pers. comn., February<br />

1995). Reservoir-build<strong>in</strong>g directly tracks human population<br />

<strong>in</strong>creases (S<strong>to</strong>hlgren 1999a). Domestic water use<br />

accounts for less than 6% of the <strong>to</strong>tal water use, agriculture<br />

accounts for about 90% of the water use (United<br />

States Geological Survey 1990).<br />

species <strong>in</strong> the US but abrupt changes <strong>in</strong> weather <strong>in</strong> an<br />

already fragmented landscape, and <strong>in</strong> comb<strong>in</strong>ation with<br />

j Species<br />

other stresses, may have a greater effect now than weather<br />

changes <strong>in</strong> the past. Shift<strong>in</strong>g the focus of biodiversity<br />

] [nvasive non-<strong>in</strong>digenous species are caus<strong>in</strong>g severe losses<br />

<strong>in</strong> j agriculture, forestry and fishery resources <strong>in</strong> some<br />

preservation <strong>to</strong> the radiative effect of <strong>in</strong>creased CO2 <strong>in</strong><br />

the atmosphere (see Sala et al. 2000) may be tangential<br />

given that the overrid<strong>in</strong>g causes of species endangerment<br />

are habitat loss (land-use change) and <strong>in</strong>vasive species<br />

(Flather et al. 1984).<br />

regions and ecosystem processes throughout the US <strong>to</strong><br />

the tune of $138 billion per year (Pimentel et al. 1999;<br />

Mack et al. 2000). Land managers, farmers, ranchers, and<br />

1the<br />

public consider <strong>in</strong>vasive species a <strong>to</strong>p priority threat<br />

I(Mack<br />

et al. 2000). European cheatgrass has <strong>in</strong>vaded significant<br />

portions of the western p<strong>in</strong>yon-juniper woodlands,<br />

ponderosa p<strong>in</strong>e, and Douglas-fir areas <strong>in</strong> the Rocky<br />

Altered Disturbance Regimes<br />

Mounta<strong>in</strong>s (Peters and Bunt<strong>in</strong>g 1994). Several rare plant<br />

species are be<strong>in</strong>g displaced by <strong>in</strong>troduced plants <strong>in</strong> west-<br />

Vegetation types that are adapted <strong>to</strong> frequent fire are a<br />

major concern <strong>in</strong> the foothills of the central Rocky Mounta<strong>in</strong>s.<br />

For example, ponderosa p<strong>in</strong>e forests <strong>in</strong> the Front<br />

ern rangelands (Rosentreter 1994). A dense cover of<br />

cheatgrass <strong>in</strong>creased the fire frequency <strong>in</strong> many of these<br />

areas. With each fire, the dom<strong>in</strong>ance of non-native an-


512<br />

CHAPTER E.5 .The Vulnerability Approach<br />

nual grasses is enhanced at the expense of native perennial<br />

grasses. Exotic plant species such as spotted knapweed,<br />

Kentucky bluegrass, common dandelion, and Rus-<br />

Air and Water Pollution<br />

sian thistle are rapidly <strong>in</strong>vad<strong>in</strong>g many landscapes (Lang- Air and water pollution also cont<strong>in</strong>ue <strong>to</strong> be major stresses<br />

ner and Flather 1994; S<strong>to</strong>hlgren et al. 2000). Purple loose- throughout the region. For example, air pollution, pristrife,<br />

another European weed, is beg<strong>in</strong>n<strong>in</strong>g <strong>to</strong> <strong>in</strong>vade marily from the combustion of fossil fuels <strong>in</strong> the Denver-<br />

Rocky Mounta<strong>in</strong> wetlands and streams ides. Purple loos- Boulder-Fort Coll<strong>in</strong>s metropolitan corridor, may dim<strong>in</strong>estrife<br />

spreads quickly and crowds out native plants that ish water quality, benefit exotic plant species, and affect<br />

animals use for food and shelter. Most <strong>in</strong>vaders have no nutrient cycl<strong>in</strong>g <strong>in</strong> Colorado (Baron et al. 1994). Chemi-<br />

natural enemies <strong>in</strong> the United States and therefore spread cal analyses of the high-elevation Colorado snowpack are<br />

unchecked (Thompson et al. 198]). The effects of these reveal<strong>in</strong>g high concentrations (about 15 microequiva-<br />

<strong>in</strong>troduced plants and l<strong>in</strong>ks <strong>to</strong> weather are poorly unlents/litre) of sulphate and nitrate <strong>in</strong> areas north-west of<br />

ders<strong>to</strong>od. The level of soil disturbance (road build<strong>in</strong>g, Denver (Turk et al.1992). Remote areas of the world typi-<br />

plough<strong>in</strong>g, small mammal burrow<strong>in</strong>g, etc.) is most often cally receive less than 0.5 kg ha-l yr-l of <strong>in</strong>organic nitro-<br />

implicated <strong>in</strong> the spread of <strong>in</strong>vasive species.<br />

gen, whereas the high-elevation sites <strong>in</strong> the Colorado<br />

Greenback cutthroat trout was near ext<strong>in</strong>ction by the Front Range now receive as many as 4.7 kg ha-l yr-l of<br />

early 1900S because of broad-scale s<strong>to</strong>ck<strong>in</strong>g of non-native<br />

brown trout and ra<strong>in</strong>bow trout, land and water ex-<br />

<strong>in</strong>organic nitrogen (Williams et al. 1996). In February<br />

1995, the Colorado Air Quality Commission <strong>in</strong>creased the<br />

ploitation, m<strong>in</strong><strong>in</strong>g, and logg<strong>in</strong>g (Colorado Division of Denver metropolitan area's particulate pollution limit<br />

Wildlife 1986; Henry and Henry 1991). Three of the four from the current 41.2 t d-l <strong>to</strong> 44 t d-l <strong>in</strong> the next 20 years.<br />

other native subspecies of cutthroat trout are ext<strong>in</strong>ct Terrestrial biota of high-elevation areas may not have the<br />

(Greenback Cutthroat Trout Recovery Team 1983). Most ability <strong>to</strong> respond <strong>to</strong> this <strong>in</strong>creased nitrogen load<strong>in</strong>g<br />

aquatic ecosystems <strong>in</strong> the Rocky Mounta<strong>in</strong>s are now <strong>in</strong>- (Nams et al. 1993). We can expect direct and <strong>in</strong>direct effluenced<br />

by non-native brown trout from Europe and fects on ecosystem functions <strong>in</strong> forested catchments<br />

ra<strong>in</strong>bow trout from the Pacific Coast. One of the subtle, (Baron et al. 1994).<br />

yet devastat<strong>in</strong>g, trends <strong>in</strong> the Rocky Mounta<strong>in</strong> fishery is Water quality is a grow<strong>in</strong>g concern <strong>in</strong> the Rocky<br />

loss of genetic diversity <strong>in</strong> native fishes from <strong>in</strong>troduc- Mounta<strong>in</strong>s. The United States Geological Survey (1993)<br />

tions of non-native fishes.<br />

stated that all of Colorado's major dra<strong>in</strong>ages are affected<br />

The Rocky Mounta<strong>in</strong> goat and the moose, which are <strong>to</strong> some degree by pollution. His<strong>to</strong>ric m<strong>in</strong><strong>in</strong>g operations<br />

damag<strong>in</strong>g <strong>to</strong> native plant species, were deliberately <strong>in</strong>- still contribute <strong>to</strong>xic trace elements <strong>to</strong> more than 2 100 km<br />

troduced <strong>in</strong><strong>to</strong> Colorado. Accidentally <strong>in</strong>troduced mam- of rivers and streams <strong>in</strong> Colorado. Of the 50300 km of<br />

mals <strong>in</strong> Colorado and Wyom<strong>in</strong>g <strong>in</strong>clude the house mouse streams <strong>in</strong> Colorado, more than 900 km of streams do<br />

and the Norway rat (Armstrong 1993). The potential ef- not meet water-quality criteria for fish<strong>in</strong>g. Other Rocky<br />

fects of these <strong>in</strong>troduced mammals on Rocky Mounta<strong>in</strong>' 'I\1ounta<strong>in</strong> states report similar problems (United States<br />

ecosystems are poorly unders<strong>to</strong>od.<br />

Invasive exotic diseases are <strong>in</strong>creas<strong>in</strong>gly devastat<strong>in</strong>g<br />

Geological Survey 1993). Although water developments<br />

affect riparian zones upstream and downstream from<br />

<strong>to</strong> native flora and fauna. White p<strong>in</strong>e blister rust is caus- dams (Mills 1991), regional <strong>in</strong>formation on the biotic ef<strong>in</strong>g<br />

up <strong>to</strong> 50% mortality of white p<strong>in</strong>es <strong>in</strong> areas of Monfects of water projects and pollution is extremely limtana.<br />

Lungworm-pneumonia complex is a bacterial disited, fragmentary, or <strong>in</strong>accessible. Air pollution and waease<br />

that causes spontaneous mortality <strong>in</strong> the lambs of ter pollution are immediate threats <strong>to</strong> human health,<br />

bighorn sheep <strong>in</strong> summer (Aguirre and Starkey 1994).<br />

Proximity <strong>to</strong> domestic sheep highly correlates with mortality<br />

<strong>in</strong> newly reestablished bighorn sheep populations<br />

biodiversity, and local economies.<br />

(S<strong>in</strong>ger 1995). Whirl<strong>in</strong>g disease, <strong>in</strong>troduced from Europe,<br />

is a parasitic <strong>in</strong>fection that attacks recently hatched trout.<br />

Potential Interactions<br />

It is now affect<strong>in</strong>g native and non-native trout popula- A <strong>vulnerability</strong> assessment requires an understand<strong>in</strong>g<br />

tions <strong>in</strong> Colorado. At first, the disease was thought <strong>to</strong> of exist<strong>in</strong>g and potential <strong>in</strong>teractions among stresses<br />

affect only hatchery fishes; however, the native greenback<br />

cutthroat trout may also be susceptible.<br />

(Fig. E.10).<br />

For example, air pollution and fertilisation may add<br />

While weather <strong>in</strong>teracts with some of the disturbance high levels of nitrogen <strong>in</strong><strong>to</strong> rivers and streams (Baron<br />

mechanisms such as fire, dispersal and the human redis- et al. 1994; Williams et al.1996). Nitrogen concentrations<br />

tribution of species is the primary cause of <strong>in</strong>vasion (Mack may be offset somewhat by <strong>in</strong>creased precipitation and<br />

et al. 2000). The expense and difficulties of prevent<strong>in</strong>g, runoff, or they could be exacerbated by drought. The<br />

manag<strong>in</strong>g, and controll<strong>in</strong>g <strong>in</strong>vasive species may be only flow of nitrogen through the ecosystem might be fur-<br />

weakly l<strong>in</strong>ked <strong>to</strong> weather relative <strong>to</strong> other fac<strong>to</strong>rs (landther <strong>in</strong>fluenced by land-use change (e.g. deforestation,<br />

use change, human-aided dispersal, pollution, trade, etc.). urbanisation, <strong>in</strong>tensive graz<strong>in</strong>g), <strong>in</strong>vasive plant species


~sed M~tic<br />

(e.g. nitrogen fixers or nitrogen accumula<strong>to</strong>rs), or by the<br />

extirpation or re-<strong>in</strong>troduction of beavers. Thus, assess<strong>in</strong>g<br />

the <strong>vulnerability</strong> of water quality <strong>in</strong> a region <strong>to</strong> rapid<br />

change, multiple stresses and <strong>in</strong>teractions must be considered.<br />

Sett<strong>in</strong>g appropriate priorities for prevention,<br />

control, mitigation, and res<strong>to</strong>ration of water quality must<br />

consider all exist<strong>in</strong>g and potential stresses and their <strong>in</strong>teractions.<br />

Local decisions on land use, control of <strong>in</strong>vasive<br />

species, and fire management can have substantial<br />

Strategies <strong>to</strong> Set Priorities<br />

Assess<strong>in</strong>g the immediate and long-term needs of stakeholders,<br />

native biodiversity, the economy, and ecosystems<br />

requires that we understand all these stresses and<br />

set appropriate priorities for prevention, control, mitigation<br />

and res<strong>to</strong>ration. It is common for land managers<br />

and stakeholders <strong>to</strong> address s<strong>in</strong>gle stresses over the<br />

short-term (S<strong>to</strong>hlgren 1999a,b). Immediate issues related<br />

<strong>to</strong> rapid human population growth, habitat loss<br />

and loss of species, altered disturbance regimes, <strong>in</strong>va-<br />

effects on important resources.<br />

As another example, <strong>in</strong>creased CO2, warmer temperatures,<br />

and <strong>in</strong>creased precipitation may favour forest growth<br />

<strong>in</strong> several areas. <strong>How</strong>ever, <strong>in</strong>creased forest growth may sive species, and air and water pollution often take prec-<br />

reduce unders<strong>to</strong>rey plant diversity, forage for wildlife, and edence over long-term responses <strong>to</strong> these same stresses.<br />

riparian zone width, while <strong>in</strong>creas<strong>in</strong>g the forest fuel build- For example, rarely is long-term change recognised as<br />

up and the threat of catastrophic wildfire <strong>in</strong> areas of <strong>in</strong>- the <strong>to</strong>p research and management concern <strong>in</strong> city plancreas<strong>in</strong>g<br />

human population growth. Meanwhile, warmer<br />

n<strong>in</strong>g documents, county budget documents, or resource<br />

night-time or w<strong>in</strong>ter temperatures may facilitate <strong>in</strong>sect management plans <strong>in</strong> national parks and forests. Land<br />

outbreaks by reduc<strong>in</strong>g the w<strong>in</strong>ter-kill of <strong>in</strong>sect eggs and managers are duly concerned and preoccupied over<br />

larvae, possibly counteract<strong>in</strong>g the <strong>in</strong>creased forest pro- recent build<strong>in</strong>g permits on adjacent lands, loss of wetduction<br />

with <strong>in</strong>creased forest mortality (Robertus et al. land habitat and recent amphibian decl<strong>in</strong>e, <strong>in</strong>vasive<br />

1991). Changes <strong>in</strong> forest composition, age structure, and noxious weeds and diseases, air-quality violations due<br />

biomass can greatly alter hydrology. Economic models <strong>to</strong> prescribed burn<strong>in</strong>g <strong>to</strong> br<strong>in</strong>g forest-fuel levels under<br />

of change must consider many possible <strong>in</strong>teractions and control, and current water-pollution problems from<br />

outcomes from a suite of forces <strong>in</strong> complex systems. air pollution or pesticide use from nearby. Land man-<br />

Human Population<br />

Growth, Increased<br />

Demand for Resources<br />

Build<strong>in</strong>g <strong>in</strong> fire-prone<br />

vegetation types; fire<br />

.suppression policies<br />

Increased water use<br />

and Threatened and<br />

Distuib7 Endangered species<br />

Invasive Species Altered Disturbance<br />

Regimes<br />

ttre<br />

exotic<br />

Soil<br />

disturbances<br />

Land-use change<br />

(habitat fragmentation<br />

and habitat loss)<br />

Albedo; surface roughness<br />

Fig. E.l O. Exist<strong>in</strong>g and potential <strong>in</strong>teractions among stresses<br />

plants Decreased water<br />

Changes <strong>in</strong> long-term<br />

weather patterns<br />

N fertilization<br />

on weeds<br />

Forest<br />

age class<br />

Air and Water<br />

Pollution<br />

l<strong>in</strong>ked<br />

<strong>to</strong> cloud cover<br />

<strong>in</strong> riparian zones;<br />

<strong>in</strong>creased<br />

contam<strong>in</strong>ation


514<br />

CHAPTER E.5 .The Vulnerability Approach<br />

agers are often affected most by short-term and local<br />

issues.<br />

Stakeholders with economic <strong>in</strong>terests (e.g. local bus<strong>in</strong>esses,<br />

water managers and farmers) are often concerned<br />

with short-term economic returns and the immediate<br />

resource supplies that ma<strong>in</strong>ta<strong>in</strong> the status quo. Thus, there<br />

may be significant pressure <strong>to</strong> manage for short-term<br />

needs that are easily addressed and matched <strong>to</strong> one- and<br />

two-year fund<strong>in</strong>g cycles, short-term public op<strong>in</strong>ion and<br />

management plans, and average job longevity (c. three<br />

<strong>to</strong> five years). It follows that meagre research funds are<br />

frequently spent on short-term studies of problems.<br />

There are several reasons why address<strong>in</strong>g only shortterm<br />

stresses one at a time might be very shortsighted.<br />

First, as stated, there are many obvious <strong>in</strong>teractions<br />

among the stresses that can have compound<strong>in</strong>g and confound<strong>in</strong>g<br />

effects. Second, there could be "threshold" effects,<br />

non-l<strong>in</strong>ear responses, or lag effects where the effects<br />

of s<strong>in</strong>gle or multiple stresses go undetected until a<br />

given level is exceeded. Subtle changes are often the most<br />

difficult <strong>to</strong> detect and manage. Third, we do not fully<br />

understand, or even marg<strong>in</strong>ally understand, the longterm<br />

effects of multiple stresses <strong>in</strong> most ecosystems and<br />

regions. For example, rapid, but long-term, weather<br />

change or <strong>in</strong>creases <strong>in</strong> variability or extreme events<br />

could make the management of the other stresses that<br />

much more difficult and expensive <strong>in</strong> the future.<br />

Conclusion<br />

I<br />

The human population <strong>in</strong> the Rocky Mounta<strong>in</strong> region<br />

will probably double <strong>in</strong> the next 20-40 years, creat<strong>in</strong>g<br />

<strong>in</strong>creased demands for and pressures on natural resources,<br />

especially water. National parks, forests, and wilderness<br />

areas will probably become <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>sular,<br />

and habitat fragmentation will <strong>in</strong>crease <strong>in</strong> the na-<br />

ture reserves and the urban areas. Cont<strong>in</strong>ued species<br />

decl<strong>in</strong>e (e.g. prairie dogs, amphibians, deer, old-growth<br />

and fire-dependent species), habitat loss (wetlands, riparian<br />

zones, and old-growth forests), <strong>in</strong>creased air pollution<br />

and water developments, altered disturbance regimes,<br />

and <strong>in</strong>troduced species and diseases will cont<strong>in</strong>ue<br />

<strong>to</strong> affect many Rocky Mounta<strong>in</strong> ecosystems. Vulnerability<br />

assessments must recognise modern humans as be<strong>in</strong>g<br />

both a primary stress fac<strong>to</strong>r and as stakeholders.<br />

Comb<strong>in</strong>ed with standardised biotic resource <strong>in</strong>ven<strong>to</strong>ries,<br />

predictive models, and long-term moni<strong>to</strong>r<strong>in</strong>g, <strong>vulnerability</strong><br />

assessments are a logical approach <strong>to</strong> responsible<br />

land and water stewardship <strong>in</strong> the face of multiple<br />

stresses.<br />

Sett<strong>in</strong>g priorities for the control and mitigation of<br />

multiple stresses requires detailed <strong>in</strong>formation on shortand<br />

long-term ecological and economic effects (Pielke<br />

1998b). Some level of effort must be reserved for long-term,<br />

unpredictable responses. <strong>How</strong>ever, adequate funds must<br />

be allocated for the primary, short -term stresses that have<br />

an immediate effect on the region's resources and people.<br />

Current long-term GCM sensitivity experiments, with<br />

no known probability, may be of limited use <strong>to</strong> local land<br />

and water managers, but they may focus some attention<br />

on the need for a longer plann<strong>in</strong>g horizon and a more<br />

complete understand<strong>in</strong>g of the Earth's climate system and<br />

potential human impacts <strong>to</strong> that system.<br />

In the absence of adequate <strong>in</strong>formation and models,<br />

sett<strong>in</strong>g specific "cop<strong>in</strong>g" priorities is tenuous and should<br />

be an iterative process that should be improved as additional<br />

<strong>in</strong>formation becomes available. The palaeoclimate<br />

records warn us <strong>to</strong> be better prepared for rapid, abrupt<br />

changes -<strong>in</strong> any direction. Interdiscipl<strong>in</strong>ary research<br />

and moni<strong>to</strong>r<strong>in</strong>g of ecosystems, anticipat<strong>in</strong>g economic<br />

concerns, and clearly identify<strong>in</strong>g society's immediate<br />

and long-term needs are prerequisites <strong>to</strong> <strong>vulnerability</strong><br />

assessments and for sett<strong>in</strong>g and adjust<strong>in</strong>g priorities.


Case Studies<br />

Roger A. Pielke, Sr.<br />

In order <strong>to</strong> illustrate that <strong>environmental</strong> <strong>vulnerability</strong><br />

<strong>in</strong>volves a spectrum of threats, several specific examples<br />

are provided <strong>in</strong> this chapter. These examples demonstrate<br />

why it is so important <strong>to</strong> start with the assessment<br />

of <strong>vulnerability</strong> when study<strong>in</strong>g the <strong>in</strong>teraction of<br />

humans with the rest of the environment.<br />

E.6.1 Population and Climate<br />

Introduction<br />

Charles J. Vorosmarty .Jake Brunner<br />

Carmen Revenga .Balazs Fekete. Pamela Green<br />

Yumiko Kura .Kirsten Thompson<br />

One aspect of the global change debate that has received<br />

relatively little attention from the Earth systems science<br />

community is the purposeful <strong>in</strong>tervention of humans<br />

with<strong>in</strong> the terrestrial hydrological cycle as we establish<br />

and use water resources. Recent studies have shown<br />

that this phenomenon is <strong>in</strong>deed global (Dynesius and<br />

Nilsson 1994; Vorosmarty et al. 1997; Postel et al. 1996)<br />

and the growth <strong>in</strong> water use by humans is likely <strong>to</strong> cont<strong>in</strong>ue<br />

over the next several decades (Rijsberman 2000;<br />

United Nations 1997; Shiklomanov 1996). Water eng<strong>in</strong>eer<strong>in</strong>g<br />

will rema<strong>in</strong> an important human endeavour<br />

over this time frame as both economic development and<br />

population growth will force future demands on the<br />

natural water system. The stabilisation of water supplies<br />

through control of terrestrial runoff and/or the translocation<br />

of water s<strong>to</strong>cks from aquifers or through <strong>in</strong>terbas<strong>in</strong><br />

transfers will thus rema<strong>in</strong> a fundamental feature<br />

of the land-based water cycle. These activities purposely<br />

seek <strong>to</strong> optimise water security and hence seek<br />

<strong>to</strong> reduce the degree of <strong>vulnerability</strong> <strong>to</strong> water shortages<br />

and/or excess.<br />

In this contribution we document the emerg<strong>in</strong>g role<br />

of direct human usage of water. We explore the value of<br />

l<strong>in</strong>k<strong>in</strong>g biophysical and socio-economic <strong>in</strong>formation<br />

with<strong>in</strong> a common framework. We also highlight key areas<br />

of uncerta<strong>in</strong>ty and draw <strong>in</strong>ferences about how our<br />

current knowledge base is related <strong>to</strong> the issue of water<br />

<strong>vulnerability</strong>. We-summarise an emerg<strong>in</strong>g paradigm for<br />

successful water resources management and expla<strong>in</strong> the<br />

role of the Earth systems science community <strong>in</strong> support<strong>in</strong>g<br />

this new strategy for water development.<br />

Water Supply, Use and Emerg<strong>in</strong>g Patterns of Scarcity<br />

Assessment of the global water supply has been an imprecise<br />

science. If we consider the renewable resource<br />

base <strong>to</strong> equal the long-term mean runoff we can f<strong>in</strong>d estimates<br />

which vary between 33500 and 47000km3yr-1<br />

(Kourzoun et al. 1978; L'vovich and White 1990; Gleick<br />

2000; Shiklomanov 1996; Fekete et al. 1999). One of the<br />

most recent such assessments, made us<strong>in</strong>g time series of<br />

observed discharges over approximately 70% of the discharg<strong>in</strong>g<br />

land surface of the globe and a model-based<br />

extrapolation, offer 39600 km3yr-1 (Fekete et al. 1999).<br />

A more classical account<strong>in</strong>g by Russian scientists cites<br />

42750 km3yr-1 (Shiklomanov 2000). Although one could<br />

view these differences as be<strong>in</strong>g of simple academic <strong>in</strong>terest<br />

only, they become amplified at regional or smaller<br />

scales and can give substantially different views of per<br />

capita water supplies and hence <strong>vulnerability</strong> <strong>to</strong> water<br />

scarcity. For example, <strong>in</strong> North Mrica the former study<br />

gives a <strong>to</strong>tal of 362 km3yr-1 while the latter shows<br />

181 km3 yr-l. Assum<strong>in</strong>g a population <strong>in</strong> 1995 of 150 million<br />

we get per capita supplies vary<strong>in</strong>g between 1 200 and<br />

2400 m3 per capita. This estimate highlights the difficulty<br />

<strong>in</strong> attempt<strong>in</strong>g <strong>to</strong> assemble a coherent picture of<br />

water availability <strong>in</strong> the face of decl<strong>in</strong><strong>in</strong>g hydrographic<br />

moni<strong>to</strong>r<strong>in</strong>g (Vdrijsmarty et al. 2001). Further, <strong>in</strong> many<br />

parts of the world, groundwater is an important source<br />

of water supply (both renewable and non-renewable;<br />

Shiklomanov 1996). Our understand<strong>in</strong>g of the hydrography<br />

of groundwater resources is even more limited,<br />

s<strong>in</strong>ce well-logged, groundwater discharge/recharge, and<br />

aquifer property data are neither synthesised nor released<br />

<strong>to</strong> the global change community. Noteworthy exceptions<br />

exist for regional aquifers (e.g. High Pla<strong>in</strong>s <strong>in</strong> US; Weeks<br />

and Gutentag 1988; Nativ 1992), suggest<strong>in</strong>g the feasibility<br />

of provid<strong>in</strong>g such <strong>in</strong>formation when suitable f<strong>in</strong>ancial<br />

and technical resources are made available. Nonetheless,<br />

there is but one 1: 10 M scale map (Dzhamalov


--~ ~<br />

which met strict selection criteria <strong>in</strong> terms of record<br />

length and consistency with neighbour<strong>in</strong>g gaug<strong>in</strong>g stations,<br />

were selected from the GRDC archive for use <strong>in</strong><br />

develop<strong>in</strong>g the database. These stations were co-registered<br />

<strong>to</strong> a 30-m<strong>in</strong>ute Simulated Topological Network<br />

(STN-30; V6rosmarty et al. 2000).<br />

The Center for International Earth Science Information<br />

Network has produced a global population database<br />

us<strong>in</strong>g census data for 120 000 adm<strong>in</strong>istrative units<br />

(CIESIN 2000). We compare <strong>conditions</strong> between 1995<br />

and the year 2025, start<strong>in</strong>g with a gridded dataset at 2.5m<strong>in</strong>ute<br />

(4 km) grid <strong>in</strong>crements. The 1995 cell counts were<br />

extrapolated exponentially <strong>to</strong> 2025 and then capped us<strong>in</strong>g<br />

the low growth projection for each country (United<br />

Nations Population Division 1998). The cell population<br />

counts were then aggregated <strong>to</strong> 30-m<strong>in</strong>ute grid <strong>in</strong>crements<br />

<strong>to</strong> match the runoff database. Figure E.12 shows<br />

the population density <strong>in</strong> 1995. For this study, the lowgrowth<br />

projection is considered <strong>to</strong> be more realistic than<br />

either the medium or high projections (Seckler et al.<br />

1999). But use of the low-growth projection, <strong>in</strong> conjunction<br />

with the maximum susta<strong>in</strong>able water supply, means<br />

that the water scarcity estimates should be considered<br />

as conservative. For the purpose~ of this study, we do<br />

not consider potential weather change impacts which<br />

add an additional layer of complexity and potential <strong>vulnerability</strong>.<br />

Future water scarcity may be more acute than<br />

this tabulation suggests.<br />

The runoff and population databases were summed<br />

by river bas<strong>in</strong> <strong>to</strong> calculate the renewable supply of water<br />

per person. We estimate scarcity us<strong>in</strong>g a set of standard<br />

rules (H<strong>in</strong>richsen et al.1998). First, populations liv<strong>in</strong>g <strong>in</strong><br />

bas<strong>in</strong>s with water "crowd<strong>in</strong>g" of 590 <strong>to</strong> 1 000 people per<br />

106 m3 yr of water supply are classified as water stressed,<br />

and tend <strong>to</strong> experience severe shortages <strong>in</strong> drought years.<br />

Second, people liv<strong>in</strong>g <strong>in</strong> bas<strong>in</strong>s with 1000-2000 people per<br />

106 m3 yr are classified as water scarce, and can expect<br />

chronic shortages of freshwater that threaten food pro-<br />

Population (thousands)<br />

I < 1<br />

11-10<br />

110-100,<br />

100-1,000<br />

I > 1,000<br />

No Data<br />

~--<br />

Fig. E.12. Population density from CIESIN (2000)<br />

Global Estimates<br />

E.6.1 .Population and Climate 517<br />

duction and h<strong>in</strong>der economic development. F<strong>in</strong>ally,<br />

people liv<strong>in</strong>g <strong>in</strong> bas<strong>in</strong>s with more than 2000 people per<br />

106 m3 yr face absolute water scarcity, beyond which development<br />

is highly constra<strong>in</strong>ed without access <strong>to</strong> alternative<br />

water sources.<br />

River Bas<strong>in</strong> Estimates<br />

Figure E.13 and Fig. E.14 show river bas<strong>in</strong>s under vary<strong>in</strong>g<br />

degrees of water stress <strong>in</strong> 1995 and 2025. (Only bas<strong>in</strong>s<br />

larger than 25000 km2 are shown.) These maps show<br />

<strong>in</strong>creased water scarcity <strong>in</strong> Southern and Eastern Africa,<br />

Pakistan and central Asia, but stable <strong>conditions</strong> <strong>in</strong> Lat<strong>in</strong><br />

America, South-east Asia, Ch<strong>in</strong>a and India. But this overview<br />

hides important bas<strong>in</strong>-specific trends. Table E.l shows<br />

<strong>to</strong>tal water supply, population, and water crowd<strong>in</strong>g <strong>in</strong><br />

1995 and 2025 for large bas<strong>in</strong>s that are currently water<br />

stressed or will be close <strong>to</strong> such stress by 2025. Together,<br />

they hold half the world's population. Average water crowd<strong>in</strong>g<br />

<strong>in</strong> these bas<strong>in</strong>s is projected <strong>to</strong> <strong>in</strong>crease by 25%, from<br />

546 people per 106m3yr <strong>in</strong> 1995 <strong>to</strong> 735 people per 106m3yr<br />

by 2025. Water crowd<strong>in</strong>g <strong>in</strong> some bas<strong>in</strong>s, notably those <strong>in</strong><br />

Ch<strong>in</strong>a, will <strong>in</strong>crease by less than 15%, but the Indus and<br />

the Nile will suffer decl<strong>in</strong>es <strong>in</strong> excess of 40%. In the case<br />

of the Indus, this will result from the growth <strong>in</strong> Pakistan's<br />

population, from 136 million <strong>in</strong> 1995 <strong>to</strong> 246 million<br />

<strong>in</strong> 2025. In the case of the Nile, the decl<strong>in</strong>e will ma<strong>in</strong>ly<br />

result from a doubl<strong>in</strong>g of Ethiopia's population, from<br />

55 million <strong>to</strong> 108 million. Egypt, the second most populous<br />

country <strong>in</strong> the bas<strong>in</strong>, will see its population grow<br />

more slowly, from 52 million <strong>to</strong> 63 million.<br />

The river bas<strong>in</strong> estimates were summed <strong>to</strong> give the <strong>to</strong>tal<br />

number of people liv<strong>in</strong>g <strong>in</strong> <strong>conditions</strong> of water scar-<br />

~<br />

It<br />

~ :-' ~:--~'-'~':'.-.::c~':":"'" ..,..----,<br />

,/


81S<br />

sa!pms as e) , 9'3 !l3.LdVH)<br />

"W U°!lI!W I aldoad<br />

ooo'~ -ooo'~ I<br />

ooo'~ -009 I<br />

009> I<br />

BjBO ON<br />

a6ue4::> IUa~Jad<br />

6U!PMOJ::> JateM U!<br />

UO!illq f"t :l1I1:{:I SMO1:{S 't'g: 3{q1l.1 'S"'tO't PU1I S"661 U! A:I!:><br />

-UO:> U! P3A!{ 'UO!:l1Irndod S,PPOM 3q:1}0 %It JO '3{d03d<br />

U! (JA ,W 901 J3d 3{d03d 06S" m:>s J3:111M}0 SUO!:I!p<br />

-ndod S,PPOM 31:{:I}0 %6t JO '3{d03d UO!illq S"'f pU1! 'S"661<br />

J3qwnu 31:{.1 'S"'tO't Aq SUO!:I!PUO:> 3S3q:1 U! 3A!{ illM 'UO!:l1I{<br />

A:I!:>m:>s J3:111M 3:1n{Osq1l }O SUO!:I!pUO:> SU!:>1I} 3{d03d }O<br />

-nq 1'1 WOJ} 3S1I3J:>U! illM (JA,W 901 J3d 3{d03d 000't Y![8nb 0M.:j 3J!nb3J S:lrnS3J 3S31:{.1<br />

U! 3U!{:>3P 1:{:>!1:{M) 1:{:lMOJS UO!:l1Irndod UO p3S1Iq A{UO 3m<br />

:lunO:>:>1I O:lU! 3}{t1:1 :IOU Op A31:{.1 '(ppOM 31:{:I}0 S:lJ1Id M3} ~<br />

'3SU1!1:{:> J3q:1113M 'Uo!:lnnOd }O A{ddns J3:111M uo S:I:>3JJ3 3q:1<br />

-!:lS3J3pUn A{q1lqOJd 3JO}3J31:{:I A31:{.1 ':ju3wpunodw! JO<br />

-:>3$ 'UOSJ3d J3d A{ddns J3:111M U! 3U!{:>3P [80:1:>11 31:{:I 3:111W<br />

-3P J3:111M :lU1I:lSUO:> 11 S3WnSS1I S!SA[8U1I 31:{:I 3Sn1l:>3q 'pUO<br />

:lU3S3Jd3JS!W A{q1l:l!A3U! S:I{nS3J 31:{:I 'uOSJ3d J3d PU1IW<br />

'SU!S1Iq U!1I:lJ3:> U! A:I!:>J1I:>S J3:111M<br />

~:~::~~~:<br />

--"'-<br />

~66t .11131 3~ .l0} UIsllq 3SIIU!II.lP 1q<br />

}O UO!~:>unrUO:> 3~ 1Q p3tndwo:> SUjpMO.l:> .l3~IIM o£ L '3 °6!.i<br />

---'-<br />

~<br />

P3S!UIIS.lO '1:ImQIl{!t!AII .l3~1!M pUll '3sn .l3~IIM 'UO!~IIJndod uo lI~ep p3:>U3.13}3.103S<br />

-~<br />

~661 °t ~lOl U! SUO!tj'pUO:J SU!lP.dwo:J pm U!~q 3S1!U!1!JP J.q P3S!U1!SlO<br />

'UO!t1!jlldod UO 1!tep P3:JU31313103S 10 UO!t:Jun[uo:J 31{t J.q p3tndwo:J SUj'pM01:J 13t1!M U! 3Smq:) 't L '3 .6!~<br />

uopnQ!lJUOJ l!aql PUD Salnpa:>Old uopD/nqDl)o J:>aJj3<br />

AJU!DJla:>Un OJ<br />

3A1!tI J1!tIJ SU!S1!q U! ~U!A!y 3yd03d )0 J3qwnu 11!JOJ 3tI.L<br />

£w Dol 1 U1!tIJ SS3Y )0 Ayddns J3J1!M 3yq1!M3U3J 11!nuu1! U1!<br />

SnO!A3Jd 3WOS U1!tIJ J3tI~!tI %09 S! ~661 U! UOSJ3d J3d<br />

-In:> 3JOW tI~n°tIJTV '(9661 AOU1!WOy}{!tIS '~'3) S3J1!W!JS3<br />

-UnJ 11!qoy~ MOY AY3A!J1!Y3J 1! PU1! 1!J1!p uo!J1!rndod JU3J<br />

J1!tIJ S! UOS1!3J U!1!W 3tIJ 'SJOJ:>1!) ~U!Jnq!JJUo:> 3J1! ))0<br />

SU!S1!q J3A!J ~U!Sn AJ!:>J1!:>S J3J1!M p3J1!W!JS3 ApmS S!t:p<br />

3JOW 3Jmd1!:> S3SA11!U1! 13A3Y-U!S1!g 'S3!JJunO:> U1!tIJ J3t:p1!J<br />

-unJ pU1! uo!J1!rndod U! AJ!Uq1!!IeA 11!!J1!ds JU3J3tIU! 3t:p)0<br />

Y1!qoy~ 3JO)3J3tIJ PU1! (AJ!:>J1!:>S J3J1!M 3:>U3tI PU1!) ))0<br />

pU3J I1!M SJrnS3J Y3A3Y-U!S1!q 3J1!~3J~~1! J1!tIJ S3J1!W!JS3<br />

-J3A1! AJJuno:> uo p3S1!q 3S°tIJ U1!tIJ 3J1!Jn:>:>1! 3JOW 3q OJ<br />

'S3~1!<br />

--- ~<br />

'l.tmq1!U1!A1! 13t1!M pm '3sn 13t1!M<br />

~


~tOt pUB ~66t 'U!Seq J~A!J J..q J..~"Je:>S J~~eM .L'3 alqel<br />

~'lO'l pu~<br />

~66{ '1..~1:>JP.:>s 10!~~M ~qolD<br />

"Z"3 ~Iqel<br />

le~Ol<br />

OOOl <<br />

OOOl- 000 L<br />

000 L -06S<br />

pa~e)olleUn<br />

06S ><br />

LlOl<br />

LS5<br />

699<br />

l60£<br />

5995<br />

os{t! U1!J O!M 'O!AOq1! pO!tuO!sO!Jd J..~O{OpoqtO!w O!~ ~U!s!l<br />

-qsO!JJ O!{q1!MO!UO!J {t!qO{~ 'S!S1!q 1!t!d1!J JO!d 1! uo t1!qt MOqs<br />

£w ooS 17 Ot S661 U! £w 0069 WOJJ {{t!J fiM J..{ddns JO!t1!M<br />

pO!S!U~OJO!J O!q tsnw t! tnq 'doJp O!~J1!I1! S! S!qJ. .0SO'l: U!<br />

JY!JO!ds-uo!~O!J J..{q~!q J..t!{t!O!J U! S! uo!tJnpO!J O!qt t1!~<br />

-nq O!qt Jo }{{nq O!~ t1!qt pO!t1!W!tsO! uO!O!q S1!q t! 'PO!O!puI<br />

Ot J..t!w!XoJd {t!JodwO!t PU1! {t!!t1!ds U! S! uo!t1!{ndod U1!W<br />

{O!tSOd) JO!t1!MqSO!JJ Jo J..{ddns O!{q1!MO!UO!J O!qt Jo %0£ J..{UO<br />

S! S!qJ. -J..{ddns S!~ Jo %oS O!sn O!M t1!qt PU1! (9661 .{t! <strong>to</strong>!<br />

sno{ndod tSOW OMt S,PPOM O!qt U! tu1!tJodw! J..{{t!!JO!dsO!<br />

UJO!qtJON i6661 JO!{}{JO!S) 1!!PUI PU1! 1!U!q::> :sO!!JtunoJ<br />

-tS1!H lO!M J..JO!A S! 1!U!q::> UJO!~nos O!nqM 'i..Jp l..JO!A S! 1!U!q::><br />

O!J1! 1!!PUI uJO!qtnos PU1! tSO!M O!nqM '<strong>to</strong>!M J..JO!A S! 1!!PUI UJO!<br />

O!sO!~ {{t! U! o!A!{ O!ldoO!d Jo SJO!qwnu O!~Ie{ O!sn1!JO!H -J..Jp l..JO!A<br />

-U!qt!M tu1!tJodw! S}{S1!W wO!qt ~U!t1!~O!J~~1! 'SUO!~-O!J<br />

O!t1!tsJO!pun snqt SJO!qwnu O!t1!~O!J~~V .sO!JuO!JO!JJ!P l..JtunoJ<br />

Ot J..{O!){!{ S! t1!qt i..t!JJ1!JS JO!t1!M {t!!tuO!<strong>to</strong>d Jo wO!{qoJd O!~<br />

.SO!{t!JS {t!JO{ O!JOW t1! O!JO!AO!S O!JOW qJnW O!q<br />

Lvl<br />

-IeJS JO!t1!M O!A!t1!{O!J pO!t1!{nq1!t O!M 'UO!tJO!SS1! S!~ tSO!t OJ.<br />

.o!.!) O!sn JO!t1!M O!A!t1!IO!J Jo S{O!AO!1 O!A!SSO!J~OJd JnoJ t1! J..t!J<br />

61<br />

OL<br />

ZL<br />

SS<br />

V<br />

DOL<br />

a~eW!D pue UO!~elndod ° L °9°3<br />

£8L l<br />

vl9<br />

LLOl<br />

v6v£<br />

96l<br />

vLlL<br />

OOL<br />

61~<br />

Su1~uno:>:>~ ~U;}J;}}J1P JnoJ Su1sn (J..lddns/It!M~JP~1M It!~o~<br />

-;}J p~OJq 9't SSOJ:>~ SU01~~S;}JSS~ P;}J;}P1suo:> ;}M 's~1un<br />

P1JS It!np1AWU1 pulJ 'su1s~q ;}S~Ul11JP 'S;}1J~uno:> lIt! 'SU01S<br />

It!u01~~u Jno '~SJ1d "S~ynS;}J ;}S;}~ SMOqS ~I"H ;}mS1d "Sll;}:><br />

Jo }{JOM ;}~ o~ ;}:>UlJlqW;}S;}J pooS SJ~;}q U01~~S;}JSS~ I;}A;}I<br />

Jno 'SU01S;}J ;}~1Sodwo:> 9't s1q SU1sn (9661) AOU~WOpuqS<br />

Mol /..J;}A ~~ Il;}M SpuOdS;}JJo:> osIt! ;}~~S;}JSS~ I;}A;}I-/..J~unO:><br />

-UlJ~sqns SJ;}}JW ~1 qSnO~It! '(1"0 » SS;}J~S J;}~~M Jo SI;}A;}I<br />

-P1JS ;}q~ WOJJ J..lIt!1~u~~sqns SJ;}JJ1P U01~~S;}JSS~ u1s~q<br />

;}q~ 'uJn~ uI "SU01~~ynwn:>:>~ P1JS JO u1s~q ;}~ WOJJ J..lIt!1~<br />

UI "SS;}J~S JO SI;}A;}I (1"0 » MOl /..J;}A ~~ Su1~uno:>:>~ P;}S~q<br />

J..lIt!1~U~~sqns SJ;}}J1P ~1 SWJ;}~ ';}~nlosq~ ~OU ~nq ';}A1~~I;}J<br />

-JO:> pooS S1 ;}J;}q.t "SS;}J~S JO SI;}A;}I ;}~~J;}POW ~~ Sp1JS WOJ}<br />

-S;} P;}S~q-P1JS pU~ ;}P1M-u1s~q ;}~ U;};}M:J;}q ;}:>U;}pUOdS;}J<br />

(01 O~ S;}1J~UnO:>-Su01S;}J JOJ ZOI-!OI) s~1un SU1~uno:>:>~ JO<br />

J;}qwnu SU1S~;}J:>U1 UlJ ~1M "SS;}J~S JO SI;}A;}I qS1q ~~ S;}~~W1~<br />

"S;}SS~I:>;}~ Jo U01~~J~d;}s P;}S~;}J:>u1 UlJ ;};}S ;}M '(SU1s~q JOJ<br />

;}:>u~~JodW1 ;}q~ U1 u01~:>np;}J ;}SJ~I ~ S1 ;}J;}~ 'IP.yn:>1~IP.d uI<br />

-J..q ~u;}J~dd~ u~ ;}J~ q:>1qM 'S;}SS~I:> ;}~~1P;}WJ;}~U1 ;}~ Jo<br />

"U01~~WJOJU1 Jo u01~~ynwn:>:>~ It!1~~ds ;}SIP.I ~ Jo ~:>npoJd<br />

6<br />

sr<br />

SL<br />

8V<br />

v


520<br />

.<br />

CHAPTER E.6 .Case Studies<br />

Fig. E.1S.<br />

Assessments of water scarcity<br />

as a function of account<strong>in</strong>g<br />

unit. Here contrast<strong>in</strong>g levels of<br />

relative water demand (withdrawal/supply)<br />

are used on the<br />

horizontal axis. Levels beyond<br />

0.4 <strong>in</strong>dicate severe water stress.<br />

All aggregations are made over<br />

the global doma<strong>in</strong><br />

Although we can demonstrate sensitivity <strong>to</strong> the choice<br />

of account<strong>in</strong>g unit used, we cannot identify an optimal<br />

unit. This awaits further study by the water sciences<br />

community and a consideration of the broader issue of<br />

data availability and harmonisation across biophysical<br />

and socio-economic discipl<strong>in</strong>es. The choice of account<strong>in</strong>g<br />

unit is important from the standpo<strong>in</strong>t of determ<strong>in</strong><strong>in</strong>g<br />

the number of people at risk from water stress. In<br />

comparison <strong>to</strong> the regional or country-level tabulation<br />

which yields about 400 million under severe stress, the<br />

gridded or bas<strong>in</strong>-level <strong>in</strong>terpretation gives a substantially<br />

larger population, at about 2 billion. The conventional<br />

wisdom thus severely underestimates the degree<br />

<strong>to</strong> which the world's population is suffer<strong>in</strong>g from water<br />

scarcity.<br />

Vulnerability and Essential Biophysical Data<br />

The comb<strong>in</strong>ation of biophysical and socio-economic<br />

datasets with<strong>in</strong> a common geographic framework suggests<br />

that the world is a drier place than previously<br />

thought, and that population growth will result <strong>in</strong> a large<br />

and grow<strong>in</strong>g portion of the world's population liv<strong>in</strong>g<br />

under <strong>conditions</strong> of water scarcity by 2025. The World<br />

Bank has long sought <strong>to</strong> help countries harness their<br />

water resources for economic development through its<br />

support <strong>to</strong> irrigation, water supply, sanitation, flood control,<br />

and hydropower. Water has been one of the most<br />

important areas of World Bank <strong>in</strong>vestment: between 1985<br />

and 1998, it lent more than $33 billion, or 14% of project<br />

lend<strong>in</strong>g (World Bank 1998a).<br />

But these projects have encountered serious implementation<br />

problems because they do not address the<br />

root causes of waste and mismanagement <strong>in</strong> the water<br />

sec<strong>to</strong>r. Several problems emerged. First, fragmented public<br />

<strong>in</strong>vestment programmes failed <strong>to</strong> optimise water allocation<br />

and emphasized supply development over demand<br />

management. Second, excessive reliance on overextended<br />

government agencies resulted <strong>in</strong> poor fmancial<br />

accountability and cost recovery. This led <strong>to</strong> a vicious<br />

circle of poor quality, unreliable service, low will-<br />

<strong>in</strong>gness <strong>to</strong> pay, <strong>in</strong>adequate operat<strong>in</strong>g funds, and further<br />

deterioration <strong>in</strong> service. Third, damage <strong>to</strong> freshwater<br />

ecosystems <strong>in</strong>herent <strong>in</strong> some projects was treated, if at<br />

all, by limited corrective actions and rarely by substantive<br />

adjustments <strong>to</strong> project design.<br />

In response <strong>to</strong> these problems, the World Bank issued<br />

a water sec<strong>to</strong>r strategy <strong>in</strong> 1993 (World Bank 1993).<br />

The pr<strong>in</strong>cipal goal of the strategy was <strong>to</strong> improve water<br />

sec<strong>to</strong>r performance by ensur<strong>in</strong>g the provision of water<br />

services <strong>in</strong> an economically viable and <strong>environmental</strong>ly<br />

susta<strong>in</strong>able manner. The strategy recognised that <strong>to</strong> improve<br />

the performance of the water sec<strong>to</strong>r, it is necessary<br />

<strong>to</strong> help countries reform their water management<br />

<strong>in</strong>stitutions, policies, and plann<strong>in</strong>g systems. The strategy<br />

is be<strong>in</strong>g implemented through a new generation of<br />

water resources management projects. Noteworthy examples<br />

exist for Morocco and Mexico (World Bank 1996,<br />

1998b).<br />

To meet <strong>in</strong>creased demand at reasonable cost, policymakers<br />

are explor<strong>in</strong>g better ways <strong>to</strong> allocate exist<strong>in</strong>g<br />

water supplies and encourage users <strong>to</strong> conserve water.<br />

Better water management requires a significant improvement<br />

<strong>in</strong> the collection and analysis of hydrological<br />

data yet moni<strong>to</strong>r<strong>in</strong>g programmes <strong>in</strong> many countries<br />

have deteriorated sharply <strong>in</strong> recent years (Vorosmarty<br />

ans Sahagian 2000). Paradoxically, at a time of grow<strong>in</strong>g<br />

water scarcity, we know less and less about the challenges<br />

and opportunities we face.<br />

The constra<strong>in</strong>ts on hydrological moni<strong>to</strong>r<strong>in</strong>g are both<br />

f<strong>in</strong>ancial and <strong>in</strong>stitutional. For example, both Ch<strong>in</strong>a and<br />

India have dense moni<strong>to</strong>r<strong>in</strong>g networks and tremendous<br />

analytical capacity but the effective use of these assets<br />

is not possible for several reasons. First, very few stations<br />

are l<strong>in</strong>ked by satellite or cell phone, result<strong>in</strong>g <strong>in</strong><br />

lengthy delays as data are retrieved and transcribed by<br />

hand. Second, different agencies manage different<br />

gauges, often over different time periods, result<strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>consistent data quality and fragmentary records.<br />

Third, hydrological data are not shared among agencies,<br />

let alone with the research community. Many data are<br />

considered state secrets. Fourth, limited data access is<br />

exacerbated by a move by many agencies <strong>to</strong>ward full cost


ecovery. F<strong>in</strong>ally, because of the focus on flood<strong>in</strong>g, hydrological<br />

models are often only calibrated us<strong>in</strong>g data<br />

collected dur<strong>in</strong>g the ra<strong>in</strong>y season. More accurate predictions<br />

would be possible if the models were calibrated<br />

us<strong>in</strong>g data collected throughout the year.<br />

Hydrological moni<strong>to</strong>r<strong>in</strong>g capacity <strong>in</strong> many countries<br />

is deteriorat<strong>in</strong>g because of <strong>in</strong>adequate cost-recovery and<br />

reduced government support. The number of stations<br />

report<strong>in</strong>g <strong>to</strong> the Global Runoff Data Centre peaked <strong>in</strong><br />

the mid-1980s and then fell sharply (Fekete et al. 1999).<br />

The decl<strong>in</strong>e has been most marked <strong>in</strong> Africa, where a<br />

recent analysis shows that the number of gaug<strong>in</strong>g stations<br />

<strong>in</strong> most countries is well below WMO guidel<strong>in</strong>es<br />

(Rodda 1998). Although several <strong>in</strong>ternational <strong>in</strong>itiatives<br />

(e.g. W -HYCOS, GRDC) have sought <strong>to</strong> compile and publish<br />

atmospheric, oceanic, cryospheric and hydrological<br />

data, they ultimately depend on the quality of the<br />

national networks. Even <strong>in</strong> the United States the hydrological<br />

moni<strong>to</strong>r<strong>in</strong>g network has degraded. The USGS has<br />

been moni<strong>to</strong>r<strong>in</strong>g river flow and water quality for over<br />

100 years. The network coverage expanded throughout<br />

the 1960s and 1970S but contracted sharply dur<strong>in</strong>g the<br />

1990S (United States Geological Survey 1999). More than<br />

100 river gauges with long-term records, the s<strong>in</strong>gle most<br />

important class of stations for <strong>environmental</strong> moni<strong>to</strong>r<strong>in</strong>g<br />

and design eng<strong>in</strong>eer<strong>in</strong>g, are be<strong>in</strong>g lost each year<br />

(Lanfear and Hirsch 2000). As a result, the network has<br />

become vulnerable as collaborat<strong>in</strong>g agencies have cut<br />

costs <strong>to</strong> meet their own specific needs, for example by<br />

only moni<strong>to</strong>r<strong>in</strong>g high or low flows, or by limit<strong>in</strong>g public<br />

access.<br />

Many countries reject the pr<strong>in</strong>ciple of free data access.<br />

Some <strong>in</strong>dustrialised countries have <strong>in</strong>troduced legislation<br />

that would restrict the open access that the re-<br />

search community has traditionally enjoyed. In response,<br />

the International Union of Geodesy and Geophysics, the<br />

International Association of Hydrological Sciences, and<br />

the World Meteorological Organization have all passed<br />

resolutions call<strong>in</strong>g for the free and unrestricted access <strong>to</strong><br />

hydrological data (compare Sect. C.3.4). In less developed<br />

countries, data access is primarily limited by high prices,<br />

which are justified on the basis of recover<strong>in</strong>g operat<strong>in</strong>g<br />

costs. As a result, fewer data are available <strong>to</strong> analysts and<br />

policy-makers <strong>in</strong> develop<strong>in</strong>g countries <strong>to</strong> design and<br />

implement the new policies they need <strong>to</strong> cope with water<br />

scarcity.<br />

The Promise of New Technologies<br />

Ideally, a hydrological moni<strong>to</strong>r<strong>in</strong>g system will generate<br />

a real-time, cont<strong>in</strong>uous stream of discharge measurements<br />

from selected locations <strong>in</strong> the river bas<strong>in</strong>. In practice,<br />

this goal is not atta<strong>in</strong>ed: stage, not discharge, is<br />

measured (discharge is <strong>in</strong>ferred from stage us<strong>in</strong>g a set<br />

E.6.1 .Population and Climate 521<br />

of empirical relationships, which must be recalibrated<br />

on a regular basis), measurements are taken <strong>in</strong>frequently<br />

and irregularly, and the results are made available days<br />

or weeks after capture.<br />

Advances <strong>in</strong> radar gaug<strong>in</strong>g, telemetry, the <strong>in</strong>ternet, and<br />

modell<strong>in</strong>g can significantly improve moni<strong>to</strong>r<strong>in</strong>g performance.<br />

Satellite and cellular communications can<br />

transmit data <strong>in</strong> real-time from the gaug<strong>in</strong>g station <strong>to</strong><br />

the <strong>in</strong>ternet. GIS-based hydrological models can <strong>in</strong>tegrate<br />

hydrological, meteorological, and elevation data <strong>to</strong> predict<br />

discharge and water quality across the river bas<strong>in</strong>.<br />

For remote and <strong>in</strong>accessible areas, Vorosmarty et al.<br />

(1999) propose the development of a hydrologically-oriented<br />

satellite <strong>to</strong> moni<strong>to</strong>r river stage, surface velocity, and<br />

width. Us<strong>in</strong>g imag<strong>in</strong>g radar and/or doppler lidar sensors,<br />

the satellite would measure the surface height of <strong>in</strong>land<br />

water bodies with an accuracy of 5-10 cm and river surface<br />

velocity with an accuracy of 20 cm per second, with<br />

a frequency of three <strong>to</strong> seven days. The data would be<br />

made freely available <strong>in</strong> near real-time <strong>to</strong> counteract the<br />

deterioration of terrestrial moni<strong>to</strong>r<strong>in</strong>g networks, data<br />

commercialisation, and long delays <strong>in</strong> proc-ess<strong>in</strong>g and<br />

distribution. But however advanced the technology. an<br />

adequate ground network is still required <strong>to</strong> calibrate<br />

these remotely sensed measurements.<br />

Conclusions<br />

The future management of water must emphasize demand<br />

management, efficiency improvements and conservation.<br />

This requires <strong>in</strong>creas<strong>in</strong>gly sophisticated <strong>in</strong>formation<br />

on the function<strong>in</strong>g of the hydrological system<br />

and how it is affected by water management decisions.<br />

To this end, the Earth systems science community<br />

can provide valuable <strong>in</strong>sight <strong>in</strong><strong>to</strong> an important component<br />

of the analysis, namely, a quantitative description<br />

of the terrestrial water cycle. The analysis presented<br />

here suggests that when socio-economic and biophysical<br />

datasets are l<strong>in</strong>ked <strong>in</strong> a relatively high resolution sett<strong>in</strong>g,<br />

we see an even more urgent picture of potential<br />

<strong>vulnerability</strong> <strong>in</strong> world water resources than previously<br />

acknowledged. The challenge will be <strong>to</strong> harmonise the<br />

<strong>in</strong>formation needs of the two communities, that is of<br />

the natural sciences and the social sciences. The Earth<br />

systems modell<strong>in</strong>g community provides high-resolution<br />

datasets on water availability which transcend political<br />

boundaries, a reflection of the <strong>in</strong>tegrative nature of the<br />

water cycle. While our knowledge of water supply cont<strong>in</strong>ues<br />

<strong>to</strong> require improvement, our knowledge of population<br />

distribution and water use statistics is arguably<br />

much more primitive. In many countries, there has been<br />

no census for over a decade and water use statistics for<br />

several countries are many years old. Investment <strong>in</strong> hydrological<br />

moni<strong>to</strong>r<strong>in</strong>g and analysis should be balanced


522<br />

CHAPTER E.6 .Case Studies<br />

with <strong>in</strong>creased support for socio-economic data collection.<br />

Socio-economists are well advised <strong>to</strong> adopt such a<br />

"boundary-free" perspective by standardis<strong>in</strong>g, both <strong>in</strong>tra<br />

and <strong>in</strong>ternationally, the datasets necessary <strong>to</strong> quantify<br />

the drivers of water withdrawal and consumption.<br />

F<strong>in</strong>ally, identification of water <strong>vulnerability</strong> will be based<br />

on vigilance and scientific hydrology. With <strong>in</strong>ternational<br />

support, governments should seek <strong>to</strong> upgrade and extend<br />

their hydrological moni<strong>to</strong>r<strong>in</strong>g systems us<strong>in</strong>g the<br />

most cost-effective data collection, communication and<br />

analysis technologies available.<br />

Fig. E.16.<br />

The Lake Erhai bas<strong>in</strong><br />

Legend:<br />

@ Town/City<br />

.Scenic spot<br />

/V River<br />

~ Lake<br />

~ Boundary<br />

.Landuse<br />

0 10 20km<br />

Acknowledgments<br />

The authors would like <strong>to</strong> thank Uwe Deichmann (World<br />

Bank), who produced the population surfaces under contract<br />

<strong>to</strong> CIESIN and advised on the extrapolation of the<br />

data <strong>to</strong> 2025, and Greg Browder (World Bank), who provided<br />

the World Bank water sec<strong>to</strong>r project data and<br />

project papers. The authors would also like <strong>to</strong> acknowledge<br />

the contributions made by Richard Lammers (UNH)<br />

and Jose Simas, Danny Gunaratnam, and Nagaraja Rao<br />

TheLMe--<br />

EI1I8J Bal<strong>in</strong><br />

N<br />

W+E<br />

S


Harshadeep (World Bank). The US Agency for International<br />

Development and the Dutch M<strong>in</strong>istry of Foreign<br />

Affairs provided fund<strong>in</strong>g for this paper.<br />

Brad Bass Lei Liu .Gordon H. Huang<br />

E.6.2 Water Resources <strong>in</strong> the Lake Erhai Bas<strong>in</strong>, Ch<strong>in</strong>a<br />

Introduction<br />

One of the most critical concerns fac<strong>in</strong>g both the national<br />

and local governments <strong>in</strong> Ch<strong>in</strong>a is the <strong>environmental</strong><br />

degradation associated with rapid economic<br />

development. Ch<strong>in</strong>ese governments have been <strong>in</strong> the<br />

process of design<strong>in</strong>g region-specific <strong>environmental</strong><br />

regulations, but the decision-mak<strong>in</strong>g process requires a<br />

sound understand<strong>in</strong>g of the significant drivers of regional<br />

<strong>environmental</strong> problems and the effects of policy<br />

changes on different sec<strong>to</strong>rs and decision variables. One<br />

sec<strong>to</strong>r that has drawn considerable <strong>in</strong>terest is water resources;<br />

<strong>in</strong> particular, the impact of economic development<br />

on water resources and how these impacts are<br />

modified by other fac<strong>to</strong>rs such as climatic variation and<br />

change.<br />

The Lake Erhai bas<strong>in</strong> provides an illustration of the<br />

<strong>in</strong>tegrated impacts of several fac<strong>to</strong>rs, <strong>in</strong>clud<strong>in</strong>g weather,<br />

on water resources. The bas<strong>in</strong> is host <strong>to</strong> agricultural and<br />

<strong>in</strong>dustrial production, a net-cage fishery, forestry and<br />

<strong>to</strong>urism, but its water resources are also required for<br />

municipal water and navigation. The rapid economic<br />

development and population growth of recent years has<br />

been accompanied by <strong>in</strong>creased amounts of water pollution<br />

due <strong>to</strong> <strong>in</strong>dustrial wastewater emission, eutrophication<br />

<strong>in</strong> Lake Erhai due <strong>to</strong> nutrients from runoff and<br />

the fishery, and soil erosion due <strong>to</strong> deforestation. In order<br />

<strong>to</strong> address these concerns, a research project entitled<br />

"Integrated Environmental Plann<strong>in</strong>g for Susta<strong>in</strong>able<br />

Development <strong>in</strong> the Lake Erhai bas<strong>in</strong>" was undertaken<br />

between 1996-1998 with support from the United Nations<br />

Environmental Programme.<br />

The Lake Erhai bas<strong>in</strong> is located at 25°25' -26°10' N<br />

and 99°32' -100°27' E and covers an area of 2565 km2<br />

with<strong>in</strong> the jurisdiction of Yunan Bai National Au<strong>to</strong>nomous<br />

Prefecture, Ch<strong>in</strong>a (Fig. E.16). Lake Erhai has an<br />

approximate area of 250 km2, an average depth of 10.2 m<br />

and a s<strong>to</strong>rage volume of 28.2 x 108 m3. There are 117 rivers<br />

and streams that dra<strong>in</strong> <strong>in</strong><strong>to</strong> Lake Erhai, mostly from<br />

the north through several smaller lakes and which dra<strong>in</strong><br />

<strong>in</strong><strong>to</strong> the Mizu, Luoshijiang and the Yunganjiang Rivers<br />

and from the east. The Xier River is the only river flow<strong>in</strong>g<br />

out of the lake and is the river most affected by <strong>in</strong>dustrial<br />

discharge. The bas<strong>in</strong> also <strong>in</strong>cludes mounta<strong>in</strong>s,<br />

hills and alluvial pla<strong>in</strong>s. Land use <strong>in</strong>cludes forest (44.7%),<br />

grassland (20.3%), farmland (14.5%), human habitat<br />

(2.7%), abandoned land (1.7%), transportation (0.5%),<br />

and water bodies occupy 9.5% of the bas<strong>in</strong>.<br />

E.6.2 .Water Resources <strong>in</strong> the lake Erhai Bas<strong>in</strong>, Ch<strong>in</strong>a 523<br />

The <strong>vulnerability</strong> assessment diagram has been<br />

modified for this region and expanded <strong>to</strong> eight subsystems<br />

-population, agriculture, <strong>in</strong>dustry, <strong>to</strong>urism, water<br />

resources, pollution control, water quality and forestryand<br />

their <strong>in</strong>terrelations (Fig. E.l]). For example, <strong>in</strong>dustrial<br />

development br<strong>in</strong>gs economic benefits but also consumes<br />

raw materials from forestry and agriculture and<br />

discharges wastewater <strong>in</strong><strong>to</strong> the Xier River. A system dynamics<br />

(SD) approach was used <strong>to</strong> model the <strong>in</strong>teractions<br />

between the various components <strong>in</strong> the Lake Erhai<br />

bas<strong>in</strong>. The relationships were quantified us<strong>in</strong>g Professional<br />

Dynamo Plus.<br />

The governments that are <strong>in</strong>volved want <strong>to</strong> consider<br />

how limits <strong>to</strong> economic development would impact on<br />

water quality and quantity, the sensitivity of these impacts<br />

<strong>to</strong> variations <strong>in</strong> weather and then determ<strong>in</strong>e an ap-<br />

pr


~<br />

524<br />

..<br />

CHAPTER E.6 .Case Studies<br />

""..<br />

I do~estic sewage I<br />

"<br />

"<br />

"""<br />

"", [;;;~~J<br />

wastewater<br />

r pollution 1,,""" treatment<br />

L subsys~m J<br />

""<br />

""",."..", COD discharge I<br />

,~<br />

I agricultt1ral outputs I<br />

,.' per capita<br />

~;;;JriCulture , <strong>in</strong>come<br />

subsystem ..<br />

".<br />

". """"" ". '" [ ~;~;~;~~~~J<br />

water consumption<br />

nutrient concentration<br />

of agricultural runoff /<br />

y<br />

Fig. E. 17. Interactive relationships among different subsystems<br />

sensitive <strong>to</strong> several population parameters. To assess the<br />

seriousness of the problems with ICODT, planners,<br />

policy-makers and <strong>in</strong>dustrial stakeholders must agree on<br />

an acceptable uncerta<strong>in</strong>ty for this variable. If the model<br />

uncerta<strong>in</strong>ty is much higher than the acceptable uncerta<strong>in</strong>ty,<br />

then this decision variable should only be used <strong>in</strong><br />

a restricted manner (ICODT <strong>in</strong>creases or decreases relative<br />

<strong>to</strong> the previous time step) or not be used at all.<br />

Vulnerability Assessment<br />

The ErhaiSD model was run for a period of 15 years with<br />

1996 identified as the year for generat<strong>in</strong>g alternative sce-<br />

",,"'1~ater consumption<br />

\<br />

" '"<br />

~<br />

\<br />

"<br />

<strong>to</strong>urism<br />

subsystem<br />

\<br />

" \<br />

<strong>in</strong>dustrial po<strong>in</strong>t<br />

sources<br />

!<br />

!<br />

agricultural nonpo<strong>in</strong>t<br />

sources<br />

f ,. I<br />

water nonpo<strong>in</strong>t<br />

-""'"<br />

[~~~~~<br />

water quality<br />

subsystem<br />

domestic nonpo<strong>in</strong>t<br />

sources<br />

sources<br />

frommounta<strong>in</strong>s<br />

narios. The simulation exercise <strong>in</strong>cluded a base run (BR)<br />

and three alternative scenarios (~I-A3), provided by<br />

local authorities based on a previou~ plann<strong>in</strong>g study (Wu<br />

et al. 1997), balanc<strong>in</strong>g economic and <strong>environmental</strong> objectives<br />

(1), emphasis<strong>in</strong>g <strong>in</strong>dustrial growth (2) and emphasis<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>g water pollution control. The results<br />

are presented for gross <strong>in</strong>dustrial output (PlOT), <strong>in</strong>dustrial<br />

wastewater generation (ISWT), <strong>in</strong>dustrial COD<br />

emission and water pollution <strong>in</strong>dex (Fig. E.18a-d). The<br />

model suggests that water pollution will be reduced <strong>in</strong><br />

all three alternatives. Alternative 2 will result <strong>in</strong> marg<strong>in</strong>ally<br />

higher amounts of economic growth than Alternative<br />

1, yet with much larger amounts of <strong>in</strong>dustrial discharge.<br />

The COD concentrations could be reduced by


'b<br />

§;<br />

I- 0a:<br />

-;;;-<br />

Q)<br />

c<br />

c<br />

0<br />

"b ~<br />

fa<br />

8<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1996 2000 2004 2008 2010 1996 2000 2004 2008 2010<br />

1996 2000 2004 2008 2010 1996 2000 2004 2008 2010<br />

Fig. E.18. Simulation results of the ErhaiSD model with a base run (BR) and three alternative scenarios (AI-Aj). a Gross <strong>in</strong>dustrial output<br />

values; b <strong>to</strong>tal <strong>in</strong>dustrial wastewater generation; c <strong>to</strong>tal <strong>in</strong>dustrial COD emissions; d water pollution <strong>in</strong>dex<br />

50% through the development of regional wastewater creased surface runoff, soil eroision and <strong>in</strong>-lake turbu-<br />

treatment systems; the best improvement occurs <strong>in</strong> Allence. In the dry scenario the N and P load<strong>in</strong>gs are much<br />

ternative 3 due <strong>to</strong> the lower amounts of COD discharge. lower. <strong>How</strong>ever, eutrophication could still be a problem<br />

Alternatives 1 and 3 produce substantially lower due <strong>to</strong> <strong>in</strong>tense sunlight and higher temperatures as oc-<br />

amounts of <strong>in</strong>dustrial discharge, but control of this varicurred <strong>in</strong> August and September of 1996, for example,<br />

able is not sufficient as all of the alternatives contribute when the algae count and the COD reached their high-<br />

a similar amount of <strong>to</strong>tal dissolved N and P. Although est levels <strong>in</strong> ten years, most likely due <strong>to</strong> strong thermal<br />

Alternative 3 emphasizes agriculture, the amounts of <strong>to</strong>tal<br />

dissolved Nand P <strong>in</strong> the back-flow<strong>in</strong>g irrigation water<br />

(NAWUR and PAWUR) were only marg<strong>in</strong>ally higher<br />

stratification and weak dispersion.<br />

than Alternatives 1 and 2. Conclusion<br />

Vulnerability <strong>to</strong> Weather<br />

The Lake Erhai bas<strong>in</strong>'s water supplies are vulnerable <strong>to</strong> a<br />

wide range of fac<strong>to</strong>rs <strong>in</strong>clud<strong>in</strong>g the weather. The ErhaiSD<br />

model suggests that choos<strong>in</strong>g an alternative management<br />

In addition <strong>to</strong> the direct discharge of <strong>in</strong>dustrial waste procedure, which balanced <strong>in</strong>dustrial growth with envi-<br />

and nutrients, water quality is closely related <strong>to</strong> precipironmental concerns or one that favours agriculture, could<br />

tation and runoff. To assess the <strong>vulnerability</strong> of the ba- reduce <strong>in</strong>dustrial discharge. This is particularly impors<strong>in</strong><br />

<strong>to</strong> seasonal weather variability -and perhaps climate tant under a scenario of reduced precipitation, as the COD<br />

change -three precipitation scenarios were considered, levels are <strong>in</strong>versely proportional <strong>to</strong> water quantity. All of<br />

correspond<strong>in</strong>g <strong>to</strong> dry, average and wet seasons <strong>in</strong> the ~ the plann<strong>in</strong>g alternatives were similar <strong>in</strong> terms of <strong>to</strong>tal<br />

region. Table E.3a-c present the impacts of the three pre- dissolved Nand P, but this could be reduced through <strong>in</strong>cipitation<br />

scenarios on the Xier River, for the three plancreas<strong>in</strong>g the forest coverage. The model suggested that<br />

n<strong>in</strong>g alternatives, before and after the <strong>in</strong>stallation of N and P levels were proportional <strong>to</strong> water quantity, but it<br />

wastewater treatment. The COD concentration is high- did not reflect the potential for eutrophication under a<br />

est under the dry scenario, even with treatment facili- scenario of reduced precipitation.<br />

ties.<br />

These results are problematic for planners <strong>in</strong> that any<br />

An additional simulation was conducted us<strong>in</strong>g the precipitation scenario that deviates from average condi-<br />

three precipitation scenarios under the assumption of tions will worsen water quality. The <strong>in</strong>dustrial discharge<br />

<strong>in</strong>creas<strong>in</strong>g forest coverage. The results are presented for would have <strong>to</strong> be controlled through additional waste-<br />

Alternative 1 only, as the impacts were similar across all water treatment and/or reduced <strong>in</strong>dustrial growth. If the<br />

three alternative futures (Table E4a-c). Under the wet future weather were <strong>to</strong> favour a drier precipitation re-<br />

scenario, the Nand P load<strong>in</strong>gs are <strong>in</strong>creased due <strong>to</strong> <strong>in</strong>- gime, the region's development plan could be altered <strong>to</strong><br />

w Q)<br />

c<br />

c<br />

.9<br />

~ ~<br />

~<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

525


526<br />

CHAPTER E.6 .Case Studies<br />

Table E.3. COD (Chemical Oxygen Demand) concentration <strong>in</strong> the Xier River before and after wastewater treatment processes<br />

a Averageseason<br />

1998<br />

2001<br />

2004<br />

2007<br />

2010<br />

b Dry season<br />

1998<br />

2001<br />

2004<br />

2007<br />

2010<br />

c Wetseason<br />

1998<br />

2001<br />

2004<br />

2007<br />

2010<br />

Alternative 1 Alternative 2 Alternative 3<br />

before after before/after before after before/after before after before/after<br />

73.02<br />

76.24<br />

81<br />

87.66<br />

91.89<br />

97.16<br />

101.59<br />

108.04<br />

117.18<br />

123.09<br />

61.68<br />

64.39<br />

68.37<br />

73.94<br />

77.43<br />

Table E.4.<br />

Simulation results for Alternative<br />

1 for normal, dry and wet<br />

season<br />

63.14<br />

59.17<br />

56.9<br />

56.21<br />

55.1<br />

83.63<br />

78.16<br />

74.91<br />

73.80<br />

72.25<br />

53.49<br />

50.26<br />

48.44<br />

47.80<br />

47.08<br />

1.2<br />

1.29<br />

1.42<br />

1.56<br />

1.67<br />

1.16<br />

1.30<br />

1.44<br />

1.59<br />

1.70<br />

1.15<br />

1.28<br />

1.41<br />

1.54<br />

1.64<br />

a Normal season<br />

Forest coverage (FCR) (%)<br />

91.76<br />

101.36<br />

104.42<br />

109.53<br />

112.08<br />

122.85<br />

136.14<br />

140.30<br />

147.41<br />

151.03<br />

77.19<br />

85.15<br />

87.73<br />

91.98<br />

94.07<br />

N concentration <strong>in</strong> Lake Erhai (mgl-"<br />

P concentration <strong>in</strong> Lake Erhai (mg I-"<br />

b Dry season<br />

Forest coverage (FCR) (%)<br />

N concentration <strong>in</strong> Lake Erhai (mg I-"<br />

P concentration <strong>in</strong> Lake Erhai (mg I-"<br />

c Wet season<br />

Forest coverage (FCR) (%)<br />

N concentration <strong>in</strong> Lake Erhai (mg I-"<br />

P concentration <strong>in</strong> Lake Erhai (mg I-"<br />

allow for more <strong>in</strong>dustrial growth, although it should be<br />

noted that <strong>in</strong>dustry requires significant amounts of water<br />

that might not be readily available. <strong>How</strong>ever, the<br />

amount of <strong>in</strong>dustrial discharge is the one variable that is<br />

highly uncerta<strong>in</strong> <strong>in</strong> ErhaiSD. Without know<strong>in</strong>g the acceptable<br />

level of uncerta<strong>in</strong>ty, it is difficult <strong>to</strong> use the model<br />

as the sole basis for controll<strong>in</strong>g <strong>in</strong>dustrial growth. Because<br />

of the high degree of uncerta<strong>in</strong>ty there are risks <strong>in</strong><br />

accept<strong>in</strong>g the model as a basis for controll<strong>in</strong>g <strong>in</strong>dustrial<br />

discharge. This case study did not explicitly account for<br />

climatic uncerta<strong>in</strong>ties <strong>in</strong> the decision, an analysis which<br />

is presented <strong>in</strong> Bass et al. (1997>.<br />

78.85<br />

77.46<br />

70.2<br />

66.24<br />

60.94<br />

105.19<br />

103.32<br />

93.24<br />

87.66<br />

80.33<br />

66.50<br />

65.38<br />

59.43<br />

56.26<br />

51.89<br />

1998<br />

44.7<br />

0.31<br />

0.0272<br />

44.7<br />

0.28<br />

0.026<br />

44.7<br />

0.32<br />

0.0279<br />

1.16<br />

1.31<br />

1.49<br />

1.65<br />

1.84<br />

1.17<br />

132<br />

1.51<br />

1.68<br />

1.88<br />

1.16<br />

1.30<br />

1.48<br />

1.641.81<br />

73.23<br />

74.8<br />

76.04<br />

79.12<br />

79.77<br />

97.53<br />

99.72<br />

101.31<br />

105.48<br />

106.40<br />

61.83<br />

63.15<br />

64.24<br />

66.87<br />

67.41<br />

61.72<br />

54.06<br />

47.21<br />

43.62<br />

38.56<br />

81.77<br />

71.22<br />

61.67<br />

56.49<br />

49.44<br />

52.3<br />

46.00<br />

40.41<br />

37.57<br />

33.43<br />

1.19<br />

1.38<br />

1.61<br />

1.81<br />

2.07<br />

1.19<br />

1.40<br />

1.64<br />

1.87<br />

2.15<br />

1.18<br />

137<br />

1.59<br />

1.78<br />

2.02<br />

2001 2004 2007 2010<br />

50.5<br />

0.30<br />

0.0265<br />

50.5<br />

0.27<br />

0.0255<br />

50.5<br />

0.31<br />

0.0272<br />

Changm<strong>in</strong>g Liu<br />

56.2<br />

0.28<br />

0.0254<br />

56.2<br />

0.26<br />

0.0245<br />

56.2<br />

0.29<br />

0.026<br />

E.6.3 Yellow River: Recent Trends<br />

62.0<br />

0.27<br />

0.0251<br />

62.0<br />

0.24<br />

0.0244<br />

62.0<br />

0.28<br />

0.0256<br />

Physical and Hydrological Characteristics<br />

67.7<br />

0.25<br />

0.0241<br />

67.8<br />

0.23<br />

0.0235<br />

67.7<br />

0.26<br />

0.0245<br />

The Yellow River, or Huang He, the second largest river<br />

<strong>in</strong> Ch<strong>in</strong>a, is known for its high silt content. It orig<strong>in</strong>ates<br />

from the Yueguzonglie bas<strong>in</strong>, be<strong>in</strong>g about 4700 m <strong>in</strong> elevation<br />

on the north side of the Bayankala Mounta<strong>in</strong> <strong>in</strong><br />

the Q<strong>in</strong>ghai-Tibet Plateau. It flows across n<strong>in</strong>e prov<strong>in</strong>ces<br />

from west <strong>to</strong> east and, f<strong>in</strong>ally, it enters the Bo Sea (part of


(O!HSUllnH) lO!A!~ MolIO!X 0!1fI<br />

Jo q:>IIO!l O!!PP!W pUll lO!ddfl<br />

'6L '3 '6!~<br />

11 '~:JUIAOJd ~UOpUlJqS 'i.1uno:) IYU~)l1lJ (lJ~S Mon~A ~q1<br />

~~lJUreJP lJ q1IM 'N o'tv 01 't£ pUll H 0611 0196 u~~M1~q s~Il<br />

'W)f v9v ~ JO ~U~1 ~SJno:J urew lJ pUll zW)f 000 't~L JO lJ~Jt!<br />

nIl) PIJlJ-IW~S JO PIJlJ SI lJ~Jt! J~AI~ Mon~A ~q1 JO 1S0W<br />

S1unO:J:JlJ UISlJq ~~lJUIlJJP S1I Jo lJ~JlJ ~qJ. '(6861 ~UlJIl SOlI<br />

'}1!101}1!uoI1lJU ~q1 Jo %'t AluO<br />

dn s~)[I!w JJounJ ~q1 ~nqM lJ~Jt! }1!UOI1lJU ~q1 Jo %8 JoJ<br />

u!seq JaA!~ MOna}.. atlt Jo e~ep :!!~s!Ja~:!eJeq:! J.peaJ. aq.L 'S'3 a)qel<br />

111.01<br />

~:JJnos J~1lJM 1UlJ1JodwI 1S0W ~q1 sI J~AI~ Mon~A ~qJ.<br />

J~1lJM ~q1 SlJ S~AJ~S 11 'lJUIq:) q1JOU PUlJ 1S~M-q1JOU Jo<br />

'PUlJldOJ:J lJqW 91 'UOIillW vtI JO UOI1lJyndod lJ JOJ Alddns<br />

UlJnJ.~uoqZ ~q1 PUlJ 'IXUlJlJqS 'rxulJqS 'lJII0~UOW J~UU1<br />

JO ~SlJq A~J~U~ ~q1 SlJ PUlJ 'S~I1I:J P~ZIS ~IPPIW JO ~~JlJl o~<br />

JO WlJ~J1S ~IPPIW PUlJ J~ddn ~qJ. 'spl~Y lIO Il~u~qS PUlJ<br />

q:JIqM iW)f 000 o£L JO lJ~JlJ UlJ SJ~AO:J J~AI~ Mon~A ~q1<br />

Il PUlJ nIl) lJ~JlJ ~~lJUIlJJP }1!101 S1I JO %L6 JOJ S1unO:J:JlJ<br />

q~Iq PUlJ SUIlJ1UnOW JO S1SISUO:J lJ~JlJ SIq1 JO 1S0W ,( 000't<br />

JO q1~U~llJ q1IM 1lJY ~1Inb SI WlJ~J1S J~MOI ~qJ. 'SnlJ~1lJld<br />

'UIlJld lJUIq:) q1JON ~q1 SSOJ:JlJ ~UIMOY W)f 08L<br />

q1IM J~AI~ Mon~A ~q1 JO M~IAJ~AO UlJ S~AI~ 61'H ~Jn~Id<br />

'q:JlJ~J J~MOI pUll ~IPPIW 'J~ddn ,~,~ 'SUISlJq-qns ~~Jq1 S1I<br />

SI J~AI~ Mon~A ~q1 JO JJOUnJ ~~lJJ~AlJ IlJnUUlJ ~qJ.<br />

~q1 JO JJOUnJ }1!101 ~q1 JO %9'~~ JOJ S1unO:J:JlJ noqzUlJl<br />

~AOqlJ lJ~JlJ ~qJ. 'lJ1lJp JO SJlJ~A 9~ UO p~SlJq EW uoInIq O'8~<br />

uI AplJ~J~ S~~UlJq:J JJounJ ~qJ. ,( 000't Il PUlJ nIl) J~AIJ<br />

'JlJ~AlJ UIq1IMAlu~A~un p~1nqIJ1SIP sI PUlJ SJt!~A1U~J~JJIP<br />

-lJ~S AUIlJJ ~q1 WOJJ s1yns~J JJounJ }1!101 ~q1 Jo %OL 1noqv<br />

SI J~AI~ MOn~A ~q1 JO :JI1SIJ~1:JlJJlJq:J 1U~UIWOJd ~qJ.<br />

'(J~qw~1d~S 01 ~unf WOJJ) uos<br />

-UO:J 11Is ~qJ. '"plJOI1U~WIP~s UI q:JIJ PUlJ J~1lJM JO 1JOqS"<br />

4JeaJ Jaddn<br />

4JeaJ aIPP!W<br />

4JeaJ UMOa<br />

9'8£<br />

v'v£<br />

l'l<br />

l'SL<br />

9.lLv£<br />

9.S9L<br />

v.9all<br />

9.£9vS<br />

9'~L£<br />

9'9V~<br />

O'L~<br />

~'O9S<br />

S,l!U!qJ SUOWl! :lSJ9 alp S){Ul!J JaA!~ MOna}.. alp JO :lua:l<br />

:luawwas renUUl! aSl!JaAl! aqJ. i 6861 S~!l p~ n!l) SJaA!J<br />

-~S alp SU!){l!:I) SUO:l UO!mq 9'1 S! (S:'a aIql!J.) aSxeq:>s!P<br />

-uo:> :Ins aSl!JaAl! alp '(aA!:ll!:luasaJdaJ Sl! UO!:ll!:lS l!!XUaw<br />

S! aSJl!q:>s!P :luaw!pas wnw!Xl!W aq:l £_w S){ S:£ S! :lua:l<br />

:Ins wnw!Xl!w alp pUll (££61) Jl!a1.. Jad SUO:l UO!mq 't6'£<br />

aSJl!q:>s!P :luaw!pas aqJ. i£-w S){ 0't6 paq:>l!aJ :lua:lUo:><br />

%06 sap!AoJd (JaqO:l:>O 0:1 1..IfiO UOSl!as poo{J alp SU!mp<br />

:luawwas Jo UO!:ll!m:>n{J AJxea1.. aqJ. lunOWl! renu~ alp JO<br />

qS!q l! U! aSJl!q:>s!P :luawwas aqJ. 'qS!q a:l!nb S! aSJl!q:>s!P<br />

wnw!Xl!w aqJ. 'aSl!JaAl! aq:l a:>!Nl:I S! Jl!a1.. Uo!:ll!:I!d!:>aJd<br />

U! aSJl!q:>s!P :luaw!pas aq:l 'aIdWl!xa JOd 'sanreA JaqS!q<br />

uaAa q:>l!aJ ~:> O!:ll!J aSJl!q:>s!P :luaw!pas wnW!U!w p~<br />

:luaw!pas pa:ll!J:lua:>uo:>Jad1..q aqJ. '(I-J1..:I UO!n!q 817'0)<br />

8't61 Jo :ll!1p saw!:I 't'8 SlIM q:>!qM 'SUO:l UO!mq 't6'£ SlIM ££61<br />

-uaWUOJ!AUa WOJJ pa:lIfisaJ Sl!q JaA!~ MOna}.. aq:l U! Pl!°I<br />

'(6861 S~!l pUll n!l ~1861 nn) nl!a:l<br />

-l!Id ssaol alp U! UO!SOJa nos aJaAaS Sl! q:>ns swaIqoJd re:l<br />

SJOJD.J!PU/ AJ!/Dno JaJDM U! a6uD4.J<br />

L1:~ spuaJl ~ua)aM :JaA!M MoilaA .£'9'3<br />

-qsnu I..q JI;)S~! ;)SU~;)I:> o~ J;)A!J ;)~ JO I..~!:>~d~:> ;)~ s;):>np<br />

-;)J q:>!qM ~U!S~;)J:>;)P S! J;)A!~ MOn;)A ;)~ JO JJOUnJ ;)q.L<br />

MOn;)A ;)q~ JO IOJ~uo:> uo!~nnod ';)W!~ ;)W\!S ;)q~ ~V .~U!<br />

JOJ SM~I ;)~;)Idwo:> ou ;)J~ ;)J;)~ ;):>U!S 'P;)~~~I s~q J;)A!~<br />

~U;)W;)~~U~W p;)~!Un ~ pU~ UO!~:>;)~oJd ;):>JnOS;)J J;)~~M<br />

-U! ;)~J~q:>S!P ;)~~M;)S pU~ ;)Sn J;)~~M ;)q~ 'WS!U~q:>;)W<br />

J~;)I.. P~oI uo!~nnod P;)S~;)J:>U! U! P;)~ynS;)J ;)A~q S;)S~;)J:><br />

6'vl<br />

0<br />

9L<br />

lv'l<br />

9'LOV<br />

l'9V~<br />

£'SL9<br />

6'SLv<br />

-.<br />

ZZ'£<br />

ZZ'6<br />

9v'vl<br />

ZZ'6


Acknowlegement<br />

This<br />

528<br />

CHAPTER E.6 .Case Studies<br />

Table E.6. Statistical data of sediment yields after Chen et at. (1998) (empty spaces <strong>in</strong> the table are unmeasured values)<br />

by year. The pollution of the Yellow River has become<br />

worse which has been attributed <strong>to</strong> different reasons<br />

with m<strong>in</strong><strong>in</strong>g one of the ma<strong>in</strong> sources (Ongley 2000).<br />

In Summer 1998, a water quality assessment was<br />

performed, based on moni<strong>to</strong>r<strong>in</strong>g data of 69 segments<br />

(26 of ma<strong>in</strong>stream, 43 of tributaries) with a <strong>to</strong>tal length<br />

of 7158 km <strong>in</strong> the Yellow River bas<strong>in</strong>. The result illustrates<br />

the water problem of the Yellow River, i.e. refJects<br />

the serious degradation of the extensively used waters:<br />

grade! I-III made up only 26.1%, grade IV made up<br />

38.6%, grade V made up 13.0% of the <strong>to</strong>tal length. The<br />

most seriously polluted water is unsuitable for any use,<br />

and does not even get a grade as it is <strong>in</strong>ferior <strong>to</strong> grade V.<br />

22.3% of the <strong>to</strong>tal length belonged <strong>to</strong> this category, that<br />

is below grade V. This means of the <strong>to</strong>tal length of the<br />

river with polluted water, i.e. belong<strong>in</strong>g <strong>to</strong> grade IV, V<br />

and even worse than V, was 73.9% of the <strong>to</strong>tal length<br />

assessed <strong>in</strong> June <strong>to</strong> September 1998. Compar<strong>in</strong>g the water<br />

quality of 1998 with that of 1985, the length of river with<br />

water quality worse than grade III has <strong>in</strong>creased by 58.8%.<br />

The long periods of low flow and dry<strong>in</strong>g-up <strong>in</strong> the<br />

lower reach of the Yellow River have led the wetland areas<br />

<strong>in</strong> the delta <strong>to</strong> decrease. The groundwater table has<br />

decl<strong>in</strong>ed without enough fresh water recharge and the<br />

sal<strong>in</strong>isation area has <strong>in</strong>creased. The water environment<br />

of the wetland has changed and threatened the life of<br />

hundreds of wild plants and 180 k<strong>in</strong>ds of birds. It is damag<strong>in</strong>g<br />

the biological diversity of the delta.<br />

! In Ch<strong>in</strong>a, the water quality is classified <strong>in</strong> five grades, <strong>in</strong> descend-<br />

<strong>in</strong>g order from the highest quality (I) <strong>to</strong> the poorest one (V).<br />

chapter was supported by the Ch<strong>in</strong>ese Key Proj ect:G19990436-01<br />

Roland E. Schulze<br />

E.6.4 Examples of Hazard Determ<strong>in</strong>ation and Risk<br />

Mitigation from South Africa<br />

The Approach, the Hydrological Model and the Spatial<br />

Databases Used<br />

This section illustrates some of the concepts of risk, hazard<br />

and <strong>vulnerability</strong> with<strong>in</strong> a context of hydrological<br />

risk management as described <strong>in</strong> Chapt. E.5, us<strong>in</strong>g examples<br />

from South Africa, def<strong>in</strong>ed here as the contiguous<br />

area of 1267 681 km2 made up of the n<strong>in</strong>e prov<strong>in</strong>ces<br />

of the Republic of South Africa plus the landlocked K<strong>in</strong>gdoms<br />

of Lesotho and Swaziland. The country/regional<br />

scale is chosen <strong>to</strong> identify regions of similar hydrological<br />

hazard levels and thereby <strong>to</strong> dist<strong>in</strong>guish between<br />

areas of higher and lower potential hydrological risk.<br />

Such a comparative view is important from the perspective<br />

that risk management is a national/regional responsibility<br />

and that this analysis may assist <strong>in</strong> identify<strong>in</strong>g<br />

target areas for potential priority attention. Many of the<br />

hazard/risk <strong>in</strong>dices presented by way of maps are <strong>in</strong> the<br />

form of ratios, rather than as absolute values, <strong>to</strong> highlight<br />

sensitive areas on a relative scale.


s<br />

A regional analysis requires a hydrological model <strong>to</strong><br />

be operated with suitable hydrological spatial databases.<br />

The hydrological model selected was the ACRU agrohydrological<br />

modell<strong>in</strong>g system (Schulze 1995, and see<br />

Sect. D.2.6.6.2), developed <strong>in</strong> South Africa for catchment<br />

scale simulation of runoff components, sediment yield,<br />

reservoir yield, irrigation supply/demand and crop yield<br />

analysis, and conta<strong>in</strong><strong>in</strong>g rout<strong>in</strong>es for the assessment of<br />

land use/management as well as climate impacts on hydrology.<br />

ACRU is a widely verified physical-conceptual<br />

and daily time step simula<strong>to</strong>r operat<strong>in</strong>g on a multi-layer<br />

soil water budget described <strong>in</strong> detail <strong>in</strong> Schulze (1995).<br />

The ACRU model has been widely verified at catchment<br />

scale, both <strong>in</strong> South Africa under a range of hydro climatic<br />

and physiographic <strong>conditions</strong> (e.g. Schulze 1995) and elsewhere<br />

(e.g. <strong>in</strong> the USA, <strong>in</strong> Germany and Zimbabwe).<br />

For the production of South Africa scale maps shown<br />

<strong>in</strong> this chapter, quality controlled daily ra<strong>in</strong>fall for the<br />

concurrent 44-year period 1950-1993 was <strong>in</strong>put for each<br />

of the 1946 Quaternary catchments which have been<br />

del<strong>in</strong>eated for South Africa, Lesotho and Swaziland. For<br />

each Quaternary catchment other atmospheric parameters<br />

(e.g. daily maximum and m<strong>in</strong>imum temperatures;<br />

A-pan equivalent reference potential evaporation) were<br />

also <strong>in</strong>put, as were hydrological soil parameters. For purposes<br />

of produc<strong>in</strong>g comparative hydrological hazard<br />

maps, land cover was assumed <strong>to</strong> be grassland <strong>in</strong> fair<br />

hydrological condition (i.e. 50-75% cover).<br />

of General Hydrological Hazard Indices<br />

To set the scene, Fig. E.20 (<strong>to</strong>p) shows mean annual<br />

precipitation (mm), which characterises the long-term<br />

quantity of available water <strong>to</strong> a region, <strong>to</strong> display a general<br />

westward decrease, with relatively low mean annual<br />

precipitation -a first <strong>in</strong>dication of a largely semi-arid<br />

climate and potentially high risk natural environment.<br />

A simple aridity <strong>in</strong>dex expressed as the ratio of mean<br />

annual potential evaporation <strong>to</strong> mean annual precipitation<br />

(Fig. E.20, middle) emphasizes the hazard of hydrological<br />

semi-aridity, because it amplifies the effects<br />

of a low mean annual precipitation when that is <strong>evaluate</strong>d<br />

<strong>in</strong> association with the region's high atmospheric<br />

demand. The aridity <strong>in</strong>dex is an already high 2-3 where<br />

mean annual precipitation is > 600 mm, <strong>in</strong>creas<strong>in</strong>g <strong>to</strong><br />

> 10 and even> 20 <strong>in</strong> the west. A consequence largely of<br />

the high aridity <strong>in</strong>dex is that the conversion ratios of<br />

ra<strong>in</strong>fall <strong>to</strong> runoff over most of South Africa are exceptionally<br />

low (Fig. E.20, bot<strong>to</strong>m) with, overall, only 9% of<br />

ra<strong>in</strong>fall manifest<strong>in</strong>g itself as runoff. These low runoff<br />

ratios, simulated with the ACRU model (Schulze 1995),<br />

result <strong>in</strong> a high hydrological <strong>vulnerability</strong> over much of<br />

the region.<br />

E.6.4 .Examples of Hazard Determ<strong>in</strong>ation and Risk Mitigation from South Africa 529<br />

Example of a "Deprivation" Event, Hydrological<br />

Uncerta<strong>in</strong>ty and of Variable Sensitivity:<br />

The 1982/3 EI N<strong>in</strong>o Event over South Africa<br />

The 1982/1983 EI N<strong>in</strong>o was one of the most severe experienced<br />

over South Africa. The manner <strong>in</strong> which such<br />

an event impacts on different hydrological responses is<br />

illustrated <strong>in</strong> Fig. E.21. Observed ra<strong>in</strong>fall and simulated<br />

runoff and recharge <strong>in</strong><strong>to</strong> the groundwater zone through<br />

the soil profile are all expressed as ratios of their respective<br />

long-term (1950-1993) median values. For much of<br />

the region the EI N<strong>in</strong>o season's ra<strong>in</strong>fall was 60-75% of<br />

the median, however, with sizeable areas receiv<strong>in</strong>g with<strong>in</strong><br />

the range of expected ra<strong>in</strong>falls (i.e. 75-125%) while some<br />

others received only 20-60% of the norm (Fig. E.21, <strong>to</strong>p).<br />

The correspond<strong>in</strong>g runoff responses display much more<br />

complex patterns spatially and <strong>in</strong> the range of ratios.<br />

Much of the region yielded only 20-60% of the longterm<br />

runoff (Fig. E.21, middle), with considerable areas<br />

generat<strong>in</strong>g < 20% of the expected runoffs. This shows<br />

clearly once more the <strong>in</strong>tensify<strong>in</strong>g effects of the hydrological<br />

cycle on ra<strong>in</strong>fall perturbations, as well as the dependence<br />

of hydrological responses not only on <strong>to</strong>tal<br />

ra<strong>in</strong>fall amounts, but also on <strong>in</strong>dividual events, ra<strong>in</strong>fall<br />

sequences and antecedent catchment wetness <strong>conditions</strong>,<br />

i.e. on the hydrological uncerta<strong>in</strong>ty created by meteorological<br />

and catchment <strong>conditions</strong>.<br />

Some hydrological processes and responses display<br />

higher sensitivities, and thus higher potential vulnerabilities,<br />

than others. This is illustrated by the recharge<br />

<strong>to</strong> groundwater dur<strong>in</strong>g this EI N<strong>in</strong>o event, which was<br />

impacted even more severely than runoff (Fig. E.21, bot<strong>to</strong>m).<br />

Generally only 0-20% of the expected recharge<br />

was simulated <strong>to</strong> take place, the reason be<strong>in</strong>g that a<br />

higher threshold has <strong>to</strong> be reached for recharge <strong>to</strong> commence<br />

than for s<strong>to</strong>rmflow <strong>to</strong> start occurr<strong>in</strong>g.<br />

Example of an "Assault" Event as an Index of<br />

Potential Vulnerability and S<strong>to</strong>chasticity by<br />

Quantitatively Def<strong>in</strong>ed Endpo<strong>in</strong>ts <strong>in</strong> Regard <strong>to</strong><br />

Depth, Duration, Frequency and Area Affected<br />

Episodic flood generat<strong>in</strong>g events display considerable<br />

s<strong>to</strong>chasticity (i.e. unknowable randomness). As an <strong>in</strong>dex<br />

of potential <strong>vulnerability</strong>, the flood hazard example<br />

presented below as an "assault" event illustrates the relative<br />

spatial differences over South Africa between the<br />

severity of the 1: 50 year I-day flood-produc<strong>in</strong>g ra<strong>in</strong>fall,<br />

and consequent runoff, compared with what could be<br />

considered the annual expected I-day values, i.e. the 1:2<br />

year event. Ratios of 1: 50 <strong>to</strong> 1 : 2 year ra<strong>in</strong>falls are generally<br />

between 2 and 4 (Fig. E.22, <strong>to</strong>p), with lower ratios<br />

~


of~<br />

sa!pms as e) 0 903 ~3idVH)<br />

-!AU3 {U:>!8010lp.l..q P!JU-!W3S .1..1<br />

-38ml S,[!:>!l}V rpnos }O S3:>!PUI<br />

'OZ'3"6!:!<br />

(alPP!IU) '(ww) UO!1U1!d!:>3Jd<br />

{Unuuu UU3W (dol) :1U3UJUOJ<br />

UO!SJ3AUO:> 3rp (IUOJJoq) puu<br />

UOI1U1IdI:>3Jd 01 UOI1UJOdU3<br />

{U!1U310d ienuuu UU3W }O 0!1UJ<br />

3rp SU p3SS3Jdx3 X3PU! A:I!P!m<br />

(uL661 ~JnrpS WOO}) I1t!JU!UJ<br />

01 JjOUnJ {Unuuu UU3W }O 0!1UJ<br />

I<br />

'<br />

I<br />

100"&1 < .<br />

00"&1<br />

0001 -00' .<br />

I: -r _<br />

F -C -i<br />

LJ<br />

WW<br />

008 -00' 0<br />

008 -OO~ ~<br />

OO~ -oor<br />

00"& -001<br />

001 ><br />

-0001 .<br />

~ > .<br />

o~ < 8<br />

o~ -91 8<br />

g/. -01.<br />

O/. -9 0<br />

(t66 t) eJ:JeUf1<br />

: UO/l8003 3d<br />

-t<br />

OllBb'<br />

9


'CfS<br />

"ZZ"3"6!.i<br />

sa!pms as e) , 9'3 113ldVH)<br />

(IOO'l ;lzynq;)S WO.lJ)<br />

5u!pooy Ot AtmqB.I;lUynA {B!t<br />

-u;l<strong>to</strong>d Jo S;I;)!PU! SB (WOJJoq)<br />

sJJoun.l pUB (t/OJ) SJlBJU!B.I<br />

ABp-I .lB;lA-'l :.lB;lA oS JO SOnB~<br />

-W3q~ ~S3J!U11W '13A3Moq 'SO!~1111{1!JU!1!1 3S3q.L '~S3M 13!lp<br />

3tp JO S~l11d U! 01 O~ SU!S1131:JU! ~nq 'S113111 {1!1~U3:J 13AO<br />

3q~ U! 13qS!q S3W!~ 01-t Sq~d3p pOOlJ J..11p-l S11 S3A13S<br />

PU11 S3W!~ O~ O~ dn pUt! '11:J!lJV tpnos JO S113111 U13~S113<br />

13AO 13qS!q<br />

"l'l'a 'S!d) ~S3M 13!lP 3tp JO S~:J111~ ~U11:JY!US!S<br />

3:JU311n:J:J0 ~u3nb31JU! Ut! 3q J..11W SpOOlJ 31!1{M '(monoq<br />

3A11q spOOlJ 31111 ~11tp S3~111~Snn! 31dw11x3 S!tp '~S3M 3tp U!<br />

'S3pm!US11W 3A!~11131 qS!q J..IP3~:J3dx3<br />

-un 1!3q~ JO 3sn11:J3q 3S11W11P 313A3S Op O~ {1!!~U3~od 3q~<br />

SJaSDJDQ JJoLJ5 Jo asn LJ6noJLJJ AJU!DJJa.JUn JO a/dWDX3<br />

~q~nl!JJ J..I~u3nb3JJ S! UO!~l!U!WJ3~3p pJl!Zl!q re:)!~S!~l!~S<br />

-l!~l!p ~Joqs ~U!Sn JO 3:)U3nb3SUO:) l! Sl! S3!~U!l!~J3:)Un 1:fI!M.<br />

-3P JO S3nreA reAJ3~U! 3:)U3JJn:)3J q~!q 3U!WJ3~3p O~ S~3S<br />

re:)!~OIOJPJ..q JoJ S!~ 3~l!J~Snm 0.1 °JjOUnJ JO lreJU!l!J U~!S<br />

JjOUnJ PUl! IJ1!JU!l!J Al!p- 1 Jl!3A O~ : 1 3q~ 's3sodJnd US!S3P<br />

P3uold S1!M. £661-'tL61 pO!J3d J1!3A-'t't ~oqs l! JOJ p3~l!W!~S3<br />

-!~S3 JjounJ pOl! ll1!JureJ A1!p-1 J1!3A O~: 1 ~SureS1! O!~l!J l! S1!<br />

uI '£661-0~61 SJ1!3A tt 3~ '3'! 'p0!J3d 3~ 3Iqnop JoJ p3~l!W<br />

Sl!M UO!~nq!J~S!P 3nJ1!A 3W3JtX3 J1!WJOU SoI3~ 3Sl!:> q:>l!3<br />

~Joqs 3q~ JI 13poW flllJV 3q~ q~!M p3~l!J3U3S JJOUnJ<br />

JO 3Sl!:> 3~ U! 'S3!J3S wnw!Jrew J1!nUUl! 3q~ O~ P3!Iddl!<br />

3q pynOM O!~l!J 3q~ 'S3!J3S WnW!Xl!W Il!nuul! 3q~ JO<br />

uo!~l!yndod p3~:>3dx3 3q~ JO 3A!~l!~U3S3Jd3J 3J3M SpJO:>3J<br />

'I pUnOJl!<br />

3SJl!l'3Sl!:> 3q~ 3q O~ ~OU AIJl!3I:> S!q~ SMOqS £'t'a 3JnS!d<br />

~L'o U33~3q SO!~l!J IJ1!JU!l!J Al!Ids!p l!:>!JJV ~nos Jo S~:>l!J~<br />

SO!~l!J MOqS Sl!3JP. J3~0 3I!qM '~L'o > U3A3 PUl! ~6'o pOl!<br />

-U!l!J US!S3P SU!~l!W!~Sa i O~'I U3A3 pOl!) ~'t'1 JO SS3:>X3 U!<br />

3J3A3S U! ~ynS3J sn~ Al!W sq~Su3I pJO:>3J ~Joqs WOJJ sIJ1!J<br />

-U!l!J 3q~ WOJJ p3~l!W!~S3 S! JJOUnJ US!S3P 3:>UO P3Y!Idwl!<br />

SJOJJ3 3S3q~ ~!M 'SUO!~l!W!~S3J3AO JO SUO!~l!W!~S3J3pUn


Fig. E.23.<br />

Ratios of "short" (1972-1993)<br />

<strong>to</strong> "longer" (1950-1993) design<br />

ra<strong>in</strong>fall and runoff <strong>in</strong> South<br />

Africa for the 50-year return<br />

period I-day event (from<br />

Schulze 2001)<br />

fall (Fig. E.23, bot<strong>to</strong>m). The importance of record length<br />

can therefore not be overemphasized, particularly <strong>in</strong><br />

light of the worldwide trend, certa<strong>in</strong>ly <strong>in</strong> develop<strong>in</strong>g<br />

countries and evident also <strong>in</strong> South Africa, of decl<strong>in</strong><strong>in</strong>g<br />

hydrometeorological record<strong>in</strong>g networks.<br />

Example of Secondary Hazard Modification Through<br />

Land-use Practices: The Case of Graz<strong>in</strong>g Management<br />

Land-use practices have already been shown <strong>to</strong> playa<br />

significant role <strong>in</strong> long-term average hydrological responses<br />

(cf. Mgeni Case Study, Chapt. D.n, but perhaps<br />

even more dramatically so at the extremities of frequency<br />

distributions (e.g. Schulze 1989, 2000 ).An example of secondary<br />

hazard modification by manipulat<strong>in</strong>g land-management<br />

practices is given below.<br />

E.6.4 .Examples of Hazard Determ<strong>in</strong>ation and Risk Mitigation from South Africa 533<br />

Much of South Africa's natural grassland (veld) has<br />

recently been shown <strong>to</strong> be heavily over-utilised (Hoffman<br />

et al.1999). Hydrologically, the degradation through<br />

overgraz<strong>in</strong>g of veld from good <strong>to</strong> poor condition, with<br />

its reduction <strong>in</strong> vegetal cover from> 75% <strong>to</strong> < 50%,<br />

implies enhanced s<strong>to</strong>rmflows through reduced <strong>in</strong>terception,<br />

evaporation and transpiration potentials as<br />

well as <strong>in</strong>filtrability, shortened catchment lag times<br />

which <strong>in</strong>creased peak discharges and greater exposure<br />

<strong>to</strong> soil erodibility through removal of mulch and shorter<br />

drop fall heights. These variables were changed for each<br />

of the 1946 Quaternary catchments cover<strong>in</strong>g South Africa<br />

<strong>in</strong> ACRU model simulations of s<strong>to</strong>rmflows, peak<br />

discharges and sediment yield <strong>to</strong> reflect veld <strong>in</strong> good v.<br />

poor management condition. Figure E.24 (<strong>to</strong>p) shows<br />

that annual s<strong>to</strong>rmflows from veld <strong>in</strong> degraded condition<br />

are generally 1.5-2.5 times as high as those from


534<br />

CHAPTER E.6 .Case Studies<br />

Fig. E.24.<br />

Ratios of annual s<strong>to</strong>rmflows<br />

(<strong>to</strong>p) and sediment yields (bot<strong>to</strong>m)<br />

<strong>in</strong> South Africa from veld<br />

<strong>in</strong> poor v. good hydrological<br />

condition (from Schulze 2001)<br />

Fig. E.25.<br />

Example of simple benefit<br />

analysis of seasonal runoff<br />

forecasts over South Africa<br />

(after Schulze et al. 1998)<br />

~Ro/n~.~<br />

Forecasted c/ima!9<br />

."WIn" f8sulrs <strong>in</strong> situation<br />

.No dffef9ncs<br />

I ."lose" situation I<br />

0 No data


Fig. E.26.<br />

Schematic illustration of the<br />

reduction of uncerta<strong>in</strong>ty <strong>in</strong> a<br />

reservoir operation through<br />

application of forecast<strong>in</strong>g<br />

techniques<br />

535<br />

With forecast! Uncerta<strong>in</strong>ty<br />

Without forecast: Reduction<br />

veld under good management. When converted <strong>to</strong> sedi- wrong, i.e. 1981/1982, 1987/1988 and 1990/1991, most of<br />

ment yields, however, the fac<strong>to</strong>r difference becomes southern Africa scores more "w<strong>in</strong>s" than "losses". The<br />

2.5-7.5 times, and even> 7.5 times (Fig. E.24, bot<strong>to</strong>m), impacts of short term climate perturbations such as the<br />

clearly illustrat<strong>in</strong>g how a hazard, <strong>in</strong> this case s<strong>to</strong>rmflow EI N<strong>in</strong>o phenomenon have already been illustrated. This<br />

and especially sediment yield, can be modified positively forecast analysis <strong>in</strong>dicates that even at the current level<br />

by good graz<strong>in</strong>g management and/or rehabilitation of of seasonal forecast accuracy (around 62% if the 3 worst<br />

overgrazed lands.<br />

forecasts <strong>in</strong> 15 are omitted) these can potentially be<br />

"translated" <strong>in</strong><strong>to</strong> an operational <strong>to</strong>ol for water resources<br />

managers which could prove statistically more accurate<br />

Example of Vulnerability Modification through<br />

than the current practice of forecast<strong>in</strong>g based on his-<br />

Seasonal Forecast<strong>in</strong>g of Runoff<br />

Vulnerability modification is a form of risk mitigation<br />

which <strong>in</strong>cludes, <strong>in</strong>ter alia, assess<strong>in</strong>g the benefits of fore<strong>to</strong>rical<br />

expected, i.e. median, runoffs with wide uncerta<strong>in</strong>ty<br />

bands, as shown <strong>in</strong> Fig. E.26.<br />

cast<strong>in</strong>g streamflows for the ra<strong>in</strong>y season ahead. Statisti- Are Certa<strong>in</strong> Areas <strong>in</strong> South Africa Hydrologically<br />

cally derived categorical seasonal ra<strong>in</strong>fall forecasts four More Sensitive than Others <strong>to</strong> the Individual Forc<strong>in</strong>g<br />

months ahead are made for eight regions of South Africa<br />

by the South African Weather Service, for three cat-<br />

Variables of Climate Change?<br />

egories, i.e. "above average", "near average" and "below Figure E.2? illustrates the relative sensitivities on mean<br />

average" seasonal ra<strong>in</strong>falls. If seasonal ra<strong>in</strong>fall forecasts annual runoff of dT (assumed <strong>to</strong> be a uniform <strong>in</strong>crease<br />

were a random process, such three-category forecasts of 2 °C over southern Africa) and M (changed through<br />

would be correct 33% of the time. If seasonal categori- -10% <strong>to</strong> +10% of the present). In each case the other<br />

cal ra<strong>in</strong>fall forecasts are "translated" <strong>in</strong><strong>to</strong> seasonal run- two variables are held constant at present levels when<br />

off forecasts, these could become very valuable reser- runn<strong>in</strong>g the daily ACRU model. The hydrological sysvoir<br />

operations and irrigation application plann<strong>in</strong>g <strong>to</strong>ols tem is relatively <strong>in</strong>sensitive <strong>to</strong> temperature changes that<br />

for water resources managers. Seasonal categorical ra<strong>in</strong>- affect evaporation and hence runoff. The <strong>in</strong>crease of 2 °C<br />

fall forecasts for the eight forecast regions <strong>in</strong> South Af- reduces mean annual runoff over most of summer<br />

rica were downscaled <strong>to</strong> daily ra<strong>in</strong>fall values us<strong>in</strong>g tech- ra<strong>in</strong>fall areas <strong>in</strong> South Africa by only 5% (Fig. E.2], <strong>to</strong>p).<br />

niques described <strong>in</strong> Schulze et al. (1998b) for applica- <strong>How</strong>ever, <strong>in</strong> the south-west w<strong>in</strong>ter ra<strong>in</strong>fall region, the<br />

tion with the ACRU modell<strong>in</strong>g system <strong>to</strong> over 1500 Qua- response <strong>to</strong> temperature becomes more dramatic, with<br />

ternary catchments <strong>in</strong> South Africa. A simple benefit a 2 °C <strong>in</strong>crease by itself produc<strong>in</strong>g a simulated reduc-<br />

analysis of forecast<strong>in</strong>g skill was undertaken, <strong>in</strong> which a tion <strong>in</strong> mean annual runoff <strong>in</strong> excess of 50%. The rea-<br />

"w<strong>in</strong>" was recorded if, for the his<strong>to</strong>rical seasonal ra<strong>in</strong>sons for this are that under present climatic <strong>conditions</strong><br />

fall forecast, the simulated seasonal runoff was closer <strong>to</strong> evaporation losses there are relatively low from the moist<br />

the runoff simulated with actual his<strong>to</strong>rical ra<strong>in</strong>fall than soils <strong>in</strong> w<strong>in</strong>ter, but that with warm<strong>in</strong>g, faster dry<strong>in</strong>g soils<br />

the median seasonal runoff, while a "loss" was recorded between ra<strong>in</strong>fall events significantly reduce runoff. The<br />

when median runoff was closer <strong>to</strong> the actual than the most significant sensitivity <strong>to</strong> climate change, however,<br />

forecast runoff. "No difference" implies forecasted and rema<strong>in</strong>s that due <strong>to</strong> ra<strong>in</strong>fall, with changes by one unit<br />

median runoffs with<strong>in</strong> 5% of one another. Figure E.25 manifest<strong>in</strong>g themselves as runoff changes by a fac<strong>to</strong>r of<br />

illustrates that, when exclud<strong>in</strong>g three seasons out of 15 2 <strong>to</strong> 5 (Fig. E.2?, bot<strong>to</strong>m), with the sensitivity more domi-<br />

for which the ra<strong>in</strong>fall forecast accuracy proved 100% nant <strong>in</strong> the extreme south-west.


536<br />

CHAPTER E.6 .Case Studies<br />

Fig. E.27.<br />

Sensitivities <strong>to</strong> selected atmospheric<br />

variables: Temperature<br />

(<strong>to</strong>p) and ra<strong>in</strong>fall (bot<strong>to</strong>m)<br />

change impacts on mean annual<br />

runoff over South Africa<br />

(from Schulze and Perks 2000)<br />

Conclusions<br />

This chapter has provided examples of hydrological risk<br />

from South Africa. The examples br<strong>in</strong>g <strong>to</strong> the fore two<br />

overarch<strong>in</strong>g issues <strong>in</strong> hydrological risk management. The<br />

first is the question of uncerta<strong>in</strong>ty <strong>in</strong> risk-related hydrological<br />

studies -uncerta<strong>in</strong>ties regard<strong>in</strong>g meteorological<br />

and catchment <strong>conditions</strong> now and <strong>in</strong> the future, and uncerta<strong>in</strong>ties<br />

around <strong>in</strong>put data and uncerta<strong>in</strong>ties emanat<strong>in</strong>g<br />

from the models used <strong>in</strong> hydrological risk management.<br />

The second revolves around the recurr<strong>in</strong>g theme<br />

of the hydrological system's potential for amplify<strong>in</strong>g<br />

perturbations of the climate drivers, predom<strong>in</strong>ately of<br />

ra<strong>in</strong>fall. It is the amplification and the uncerta<strong>in</strong>ty issues<br />

Ratio<br />

0 0.86 -1.00<br />

0 O. 80 -D. 96<br />

~ 0.16 -O. 80<br />

0 O. 76 -D. 86<br />

~ 0.50 -O. 76<br />

.> O. 60<br />

Mcxte/ : ACRU<br />

Ratio<br />

.5<br />

Mode/:ACRU<br />

which will need <strong>to</strong> be stressed <strong>to</strong> practitioners and managers<br />

of hydrological risk and <strong>vulnerability</strong> time and<br />

aga<strong>in</strong> and <strong>to</strong> which researchers will need <strong>to</strong> focus more<br />

of their attention.<br />

Acknowledgements<br />

Results shown and discussed <strong>in</strong> this chapter derive from<br />

research funded by the Water Research Commission of South<br />

Africa and the US Country Studies for C1<strong>in</strong>1ate Change Programme.<br />

They are thanked for their support, as are the<br />

Comput<strong>in</strong>g Centre for Water Research, Lucille Perks (climate<br />

change), Mark Horan (GIS) and Jason Hallowes (forecast<strong>in</strong>g),<br />

all of the University of KwaZulu-Natal.


suo!snl:>uo)<br />

'lS ';}lIl;}ld 'V l;}~O'M<br />

11!.I3U39 .£"3 ~Iqel<br />

!UU:ln'J :lp OABlH sl..{:l1<br />

-dt! OM~ u33M~3q ~St!l~UO:> ){It!~S t! P3P!AOld 3At!q 3M<br />

0!lt!U3:>S 3q~ 'q:>t!olddt! ~SlY 3qJ. .3~Ut!q:> re~U3WUOl!A<br />

-U3 3ln~n) )0 S~:>3JJ3 re!~u3~od 3q~ ~U!SS3SSt! o~ s3q:>t!Old<br />

)0 ~3S t! do13A3P o~ 's13poW UO!~t!lD:>l!:J rel3U39 mOl)<br />

Alre:>!dJ..~ 's~nd~no 13poW l3~ndwo:> uo S3!13l 'q:>t!olddt!<br />

.~U3WUOl!AU3 s,q~lt!H 3~ )0 3~t!~S 3ln~n) 3~ lO) SO!reU3:>S<br />

S! l3~t!3M ~t!~ S3WnSSt! Alrensn q:>t!olddt! 0!lt!U3:>S S!qJ.<br />

-UO:»O lO~:>t!) ~U!:>lO) 'AluO S3W!~3WOS pUt! '~Ut!U!WOP 3~<br />

-0) '~St!l~UO:> U! 'q:>t!olddt! A:J!{!qt!l3UlDA 3qJ. .S3re:>S It!q<br />

-ol~ ~t! 3~Ut!q:> wl3~-~uol uo A{!reW!ld S3Sn:>0) pUt! 'Ul3:><br />

S3re:>S reUO!~3l pUt! re:>°l ~t! S3SS3l~S 31d!~lDW uo S3Sn:><br />

.s~:>t!dw! Wl3~-l3~lOqS '3~t!!P3WW! 3l0W pUt! (A{!lt!W!ld)<br />

'p3Sn A13P!M ~sow 3~ S! q:>!qM 'q:>t!olddt! 0!reU3:>S 3q~ ~nq<br />

S3q:>t!Olddt! q~oq U! S3SS3U}[B3M pUt! S~~U3l~S 3lt! 3l3qJ.<br />

3M 3:>UO AluO .S~U3WSS3SSt! A:J!1!qt!l3ulDA q~!M ~lt!~S ~snw<br />

ssaJ~S ~ueu!wcp pawnsslf<br />

p3sn J..111!:>!dJ..~ s~ s3q:>~0.Idd~ J..~mq~.I3UJnA pU~ 0!.I~U3:>S 3tp }O S:>!~S!.I3~:>~:mq:><br />

)1a' SIOSOJae 'saJmeJadwa1 uea)o 'aJa4dsoW1e<br />

41° 1 SUo!ss!wa se6 asn04UaaJ61Ua)aJ 'a1ew!D<br />

aj1:l!j S! aJa4~ 'Ja/laMOH "sanb!U4)a~ 6uHeJSuMOp<br />

ap!/loJd slapow ~uasaJd ~e4~ ~sa66ns o~a)uap!/la<br />

~e SO!Jeua)s a~ew!p aspaJd JO 'a~eJro)e ')!~sHeaJ<br />

'sale)s leUo!6a1 JO le)Oj<br />

"~lroYJ!P f.1~uasa1d) pa~e~sun a/le4 aJn~nJ ~Ue~S!p d4~ JO<br />

'f.1!I!qeqoJd 10 f.1U!eua) JO Sja/lal (alqeMOU)(Un<br />

~U~WUOJ!AU~ JnO O~ S~lJ~Jq~ :>lJ!:>~ds ~q~ ~JlJ ~lJqM MOU){<br />

o~ q~nou~ ~~JlJI (Alq!ssod Jo) AI~}{!I S! ~~UlJq:> re~U~WUOJ<br />

-!AU~ J~q~~qM (SO!JlJU~:>S ~U!Sn) ~~lJW!~S~ O~ p~~U ~M Op<br />

lJ ~AlJq O~ SlJ Il~M SlJ 'p~S!re~J ~q o~ S~lJ~Jq~ ~s~~ ~snlJ:><br />

:>!Iqnd ~~ ~JlJd~Jd J~~~~q illM q:>lJOJddlJ A~!nqlJJ~UJnA v<br />

"SO!JlJU~:>S ~S~~ O~ p~q:>lJ~~lJ ~U!lJ~J~:>un ~q~ JO ~JnSlJ~W<br />

S~J!qs :>!J~qdsow~lJ ~dnJqlJ 'J~q~lJ~M ~Jn~nJ ~IqlJ!JlJA JoJ<br />

s~:>u~J~JJ!P ~q~ S~s!JlJwwns L"H ~IqlJ.L "S~SS~J~S re~u~w<br />

-UOJ!Au~ ApSO:> PUlJ ~U~~Jn J~~O PUlJ 'UO!~:>~J!P AUlJ U!<br />

-oJd ~U~WSS~SSlJ ~!nqlJJ~UJnA ~q~ JO S~IdwlJx~ :>lJ!:>~dS<br />

"S~q:>lJOJddlJ o~ ~q~ u~~~~q<br />

p~~u~s~Jd ~J~M 's~:>JnOS~J J~~lJM O~ ~:>~ds~J ~!M '~mp~:><br />

~lJq~ p~MOqS s~n~lJ~Il°:> PUlJ ~JlJwsQJ9.A "J~~dlJq:> s~ U!<br />

-:>~p M~J 1X~U ~~ U! uo!~lJJndod ulJwnq U! ~SlJ~J:>U! ~~<br />

JO A~!nqlJnlJAlJ ~~ U~~lJ~J~ O~ AI~}{!I ~JOW q:>nw S! S~plJ<br />

')~a'SSOI ~e~!qe4<br />

'aJn~nJ<br />

"4)JeasaJ wJa~-6uOI pue (sJeaf. Of 0~O)UJJa~.~J04S a4~ ul sJeaf. OOL o~ Of '1 OJ pajqnop 'wJa~.6uol UJa)UO) JO aweJJaw!~ lensn<br />

'Sale)S leqol6 pue leUo!~eu 1euo!6aJ 1e)01 spaau ale)s le)Ol leuo!6aJ saw!~aWOs 1eqOj9 uJa)UO) JO ale)s lensn<br />

sJa~aweJed a!dj~lnW U! sanle/l aWaJ1Xa te!~ua~Od saJn~eJadwa~ ueaw U! sa6ue4) pa6eJa/le f.lIe!~eds uJa)UO) JO sJa~aweJed Jo[ew<br />

pue (sf.ep aaJJ.1S0JJ!uo!~e~!dpaJd 'aJn~eJadlUa~) aWOS4~!M slla) p!J6 a61el f.IJ!eJ U! uo!~e~!dpaJd pue<br />

'saJY 'spOOIJ)s~ua/la awaJ~xa UO sroOJ !eUo!~!ppe '~46n01p JOJ SO!leUa)S leuo!6aJ<br />

'f.1u!e:\Ja)unJo saJnseaw:(')~a.'s~4 6n01p<br />

ald!~lnW uo e~ep paj!e~ap saJ!nbaJ 4)e01ddy Ja4~0 JOJ ssaupaJedaJd S~!w1.l ssaJ~s al6u!s uo sroo:! -Ia/lap 10J suo!~ei!W1.l10(ew<br />

1euo!6aJ 'le)OI ~esuOt~)e1a~U! Jja4~ pue sassaJ~s 'sassaJ~s saI6a~eJ~s 6Uldo) 6uldo<br />

)()el seaJe f.uewpue -saje)$ leqol6pue jeUOj~eu a~ewH) JO 6u!dweJ lenpe16 M04s uaijo S~lnsa~<br />

'Uo!~ewJoJu! a~enbape 's~ua/la awaJ1Xa JOJ ssa~pa1edaJ~6ul~!W!I-a6ue4)<br />

-e!Je/la~ewtl.J te)j10~s!4)a~ew1.l) :sassaJ~satd!1tnw<br />

a)ueqJn~s!p paJa~le 'asn Ja~eMpUe asn puej '(f.1!I!q<br />

's~ue~nuod/s~ueu!we~uo) 'sapadSd/l!Se/lU! 'saw!6aJ<br />

-aJd ~!WH f.ew sanss! WJa~-U04s UO s!Se4dw3 la)(!1 lie JO ~asqns pa~!W!1 e f.luo ~uasaJdaJ s1jnSa~<br />

'wJa~-6UOj10 -U04s a4~ U! aw!~ awos a~ew1.l) ,<br />

Uj sa6ue4) .PI04sa14~" ~dnJqeJoJ ssaupa1ed f. spua1~leuo!~)aJ!P!un f.llensn -saWo)~no aJn~nJ<br />

, " 'e1pawa4~ 's~s!~uaps f.uew f.q pa~da))e aJe s~lnsa~<br />

f.ue U! sa6ue4) ~dnJqe6u!pnpu!'$aJn~nJ ajq!ssod ,"<br />

JO UOI~eIJe/l Ja~eaJ6 JeJ e JOJ ssaupa1eda1d sdJmba~ .suO!P!paJd. lenpe se )!lqnd a4~ pue<br />

~af. ')!~s!leaJ dJOW f.lqeqoJd St St4~- UO1~)dJ!P siapow lie 1e4~ S! S~lnsa1 JO UO!~eISueJ~ a4~ Uj ~SOl


538<br />

-<br />

CHAPTER E.7 .Conclusions<br />

potable water than any of the climate change scenarios assessment procedure is a more <strong>in</strong>clusive evaluation<br />

created by the general circulation models. Brad Bass and method than rely<strong>in</strong>g on scenarios at the start of an im-<br />

colleagues, and Changm<strong>in</strong>g Liu, documented the similar pact assessment. The scenario approach is only required<br />

importance (and threat) associated with <strong>in</strong>creas<strong>in</strong>g popu- once specific <strong>environmental</strong> threats are recognised. Once<br />

lation pressures <strong>in</strong> Ch<strong>in</strong>a. Roland Schulze shows hydro- we identify <strong>environmental</strong> risk, the scenario approach<br />

logical risks exemplified for South Africa with special can be used <strong>to</strong> determ<strong>in</strong>e if there is a possibility that the<br />

consideration of aridity and difficulties <strong>in</strong> management threat could be realised and, if possible, quantify the prob-<br />

practices due <strong>to</strong> uncerta<strong>in</strong>ties <strong>in</strong> the prediction of seaability of the risk. Hutch<strong>in</strong>son shows how the strong <strong>to</strong>posonal<br />

weather such as ENSO events. Tom S<strong>to</strong>hlgren and graphic coherence of weather can be used <strong>to</strong> reduce some<br />

colleagues document the range of threats <strong>to</strong> a prist<strong>in</strong>e of the uncerta<strong>in</strong>ty <strong>in</strong> construct<strong>in</strong>g f<strong>in</strong>e scale scenarios<br />

park area, <strong>in</strong> which <strong>in</strong>vasive exotic plant species and air and assess<strong>in</strong>g <strong>vulnerability</strong>. Even without quantification<br />

pollution are major threats. Other <strong>in</strong>tegrated assessments and the ability <strong>to</strong> predict the future, however, the vulner-<br />

are also tak<strong>in</strong>g place (Becker et al. 1999; S<strong>to</strong>hlgren 1999b, ability perspective provides useful <strong>in</strong>formation for<br />

and others). As shown <strong>in</strong> this chapter, the <strong>vulnerability</strong> policy-makers (Sarewitz et al. 2000).


References Part E<br />

Adams RM, Crocker TD, Katz RW (1984) Assess<strong>in</strong>g the adequacy<br />

of natural science <strong>in</strong>formation: a bayesian approach. Rev Econ<br />

Stat LXVI:568-575<br />

Aguirre AA, Starkey EE (1994) Wildlife disease <strong>in</strong> US national<br />

parks: his<strong>to</strong>rical and coevolutionary perspectives. Conserv Bioi<br />

8:654-661<br />

Alcamo J (ed)(1994) IMAGE 2.0: <strong>in</strong>tegrated model<strong>in</strong>g of global<br />

climate change. Kluwer Academic Publishers, Dordrecht<br />

Alcamo J, Kreilemans E (1996) Emission scenarios and global climate<br />

protection. Global Environ Chang 6:305-334<br />

Alcamo J et al. (1998) Basel<strong>in</strong>e scenarios of global <strong>environmental</strong><br />

change. In: Alcamo J, Leemans R, Kreileman E (eds) Global<br />

change scenarios of the 21'1 century. Results from the IMAGE 2.1<br />

model. Elseviers Science, London, pp 97-139<br />

Alcamo J, Henrichs T, Rosch T (2000) World water <strong>in</strong> 2015: global<br />

modell<strong>in</strong>g and scenario analysis for the world commision on<br />

water for the 21'1 century. University of Kassel, Kassel<br />

Alexander RR (1985) Major habitat types, community types and plant<br />

communities <strong>in</strong> the Rocky Mounta<strong>in</strong>s. USDA Forest Service, Rocky<br />

Mounta<strong>in</strong> Forest and Range Experiment Station, Fort Coll<strong>in</strong>s, Co<br />

Alexandra<strong>to</strong>s N (ed) (1995) Agriculture: <strong>to</strong>wards 2010. John Wiley<br />

& Sons, Chichester<br />

Alley RB, Meese DA, Shuman AJ, Gow AJ, Taylor KC, Grootes PM,<br />

White JWC, Ram M, Wadd<strong>in</strong>g<strong>to</strong>n ED, Mayewski PA, Ziel<strong>in</strong>ski<br />

GA (1993) Abrupt accumulation <strong>in</strong>crease <strong>in</strong> the Younger-Dryas<br />

term<strong>in</strong>ation <strong>in</strong> the GISP2 ice core. Nature 362:527-529<br />

Anthes RA, Warner TT (1978) Development of hydrodynamic models<br />

suitable for air pollution and other mesometeorological studies.<br />

Mon Weather Rev 106:1045-1078<br />

ArmstrongDM (1993) lions, ferrets and bears. A guide <strong>to</strong> the mammals<br />

of Colorado. Colorado Division of Wildlife and University<br />

of Colorado Museum, Denver. Co<br />

Arnell NW (1999) Climate change and global water resources. Global<br />

Environ Chang 9:31-49<br />

Aub<strong>in</strong> J-p, Cell<strong>in</strong>a A (1984) Differential <strong>in</strong>clusions. Spr<strong>in</strong>ger. Berl<strong>in</strong><br />

Bankes SC (1993) Explora<strong>to</strong>ry model<strong>in</strong>g for policy analysis. Oper<br />

Res 41:435-449<br />

Bantelmann A, Hoffmann D, Menke B (1984) Veranderungen des<br />

Kiistenverlaufs, Ursachen und Auswirkungen. In: Kossack G,<br />

Behre KE, Schmid P (eds) Archaologische und naturwissenschaftliche<br />

Untersuchungen an landlichen und friihstadtischen<br />

Siedlungen im deutschen Kiistengebiet vom 5. Jahrhundert v.<br />

Chr. bis zum 11. Jahrhundert n. Chr.. Band 1: Landliche Siedlungen.<br />

Deutsche Forschungsgeme<strong>in</strong>schaft, We<strong>in</strong>heim, pp 51-68<br />

Bardossy A, Plate EJ (1992) Space-time model for daily ra<strong>in</strong>fall us<strong>in</strong>g<br />

atmospheric circulation patterns. Water Resour Res 28:1247-1259<br />

Baron JS. Ojima DS, Holland EA, Par<strong>to</strong>n WJ (1994) Analysis of nitrogen<br />

saturation potential <strong>in</strong> Rocky Mounta<strong>in</strong> tundra and forest:<br />

implications for aquatic systems. Biogeochelnistry 17:61-82<br />

Baron JS, Rueth HM, Wolfe AP, Nydick K, AlIs<strong>to</strong>tt EJ. M<strong>in</strong>ear JT,<br />

Moraska B (2000) Ecosystem responses <strong>to</strong> nitrogen deposition<br />

<strong>in</strong> the Colorado Front Range. Ecosystems 3:352-368<br />

Barrow CJ (1991) Land degradation. Cambridge University Press.<br />

Cambridge<br />

Bass B, Huang G, Russo J (1997) Incorporat<strong>in</strong>g climate change <strong>in</strong><strong>to</strong><br />

risk assessment us<strong>in</strong>g grey mathematical programm<strong>in</strong>g. J Environ<br />

Manage 49:107-123<br />

Becker A, Wenzel V,Krysanova V,LahrnerW (1999) Regional analysis<br />

of global change impacts: concepts, <strong>to</strong>ols and first results.<br />

Environ Model Assess 4:243-257<br />

Behnke RJ (1992) Native trout of Western North America. American<br />

Fisheries Society, Bethesda, Maryland<br />

Bellone E, Hughes JP, Gut<strong>to</strong>rp P (2000) A hidden Markov model<br />

for relat<strong>in</strong>g synoptic atmospheric patterns <strong>to</strong> precipitation<br />

amounts. Climate Res 15:1-12<br />

Bernabo IC, Webb TI (1977) Chang<strong>in</strong>g patterns <strong>in</strong> the Holocene<br />

pollen record of northeastern North America: a mapped summary.<br />

Quaternary Res 8:64-96<br />

Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural<br />

hazards, people's <strong>vulnerability</strong> and disasters. Routledge,<br />

London<br />

Bloh Wvon, Block A, Schellnhuber H-J (1997> Self-stabilization of<br />

biosphere under global change: a tu<strong>to</strong>rial geophysiological<br />

approach. Tellus 49B:249-262<br />

Bloh W von, Block A, Parade M, Schellnhuber H-J (1999) Tu<strong>to</strong>rial<br />

model<strong>in</strong>g of geosphere-biosphere <strong>in</strong>teractions; the effect of<br />

percolation-type habitat fragmentation. Physica A 266:186-196<br />

Bonan GB (1997> Effects of land use on the climate of the United<br />

States. Climatic Change 37:449-486<br />

Bounoua 1, GJ Collatz, Los SO, Sellers PI, Dazlich DA, Tucker CJ,<br />

Randall DA (2000) Sensitivity of climate <strong>to</strong> changes <strong>in</strong> NDVI.<br />

J Climate 13:2277-2292<br />

Braswell BH, Schimel Ds, L<strong>in</strong>der E, Moore III B (1997> The response<br />

of global terrestrial ecosystems <strong>to</strong> <strong>in</strong>terannual temperature variability.<br />

Science 278:870-872<br />

Brovk<strong>in</strong> V, Ganopolski A, Claussen M, Kubatzki C, Pe<strong>to</strong>ukhov V<br />

(1999) Modell<strong>in</strong>g climate response <strong>to</strong> his<strong>to</strong>rical land-cover<br />

ch.ange. Global Ecol Biogeogr 8:509-517<br />

Brown RA, Rosenberg NJ (1999) Climate change impacts on the<br />

potential productivity of corn and w<strong>in</strong>ter wheat <strong>in</strong> their<br />

primary United States grow<strong>in</strong>g regions. Climatic Change 41:<br />

73-107<br />

Buchholtz CW (1983) Rocky Mounta<strong>in</strong> National Park: a his<strong>to</strong>ry.<br />

Colorado Associated University Press, Boulder, Co<br />

Bury RB, Corn PS, Dodd CK, McDiarmid RW Jr (1995) Amphibians.<br />

In: LaRoe ET (ed) Our liv<strong>in</strong>g resources. National Biological<br />

Service, Wash<strong>in</strong>g<strong>to</strong>n DC<br />

Canad~ll P (2000) Non-l<strong>in</strong>ear responses and surprises: a new Earth<br />

system science <strong>in</strong>itiative. Global Change Newsletter 43:1-2<br />

Casella G, George EI (1992) Expla<strong>in</strong><strong>in</strong>g the Gibbs sampler. Am Stat<br />

46:167-174<br />

Chadde SW,Kay CE (1991) TalI-wilIowcornrnunities on Yellows<strong>to</strong>ne's<br />

northern range: a test of the natural regulation paradigm. In:<br />

Keiter RB, Boyce MS (eds) Greater Yellows<strong>to</strong>ne ecosystem:<br />

redif<strong>in</strong><strong>in</strong>g America's wilderness heritage. Yale University Press,<br />

New Haven, Conn., pp 231-262<br />

Changnon SA (1998) Comments on "Secular trends of precipitation<br />

amount, frequency, and <strong>in</strong>tensity <strong>in</strong> the United States." B<br />

Am Meteorol Soc 79:2550-2552<br />

Chase TN, Pielke RA, Kittel TGF, Nemani R, Runn<strong>in</strong>g SW (1996)<br />

The sensitivity of a general circulation model <strong>to</strong> global changes<br />

<strong>in</strong> leaf area <strong>in</strong>dex. J Geophys Res-Atmos 101:7393-7408<br />

Chen J et al. (1998) Yellow River harness<strong>in</strong>g and water resources<br />

development. Yellow River Conservancy Press, 44 p


540<br />

References Part E<br />

CIESIN (Center for International Earth Science Information Network)<br />

(2000) Gridded population of the world: provisional release<br />

of updated database of 1990 and 1995 estimates. Columbia<br />

University's Center for International Earth Science Information<br />

Network<br />

Claussen M (2001) Earth system models. In: Ehlers EKT (ed) Understand<strong>in</strong>g<br />

the Earth system: compartments, processes and<br />

<strong>in</strong>teractions. Spr<strong>in</strong>ger-Verlag, Heidelberg, pp 145-162<br />

Claussen M,GaylerV (1997> The green<strong>in</strong>g of Sahara dur<strong>in</strong>g the mid-<br />

Holocene: results of an <strong>in</strong>teractive atmosphere-biome model.<br />

Global Ecol Biogeogr 6:369-377<br />

Claussen M, Brovk<strong>in</strong> V, Ganopolski A, Kubatzki C, Pe<strong>to</strong>ukhov V<br />

(1998) Model<strong>in</strong>g global terrestrial vegetation-climate <strong>in</strong>teraction.<br />

Philos TRoy Soc B 353:53-63<br />

Claussen M, Brovk<strong>in</strong> V, Pe<strong>to</strong>ukhov V, Ganopolski A (2001) Biogeophysical<br />

versus biogeochemical feedbacks of large-scale landcover<br />

change. Geophys Res Lett 28:1011-1014<br />

Cohen J (1996) <strong>How</strong> many people can earth support? WW Nor<strong>to</strong>n,<br />

New York<br />

Colorado Division of Wildlife (1986) Wildlife <strong>in</strong> danger: the status<br />

of Colorado's threatened or endangered fish, amphibians,<br />

birds, and mammals, Fort Coll<strong>in</strong>s, Colo<br />

Conway D, Jones PD (1998) The use of weather types and air flow<br />

<strong>in</strong>dices for GCM downscal<strong>in</strong>g. J Hydrol 213:348-361<br />

Corn PS, Fogelman JC (1984) Ext<strong>in</strong>ction of montane populations<br />

of the northern leopard frog (Rana pipiens) <strong>in</strong> Colorado. J Her-<br />

pe<strong>to</strong>I18:147-152<br />

Cubasch U,Santer BD,Hellbach A, Hegerl G, HiSck H,Maier-Reimer<br />

E, Mikolajewicz U, StiSssel A, Voss R (1994) Monte Carlo climate<br />

change forecasts with a global coupled ocean-atmosphere<br />

model. Clim Dynam 10:1-19<br />

Cubasch U, S<strong>to</strong>rch H von, Waszkewitz J, Zorita E (1996) Estimates<br />

of climate changes <strong>in</strong> southern Europe us<strong>in</strong>g differnt downscal<strong>in</strong>g<br />

techniques. Climate Res 7:129-149<br />

de Vries HJM, Bollen J, Bouwman L, den Elzen MGJ, Janssen M,<br />

Kreilemann E (2000) Greenhouse-gas emissions <strong>in</strong> equity,<br />

environment- and service-oriented world: an IMAGE-based<br />

scenario for the next century. Technol Forecast Soc 63:137-174<br />

deKon<strong>in</strong>g GHJ, Veldkamp A, Fresco LO (1998) Land use <strong>in</strong> Ecuador:<br />

a statistical analysis at different aggregation levels. Agr<br />

Ecosyst Environ 70:231-247<br />

DiSll P, Siebert S (2002) Global model<strong>in</strong>g of irrigation water requirements.<br />

Water Resources Research 38(4):10.102912001<br />

WRoO0355,2002<br />

DiSiSs BR (1994) Environmental degradation, global food production,<br />

and risk for large-scale migrations. Ambio 23:124-130<br />

Dowlatabadi H (1999) Integrated assessment: implications of uncerta<strong>in</strong>ty.<br />

In: Encylopedia of Life Support Systems. Oxford University<br />

Press, Oxford<br />

Dowlatabadi H, Morgan G (1995) Integrated assessment climate<br />

assement model 2.0, technical documentation. Department of<br />

Eng<strong>in</strong>eer<strong>in</strong>g and Public Policy, Carnegie Mellon University,<br />

Philadelphia<br />

Down<strong>in</strong>g TE, Olsthoorn AJ, Tol RSJ (eds) (1999) Climate change<br />

and risk. Routledge, London<br />

Dynesius M, Nilsson C (1994) Fragmentation and flow regulation<br />

of river systems <strong>in</strong> the northern third of the world. Science<br />

266:753-762<br />

Dzhamalov RG, Zekster IS (eds) (1999) World map of hydrogeological<br />

<strong>conditions</strong> and groundwater flow and digital maps of<br />

hydrogeological <strong>conditions</strong> and groundwater flow. HydroScience<br />

Press<br />

Elias SA, Short SK, Clark PU (1986) Paleoenvironment <strong>in</strong>terpretations<br />

of the late Holocene, RoCky Mounta<strong>in</strong> National Park, Colorado,<br />

USA. Review De Paleobiologie 5:127-142<br />

Fairman R, Mead CD, Williams WR (1998) Environmental risk assessment:<br />

approaches, experiences and <strong>in</strong>formation sources.<br />

European Environment Agency, Copenhagen, 252 p<br />

Falkenmark M (1998) Dilemma when enter<strong>in</strong>g the 21't century -<br />

rapid change but lack of a sense of urgency. Water Policy 1:<br />

421-436<br />

Fall PL (1988) Vegetation dynamics <strong>in</strong> the southern Rocky Mounta<strong>in</strong>s:<br />

Late Pleis<strong>to</strong>cene and Holocene timber-l<strong>in</strong>e fluctuations.<br />

University of Arizona, 303 p<br />

FAO (1998) FAO statistics on diskette. Food and Agriculture Organization<br />

of the United Nations, Rome<br />

FAO (1999) FAOSTAT database collections, vol. 1999. Food and<br />

Agriculture Organization of the United Nations<br />

Fekete BM, Vorosmarty Q, Grabs W (1999) Global, composite runoff<br />

fields based on observed river discharge and simulated<br />

water balance. Global Runoff Data Centre, Koblenz<br />

Fekete BM, Vorosmarty Q, Grabs W (2002) High resolution fields<br />

of global runoff comb<strong>in</strong><strong>in</strong>g observed river discharge and simulated<br />

water balances. Global Biogeochem Cy 16(3):10.10291<br />

1999GBoO1254,2002<br />

Flather CH, Joyce LA, Bloomgarten CA (1984) Species endangerment<br />

patterns <strong>in</strong> the United States. USDA Forest Service, Rocky Mounta<strong>in</strong><br />

Forest and Range Experiment Station, Fort Coll<strong>in</strong>s, Co, 42 P<br />

Fl<strong>in</strong>t EP (1994) Changes <strong>in</strong> land use <strong>in</strong> south and South-east Asia<br />

from 1880 <strong>to</strong> 1980: a data base prepared as part of a coord<strong>in</strong>ated<br />

research program on carbon fluxes <strong>in</strong> the tropics. Chemosphere<br />

29:1015-1062<br />

Foster DR, Motzk<strong>in</strong> G, Slater B (1998) Land-use his<strong>to</strong>ry as longterm<br />

broad-scale disturbance: regional forest dynamics <strong>in</strong> central<br />

New England. Ecosystems 1:96-119<br />

Frenzel B (1994) Moore als Umwelt<strong>in</strong>dika<strong>to</strong>ren <strong>in</strong> klimatischen<br />

Grenzgebieten. Hohenheimer Umwelttagung 26:155-167<br />

Frolk<strong>in</strong>g S,Xiao X,ZhuangY,Salas W,Li C (1999) Agricultural landuse<br />

<strong>in</strong> Ch<strong>in</strong>a: a comparison of area estimates from ground-based<br />

census and satellite-borne remote sens<strong>in</strong>g. Global Ecol Biogeogr<br />

8:407-416<br />

Ganopolski A, Rahms<strong>to</strong>rf S (2001) Rapid changes of glacial climate<br />

simulated <strong>in</strong> a coupled climate model. Nature 409:153-158<br />

Ghil M, Childress S (1987) Topics <strong>in</strong> geophysical fluid dynamics:<br />

atmospheric dynamics, dynamo theory, and climate dynamics.<br />

Spr<strong>in</strong>ger-Verlag, Heidelberg<br />

Giorg!,»lar<strong>in</strong>ucci MR, Visconti G (1992) A 2 X CO2 climate change<br />

scenario over Europe generated us<strong>in</strong>g a limited area model<br />

nested <strong>in</strong> a general circulation model. 2. Climate change scenario.<br />

J Geophys Res 97:10011-10028<br />

Glantz MH (2001) Currents of change: impacts of El N<strong>in</strong>o and La<br />

N<strong>in</strong>a on climate and society, 2nd edn. Cambridge University Press,<br />

Cambridge, New York<br />

Gleick P (2000) Water futures: a review of global water resources<br />

projections. In: Rijsberman FR (ed) World water scenarios:<br />

analyses. Earthscan Publications, London, pp 27-37<br />

Gliemeroth AK (1995) Palaookologische Untersuchungen fiber die<br />

letzten 22000 Jahre <strong>in</strong> Europa. S. Fischer, Stuttgart<br />

Godw<strong>in</strong> H (1952) Recurrence-surfaces. Danmarks Geol Unders,<br />

II. raekke, nr. 80, pp 22-30<br />

Gossow H (1976) Wildokologie. Begriffe, Methoden, Ergebnisse,<br />

Konsequenzen. BLV; Mi<strong>in</strong>chen<br />

Graumlich LJ (1993) A 1000-year old record of temperature and<br />

precipitation <strong>in</strong> the Sierra Nevada. Quaternary Res 39:249-255<br />

Greenback Cutthroat Trout Recovery Team (1983) Greenback cutthroat<br />

trout recovery plan revision. US Fish and Wildlife Service,<br />

Colorado Division of Wildlife, Fort Coll<strong>in</strong>s, Colo<br />

Groats PM, Stuiver M, White JWC, Johnson SJ, Jouzel J (1993) Comparison<br />

of oxygen iso<strong>to</strong>pe records from the GISP2 and GRIP<br />

Greenland ice cores. Nature 366:552-554<br />

Guenni 1 et al. (2001) A biogeophysical approach <strong>to</strong> the <strong>vulnerability</strong><br />

concept: extreme ra<strong>in</strong>fall and population distribution<br />

<strong>in</strong> South America dur<strong>in</strong>g 1999. Global Change Open Science<br />

Conference, Amsterdam, The Netherlands, (poster paper)<br />

Hall CAS, Tian H, Qi Y, Pontius G, Cornell J (1995) Modell<strong>in</strong>g spatial<br />

and temporal patterns of tropical land-use change. J Biogeogr<br />

22:753-757<br />

Henry D, Henry M (1991) Greenbacks are back. Colorado Outdoors<br />

40:23-25<br />

Hilder<strong>in</strong>k HBM et al. (1999) TARGETS -The CD-Rom<br />

H<strong>in</strong>richsen D, Robey B, Upadhyay UD (1998) Solutions for a water-short<br />

world. Johns Hopk<strong>in</strong>s University School of Public<br />

Health, Baltimore, Md<br />

Hoekstra AY (1996) AQUA: a framework for <strong>in</strong>tegrated water policy<br />

analysis. Dutch National Institute of Public Health and the Environment<br />

(RIVM), Bilthoven, The Netherlands, 70 p<br />

Hoekstra AY (1998) Perspectives on water. An <strong>in</strong>tegrated modelbased<br />

exploration of the future. Technical University, Delft


Hoffman MT, Todd SW, Ntshona ZM, Turner SD (1999) Land degradation<br />

<strong>in</strong> South Africa. Pre<strong>to</strong>ria, RSA, 245 P<br />

Hubbard KG, Flores-Mendoza FJ (1995) Relat<strong>in</strong>g United States crop<br />

land use <strong>to</strong> natural resources and climate change. J Climate 8:<br />

229-335<br />

Hughes MK, Graumlich LJ (1996) Multimillenial dendroclimate<br />

records from the western United States. In: Bradley RS, Jones<br />

PD, Jouzel J (eds) Climatic variation and forc<strong>in</strong>g mechanisms<br />

of the last 2000 years. Spr<strong>in</strong>ger-Verlag, New York, pp 109-124<br />

Hulme M, Carter TR (1999) Represent<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong> climate<br />

change scenarios and impact studies. ECLAT -2:12-54<br />

Huntley B,Birks HJB (1983) An atlas of past and present pollen maps<br />

of Europe, 0-13 000 years ago. Cambridge University Press,Cam-<br />

bridge<br />

IPCC (Intergovernmental Panel on Climate Change) (1996) Climate<br />

change 1995, the science of climate change. Contribution<br />

of Work<strong>in</strong>g Group I of the Second Assessment Report of the<br />

IPCC. Cambridge University Press, Cambridge<br />

IPCC (Intergovernmental Panel on Climate Change) (2001) Summaryfor<br />

policymakers.A Report of Work<strong>in</strong>g Group I of the IPCC<br />

Jamieson D, Herrick C (1995) The social construction of acid ra<strong>in</strong>:<br />

some implications for science/policy assessment. Global Environ<br />

Chang 5:105-112<br />

Je<strong>to</strong>n EE, Dett<strong>in</strong>ger MD, Smith JL (1999) Potential effects of climate<br />

change on streamflow, eastern and western slopes of the<br />

Sierra Nevada, California and Nevada. USGS Water Resource<br />

Investigations, 44 P<br />

Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change<br />

over Europe us<strong>in</strong>g a nested regional climate model I. Assessment<br />

of control climate, <strong>in</strong>clud<strong>in</strong>g sensitivity <strong>to</strong> location of lateral<br />

boundaries. Q J Roy Meteor Soc 121:1413-1449<br />

Karl TR, Knight RW (1998a) Secular trend of precipitation amount,<br />

frequency, and <strong>in</strong>tensity <strong>in</strong> the United States. B Am Meteorol<br />

Soc 79:231-241<br />

Karl TR, Knight RW (1998b) Reply. B Am Meteorol Sac 79:2552-2554<br />

Karl TR, Knight RW, Plummer N (1995) Trends <strong>in</strong> high-frequency<br />

climate variability <strong>in</strong> the twentieth century. Nature 377:217-220<br />

Katz RW (1999) Techniques for estimat<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong> climate<br />

change scenarios and impact studies. ECLAT -2:40-55<br />

Kite GW (1993) Application of a land class hydrological model <strong>to</strong><br />

climate change. Water Resour Res 29:2377-2384<br />

Kle<strong>in</strong> Goldewijk CGM, Battjes JJ (1997> A hundred year (1890-1990)<br />

database for <strong>in</strong>tegrated <strong>environmental</strong> assessments. National<br />

Institute of Public Health and the Environment, Bilthoven<br />

Knight DH (1994) Mounta<strong>in</strong>s and pla<strong>in</strong>s: the ecology of Wyom<strong>in</strong>g<br />

landscapes. Yale University, Thomson-Shore, Dexter, Mich<br />

Kolstad CD, Kelly D (1999) Bayesian Learn<strong>in</strong>g, pollution, and growth.<br />

J Econ Dyn Control 23:491-518<br />

Koruba V, Jabbar MA, Ak<strong>in</strong>wumi JA (1996) Crop-lives<strong>to</strong>ck competition<br />

<strong>in</strong> the West African derived savannah: application of<br />

a multi-objective programm<strong>in</strong>g model. Agr Syst 52<br />

Kossack G,Behre K-E, Schmid P (1984) Archiologische und naturwissenschaftliche<br />

Untersuchungen an l<strong>in</strong>dlichen und friihstidtischen<br />

Siedlungen im deutschen Kiistengebiet vom 5. Jahrhundert<br />

v. Chr. bis zum 11. Jahrhundert n. Chr. Deutsche Forschungsgeme<strong>in</strong>schaft,<br />

We<strong>in</strong>heim<br />

Kourzoun VI, Sokolov AA, Budyko MI, Voskrensensky KP, Kal<strong>in</strong><strong>in</strong><br />

GP, Konoplyantsev AA, Korotkevich ES, L'vovich MI (1978) Atlas<br />

of the world water balance. UNESCO, Paris<br />

Krzysz<strong>to</strong>fowicz R (1999) Bayesian theory of probalistic forecast<strong>in</strong>g<br />

via determ<strong>in</strong>istic hydrologic model. Water Resour Res 35:<br />

2739-2750<br />

Kunkel KE, Pielke RA Jr, Changnon SA (1999) Temporal fluctuations<br />

<strong>in</strong> weather and climate extremes that cause economic and human<br />

health impacts: a review. B Am Meteorol Sac 80(6):1077-1098<br />

Landsea CW,KnaffJA (2000) <strong>How</strong> much skil1 was there <strong>in</strong> forecast<strong>in</strong>g<br />

the very strong 1997-1998 El Nifio? B Am Meteorol Soc 81:<br />

2107-2119<br />

Lanfear KJ,Hirsch RM (2000) USGS study reveals a decl<strong>in</strong>e <strong>in</strong> longrecord<br />

streamgauges. EOS Trans Am Geophys Union 80<br />

Langner LL, Flather CH (1994) Biological diversity: status and<br />

trends <strong>in</strong> the United States. Rocky Mounta<strong>in</strong> Forest and Range<br />

Experiment Station, Fort Coll<strong>in</strong>s, Colo<br />

Lavender D (1975) The Rockies. Harper and Row, New York<br />

References Part E 541<br />

Lee X, Black TA (1993) Atmospheric turbulence with<strong>in</strong> and above<br />

a Douglas-fir stand. Part II: Eddy fluxes of sensible heat and<br />

water vapour. Bound-Lay Meteorol 64:369-389<br />

Leemans R (1999) Modell<strong>in</strong>g for species and habitats: new opportunities<br />

for problem solv<strong>in</strong>g. Sci Total Environ 240:51-73<br />

Leemans R, Agrawala S, Edmonds JA, MacCracken MC, Moss RM,<br />

Ramakrishnan PS (1996) Mitigation: cross-sec<strong>to</strong>ral and other<br />

issues. In: Watson RT, Z<strong>in</strong>yowera Mc, Moss RH (eds) Climate<br />

change 1995. Impacts, adaptations and mitigation of climate<br />

change: scientific-technical analysis. Cambridge University<br />

Press, Cambridge, pp 799-797<br />

L<strong>in</strong>s H, Slack JR (1999) Streamflow trends <strong>in</strong> the United States.<br />

Geophys Res Lett 26:227-230<br />

Liu C (1981) The <strong>in</strong>fluence of forest cover upon annual runoff <strong>in</strong> the<br />

loess plateau of Ch<strong>in</strong>a. In: Ma LJC, Noble AG (eds) Water transfer:<br />

its environment: Ch<strong>in</strong>ese and American views. Methuen, New<br />

York, pp 131-142<br />

Liu c, Li C (2000) Analysis on runoff series with special reference<br />

<strong>to</strong> dry<strong>in</strong>g up courses. Acta Geogr S<strong>in</strong>ica 55:257-265<br />

Liu c, Liang J (1989) Some problems of flood<strong>in</strong>g and its prevention<br />

<strong>in</strong> the lower Yellow River. In: Liu c, Liang J (eds) Tam<strong>in</strong>g<br />

the Yellow River: silt and floods. Kluwer Academic Publishers,<br />

Dordrecht, pp 223-242<br />

Liu KB,Sun Sc, Jiang XH (1992) Environmental change <strong>in</strong> the Yangtze<br />

River delta s<strong>in</strong>ce 12000 years B.P. Quaternary Res 38:32-45<br />

Lorenz EN (1968) Climatic determ<strong>in</strong>ism. In: Causes of climatic<br />

change, vol 30, 8. AMS, pp 1-3<br />

Lorenz EN (1975) Climate predictability. In: Committee W-IJO (ed)<br />

The physical basis of climate and climate modell<strong>in</strong>g, vol 16.<br />

GARU Publication Series<br />

Lorenz EN (1979) Forced and free variations of weather and climate.<br />

J Atmos Sci 36:1367-1376<br />

Loveland TR,BelwardAS (1997> The IGBP-DIS global 1 krn land-cover<br />

dataset, DISCover: first results.lnt J Remote Sens 18:3291-3295<br />

Ludeke MKB, Moldenhauer 0, Petschel-Held G (1999) Rural poverty<br />

driven soil degradation of climate change: the sensitivity<br />

of the disposition <strong>to</strong>wards the Sahel syndrome with respect <strong>to</strong><br />

climate. Environ Model Assess 4:315-326<br />

L'vovich MI, White GF (1990) Use and transformation of terrestrial<br />

water systems. In: Thrner BL, Clark Wc, Kates RW, Richards JF,<br />

Mathews JT, Meyer WB (eds) The Earth as transformed by human<br />

action. Cambridge University Press, Cambridge, pp 235-252<br />

Lynch AH, McIlwa<strong>in</strong>e S, Ber<strong>in</strong>ger J, Bonan GB (2001) An <strong>in</strong>vestigation<br />

of the sensitivity of a land-surface model <strong>to</strong> climate change<br />

us<strong>in</strong>g a reduced form model. Clim Dynam 17=643-652<br />

MacCracken MC (2002) Do the uncerta<strong>in</strong>ty ranges <strong>in</strong> the IPCC<br />

and US national assessments account adequately for possibly<br />

overlooked climatic <strong>in</strong>fluences? Climatic Change 52:13-23<br />

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz<br />

FA (2000) Biotic <strong>in</strong>vasions: causes, epidemiology, global consequences,<br />

and control. Ecol Appll0:689-710<br />

Matsuoka Y, Ka<strong>in</strong>uma M, Morita T (1994) Scenario analysis of global<br />

warm<strong>in</strong>g us<strong>in</strong>g the Asian-Pacific Integrated Model (AIM).<br />

Energ Policy 23:1-15<br />

Matthews E, Rotmans J, Ruff<strong>in</strong>g K, Waller-Hunter J, Zhu J (1997><br />

Critical trends: global change and susta<strong>in</strong>able development.<br />

UN Publication Department for Policy Coord<strong>in</strong>ation and Susta<strong>in</strong>able<br />

Development, New York<br />

McCabe G, Wolock DM Jr (1997> Climate change and the detection<br />

of trends <strong>in</strong> runoff. Climate Res 8:129-134<br />

Mearns 10, Rosenzweig c, Goldberg R (1997> Mean and variance<br />

change <strong>in</strong> climate scenarios: methods, agricultural applications,<br />

and measures of uncerta<strong>in</strong>ty. Climatic Change 35:367-396<br />

Meszaros E, Palvolgyi T (1990) Daisyworld with an atmosphere.<br />

Idojaras 94:339-345<br />

Mills JD (1991) Wyom<strong>in</strong>g's Jackson Hole darn, horizontal channel<br />

stability, and floodpla<strong>in</strong> vegetation dynamics. University of<br />

Wyom<strong>in</strong>g, Laramie, 54 p<br />

Morozova TD (1981) Razvitie pocvennogo pokrova Evropy v<br />

pozdnem pleis<strong>to</strong>cene. Nauka, Moskva (<strong>in</strong> Russian: The development<br />

of European soils dur<strong>in</strong>g the Late Pleis<strong>to</strong>cene)<br />

Moxey AP, White B, O'Callaghan JR (1995) CAP reform: an application<br />

of the NELUP economic model. J Environ Plan MaiJage 38:<br />

117-123


542<br />

References Part E<br />

Nams VO, Folkard NFG, Smith JNM (1993) Effects of nitrogen fertilization<br />

on several woody and non-woody boreal forest species.<br />

Can J Bot 71:93-97<br />

Nativ R (1992) Recharge <strong>in</strong><strong>to</strong> southern high pla<strong>in</strong>s aquifer -possible<br />

mechanisms, unresolved questions. Environ Geol Water S<br />

19(1):21-32<br />

Nevison C, Gupta VK, Kl<strong>in</strong>ger L (1999) Self-susta<strong>in</strong>ed oscillations<br />

on Daisyworld. Tellus 51B:806-814<br />

Nichols H (1982) Review of late Quaternary his<strong>to</strong>ry of vegetation<br />

and climate <strong>in</strong> the mounta<strong>in</strong>s of Colorado. In: Halfpenny JC<br />

(ed) Ecological studies <strong>in</strong> the Colorado alp<strong>in</strong>e: a festschrift for<br />

John W. Marr. Inst. Arctic and Alp<strong>in</strong>e Res., occasional paper 37.<br />

University of Colorado, Boulder, Co, pp 27-33<br />

Nordstrom K, Gupta V, Chase T (2004) Salvag<strong>in</strong>g the Daisyworld<br />

parable under the dynamic area fraction framework. Scientist<br />

on Gaia-II. Cambridge, Ma, MIT Press (<strong>in</strong> press)<br />

Olson JS (1994a) Global ecosystem framework-def<strong>in</strong>itions. USGS<br />

EROS Data Center, Sioux Falls, SD<br />

Olson JS (1994b) Global ecosystem framework-translation strategy.<br />

USGS EROS Data Center, Sioux Falls, SD<br />

Ongley ED (2000) The Yellow River: manag<strong>in</strong>g the unmanageable.<br />

Water Int 25:227-231<br />

Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation,<br />

and confirmation of numerical models <strong>in</strong> the earth sciences.<br />

Science 263:641-646<br />

Pachur HJ, Hoelzmann P (1991) Paleoclimatic implications of Late<br />

Quaternary lacustr<strong>in</strong>e sediments <strong>in</strong> Western Nubia, Sudan.<br />

Quaternary Res 36:257-276<br />

Pate-Cornell E (1996) Uncerta<strong>in</strong>ties <strong>in</strong> global climate change estimates.<br />

Climatic Change 33:145-149<br />

Peer T (2000) The highland steppes of the H<strong>in</strong>dukush Range as<br />

<strong>in</strong>dica<strong>to</strong>rs of centuries old pasture farm<strong>in</strong>g. Marburger Geogr<br />

Schriften 135:312-325<br />

Penn<strong>in</strong>g de Vries FWT, Rabb<strong>in</strong>ge R, Groot JJR (1997> Potential and<br />

atta<strong>in</strong>able food production and food security <strong>in</strong> different regions.<br />

Philos TRoy Soc B 352:917-928<br />

Peters EF, Bunt<strong>in</strong>g SC (1994) Fire <strong>conditions</strong> pre- and post-occurrence<br />

of annual grasses on the Snake River pla<strong>in</strong>. In: Monsen<br />

SB, Kitchen SG (eds) Proceed<strong>in</strong>gs -ecology and management<br />

of annual rangelands. USDA Forest Service Inter. Forest and<br />

Range Experiment Station, Ogden, Utah, pp 31-36<br />

Peters RL, Lovejoy TE (eds) (1992) Global warm<strong>in</strong>g and biological<br />

diversity. Yale University Press, New Haven<br />

Petschel-Held G, Bruckner T,Schellnhuber H-J, T6th F, Hasselmann<br />

K (1999a) The <strong>to</strong>lerable w<strong>in</strong>dows approach. Theoretical and<br />

methodological foundations. Climatic Change 41:303-331<br />

Petschel-Held G, Block A, Cassel-G<strong>in</strong>tz M, Kropp J, LUdeke MKB,<br />

Moldenhauer 0, Reusswig F, Schellnhuber H-J (1999b) Syndromes<br />

of global change: a qualitative modell<strong>in</strong>g approach <strong>to</strong><br />

assist global <strong>environmental</strong> management. Environ Model Assess<br />

4:295-314<br />

Pielke RA Sr (1998a) Climate predictions as an <strong>in</strong>itial value problem.<br />

B Am Meteorol Soc 79:2743-2746<br />

Pielke RA Jr (1998b) Reth<strong>in</strong>k<strong>in</strong>g the role of adaptation <strong>in</strong> climate<br />

policy. Global Environ Chang 8:159-170<br />

Pielke RA Sr (2001) Earth system model<strong>in</strong>g -an <strong>in</strong>tegrated assessment<br />

<strong>to</strong>ol for <strong>environmental</strong> studies. In: Matsuno T, Kida<br />

H (eds) Present and future of model<strong>in</strong>g global <strong>environmental</strong><br />

change: <strong>to</strong>ward <strong>in</strong>tegrated model<strong>in</strong>g. Terrapub, pp 311-337<br />

Pielke RA Sr (2002) Overlooked issues <strong>in</strong> the US National Climate<br />

and IPCC assessments. Climatic Change 52:1-11<br />

Pielke RA Jr, Down<strong>to</strong>n MW (2000) Precipitation and damag<strong>in</strong>g<br />

floods: trends <strong>in</strong> the United States, 1932-1997. J Climate 13:<br />

3625-3637<br />

Pielke RA Sr, Guenni L (1999) Vulnerability assessment of water<br />

resources <strong>to</strong> chang<strong>in</strong>g <strong>environmental</strong> <strong>conditions</strong>. IGBP Global<br />

Change Newsletter 39:22-24<br />

Pielke RA Sr, Uliasz M (1998) Use of meteorological models as <strong>in</strong>put<br />

<strong>to</strong> regional and mesoscale air quality models -limitations<br />

and strengths. Atmos Environ 32:1455-1466<br />

Pielke RA Jr, Sarewitz D, Byerly R, Jamieson D (1999) Prediction<br />

<strong>in</strong> the earth sciences: Use and misuse <strong>in</strong> policy mak<strong>in</strong>g. EOS<br />

Trans Am Geophys Union 80:309ff<br />

Pimentel D, Lach L, Zuniga R, Morrison D (1999) Environmental<br />

and economic costs associated with non-<strong>in</strong>digenous species<br />

<strong>in</strong> the United States. College of Agriculture and Life Sciences,<br />

Cornell University, Ithaca, New York<br />

Pitman A, Pielke RA Sr, Avissar R, Claussen M, Gash J, Dolman H<br />

(1999) The role of the land surface <strong>in</strong> weather and climate: does<br />

the land surface matter. IGPB Global Change Newsletter 39:<br />

4-11<br />

Plambeck EL, Hope C (1996) PAGE95: an updated valuation of the<br />

impacts of global warm<strong>in</strong>g. Energ Policy 24:783-793<br />

Plate EJ (1996) Risk management for hydraulic systems under hydrologicalloads.<br />

In: 3rd IHP/IAHS Kovacs Colloquium on "Risk,<br />

Reliability, Uncerta<strong>in</strong>ty and Robustness of Water Resources Systems".<br />

UNESCO, Paris, 18 p<br />

Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable<br />

fresh water. Science 271:785-788<br />

Rabb<strong>in</strong>ge R, van Oijen M (1997> Scenario studies for future agriculture<br />

and crop protection. Eur J Plant Patholl03:197-201<br />

Ramankutty N, Foley JA (1998) Estimat<strong>in</strong>g his<strong>to</strong>rical changes <strong>in</strong> globalland<br />

cover: Croplands from 1700 <strong>to</strong> 1992. Global Biogeochem<br />

Cy 13:997-1027<br />

Rayner S,Malone EL (1997> Zen and the art of climate ma<strong>in</strong>tenance.<br />

Nature 390:332-334<br />

Riebsame W (1997> Atlas of the New West. W. W. Nor<strong>to</strong>n, New York<br />

Rijsberman FRe (2000) World water scenarios: analyses. Earthscan<br />

Publications, London<br />

Risbey J,S<strong>to</strong>ne P (1996) A case study of the adequacyofGCM simulations<br />

for <strong>in</strong>put <strong>to</strong> regional climate change. J Climate 9:1441-1448<br />

Robertus AJ, Burns BR, Veblen TT (1991) Stand dynamics of P<strong>in</strong>us<br />

flexilis-dom<strong>in</strong>ated subalp<strong>in</strong>e forests <strong>in</strong> the Colorado Front<br />

Range. J Veg Sci 2:445-458<br />

Rocky Mo_a<strong>in</strong> National Park Resources Management Plan<br />

(1999) 1JS National Park Service, Estes Park, Colorado, USA<br />

Rodda JC (1998) Hydrological networks need improv<strong>in</strong>g! In: Water:<br />

a loom<strong>in</strong>g crisis. UNESCO, International Hydrological Programme,<br />

Paris<br />

Rosegrant MW (1997> Water resources <strong>in</strong> the twenty-first century:<br />

challenges and implications for actions. International Food<br />

Policy Research Institute, Wash<strong>in</strong>g<strong>to</strong>n DC<br />

Rosegrant MW,Agcaoili-Saombilla M, Perez ND (1995) Global food<br />

projections <strong>to</strong> 2020: implications for <strong>in</strong>vestment. International<br />

Food Policy Research Institute (IFPRI), Wash<strong>in</strong>g<strong>to</strong>n DC<br />

Rosentreter R (1994) Displacement of rare plants by exotic grasses.<br />

In: Monsen SB, Kitchen SG (eds) Proceed<strong>in</strong>gs -ecology and<br />

management of annual rangelands. USDA Forest Service<br />

Inter. Forest and Range Experiment Station, Ogden, Utah,<br />

pp 170-175<br />

Rosenzweig C, Hillel D (1998) Climate change and the global harvest.<br />

Oxford University Press, Oxford<br />

Rosenzweig C, Phillip I, Goldberg R, Carroll I, Hodges T (1996) Potential<br />

impacts of climate change on citrus and pota<strong>to</strong> production<br />

<strong>in</strong> the US. Agr Syst 52:455-479<br />

Rotmans J, de Vries B (1997> Perspectives on global change: The<br />

TARGETS approach. Cambridge University Press, Cambridge<br />

Sala OE, Chap<strong>in</strong> FS III, Armes<strong>to</strong> JJ, Berlow E, Bloomfield J, Dirzo R,<br />

Huber-Sanwaid E, Huenneke LF, Jackson RB, K<strong>in</strong>zig A, Leemans<br />

R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT,<br />

Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios<br />

for the year 2100. Science 287:1770-1774<br />

Samjaa R, Zophel U, Peterson J (2000) The impact of the vole Microtus<br />

brandti on Mongolian steppe ecosystems. Marburger<br />

Geogr Schriften 135:346-360<br />

Sans6 B, Guenni L (1999) A s<strong>to</strong>chastic model for tropical ra<strong>in</strong>fall<br />

at a s<strong>in</strong>gle location. J Hydrol 214:64-73<br />

Sarewitz D, Pielke RA Jr (1999) Prediction <strong>in</strong> science and policy.<br />

Technol Soc 21:121-133<br />

Sarewitz D, Pielke RA Jr, Byerly R (2000) Prediction, science, decision<br />

mak<strong>in</strong>g and the future of nature. Island Press, Wash<strong>in</strong>g<strong>to</strong>n<br />

Schaller GB (1998) Wildlife of the Tibetan steppe. University of<br />

Chicago Press, Chicago<br />

Schellnhuber H-J (1998) Earth system management: the scope of<br />

the challenge. In: Schellnhuber HJ, Wenzel V (eds) Earth system<br />

analysis. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, pp 1-209


Schellnhuber H-J, Yohe G (1998) Comprehend<strong>in</strong>g the economic<br />

and social dimensions of climate change by <strong>in</strong>tegrated assessment.<br />

WCRP-Conference: Achievements, Benefits and Challenges,<br />

Geneva, 179 p<br />

Schellnhuber H -J, Block A, Cassel-G<strong>in</strong>tz M, Kropp J, Lammel G, Lass<br />

W, Lienenkamp R, Loose C, Liideke M, Moldenhauer 0, Petschel-<br />

Held G,PlBchl M,Reusswig F (1997) Syndromes of global change.<br />

GAIA 60:19-34<br />

Schulze RE (1989) Non-stationary catchment responses and other<br />

problems <strong>in</strong> determ<strong>in</strong><strong>in</strong>g flood series: a case for a simulation<br />

modell<strong>in</strong>g approach. In: 4th South African National Hydrological<br />

Symposium. Water Research Commission, Pre<strong>to</strong>ria, RSA,<br />

pp 135-157<br />

Schulze RE (1995) Hydrology and agrohydrology: a text <strong>to</strong> accompany<br />

the ACRU 3.00 Agrohydrological Modell<strong>in</strong>g System. Water<br />

Research Commission, Pre<strong>to</strong>ria, South Africa, 552 p<br />

Schulze RE (1997a) South African atlas of agrohydrology and clima<strong>to</strong>logy.<br />

Water Research Commission, Pre<strong>to</strong>ria, South Africa,<br />

273 p<br />

Schulze RE (1997b) Impacts of global climate change <strong>in</strong> hydrologically<br />

vulnerable region: challenges <strong>to</strong> South African hydrologists.<br />

Prog Phys Geog 21:113-136<br />

Schulze RE (2000) Modell<strong>in</strong>g hydrological responses <strong>to</strong> land use<br />

and climate change: a southern African perspective. Ambio 29:<br />

12-22<br />

Schulze RE (2001) Risk, uncerta<strong>in</strong>ty and risk management <strong>in</strong> hydrology:<br />

a conceptual framework and a South African perspective.<br />

School of Bioresources Eng<strong>in</strong>eer<strong>in</strong>g and Environmental<br />

Hydrology, University of Natal, Pietermaritzburg, RSA., 52 P<br />

Schulze RE, Perks LA (2000) Assessment of the impact of climate<br />

change on hydrology and water resources <strong>in</strong> South Africa. School<br />

of Bioresources Eng<strong>in</strong>eer<strong>in</strong>g and Environmental Hydrology,<br />

University of Natal, Pietermaritzburg, RSA, 118 P<br />

Schulze RE, Hallowes JS, Lynch SD, Perks LA, Horan MJC (1998b)<br />

Forecast<strong>in</strong>g seasonal runoff <strong>in</strong> South Africa: A prelim<strong>in</strong>ary <strong>in</strong>vestigation.<br />

Witwatersrand University, Johannesburg, RSA., P 19<br />

Schuster PF, White DE, Naftz DL, DeWayne L (2000) Chronological<br />

refmement of an ice core record at upper Fremont Glacier<br />

<strong>in</strong> south central North America. J Geophys Res 105:4657-4666<br />

Seckler D (1999) Revisit<strong>in</strong>g the IWMI paradigm: <strong>in</strong>creas<strong>in</strong>g the efficiency<br />

and productivity of water use. Water Brief NO.2, IWWI<br />

Seckler D, Barker R, Anarasunghe U (1999) Water scarcity <strong>in</strong> the<br />

twenty-first century. Int J Water Res Dev 15:29-42<br />

ShackelyS, YoungP,Park<strong>in</strong>son S, Wynne B (1998) Uncerta<strong>in</strong>ty,complexity<br />

and concepts of good science <strong>in</strong> climate change modell<strong>in</strong>g:<br />

are GCMs the best <strong>to</strong>ols? Climatic Change 38:159-205<br />

Shiklomanov IA (1996) Assessment of water resources and water<br />

availability <strong>in</strong> the world. S<strong>to</strong>ckholm Environment Institute,<br />

St. Petersburg, State Hydrological Institute<br />

Shiklomanov I (2000) Water resouces and water use: present assessment<br />

and outlook for 2025. In: Rijsberman FR (ed) World water<br />

scenarios: analyses. Earthscan Publications, London, pp 160-203<br />

Shukla J (1998) Predictability <strong>in</strong> the midst of chaos: a scientific<br />

basis for climate forecast<strong>in</strong>g. Science 282:728-731<br />

S<strong>in</strong>ger F (1995) Bighorn sheep <strong>in</strong> the Rocky Mounta<strong>in</strong> National<br />

Parks. In: La Roe Tea (ed) Our liv<strong>in</strong>g resources: a report <strong>to</strong> the<br />

nation on the distribution, abundance, and health of US plants,<br />

animals, and ecosystems. USDI National Biological Service,<br />

Wash<strong>in</strong>g<strong>to</strong>n DC, pp 332-336<br />

Sivillo JK,AhlquistJE, TothZ (1997) An ensemble forecast<strong>in</strong>g primer.<br />

Weather Forecast 12:809-818<br />

Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation<br />

<strong>in</strong> the Amazon: satellite data from 1978 <strong>to</strong> 1988. Science<br />

260:1905-1910<br />

Slack JR, Landwehr JM (1992) Hydro-climatic data network: a US<br />

Geological Survey streamflow dataset for the United States for<br />

the study of climate variations, 1974-1988. United States Geological<br />

Survey, Res<strong>to</strong>n, VA 20192, 193 P<br />

Smith K (1996) Environmental hazards. Routledge, London<br />

Stahle DW, Cook ER, Cleaveland MK, Therrell MD, Meko DM,<br />

Griss<strong>in</strong>o-Mayer HD, Watson E, Luckman BH (2000) Tree-r<strong>in</strong>g<br />

data document 16th century megadrought over North America.<br />

EOS Trans Am Geophys Union 81:121-125<br />

References Part E 543<br />

S<strong>to</strong>hlgren TJ (1999a) The Rocky Mounta<strong>in</strong>s. In: Mac MJ, Opler PA,<br />

Puckett Haecker CE, Doran PD (eds) Status and trends of the<br />

nation's biological resources, vol. 2. Biological Resources Division,<br />

US Geological Survey, Res<strong>to</strong>n, VA, pp 473-504<br />

S<strong>to</strong>hlgren TJ (1999b) Global change impacts <strong>in</strong> nature reserves <strong>in</strong><br />

the United States. In: Aguirre-Bravo C, Franco CR (eds) North<br />

American symposium <strong>to</strong>ward a unified framework for <strong>in</strong>ven<strong>to</strong>ry<br />

and moni<strong>to</strong>r<strong>in</strong>g forest ecosystem resources, RMRS-P-12.<br />

USDA Forest Service Rocky Mounta<strong>in</strong> Forest and Range Experiment<br />

Station, Fort Coll<strong>in</strong>s, CO, pp 5-9<br />

S<strong>to</strong>hlgren TJ, Coughenour MB, Chong GW,B<strong>in</strong>kley D, Kalkhan MA,<br />

Schell LD, Buckley DJ, Berry JK (1997) Landscape-scale gap<br />

analysis: a complementary geographic approach for land managers.<br />

Landscape Ecol12:155-170<br />

S<strong>to</strong>hlgren TJ, Chase TN, Pielke RA Jr, Kittel TGF, Baron J (1998)<br />

Evidence that local land-use practise <strong>in</strong>fluences regional climate<br />

and vegetation patterns <strong>in</strong> adjacent natural areas. Global<br />

Change Bioi 4:495-504<br />

S<strong>to</strong>hlgren TJ, Owen AJ, Lee M (2000) Moni<strong>to</strong>r<strong>in</strong>g shifts <strong>in</strong> plant<br />

diversity <strong>in</strong> response <strong>to</strong> climate change: a method for landscapes.<br />

Biodivers Conserv 9:65-86<br />

S<strong>to</strong>rch H von (1994) Inconsistencies at the <strong>in</strong>terface of climate<br />

impact studies and global climate research. Max Planck Institute<br />

for Meteorology Report 122:12<br />

S<strong>to</strong>rch H von, Zorita E, Cubasch U (1993) Downscal<strong>in</strong>g of global<br />

change estimates <strong>to</strong> regional scales: an application <strong>to</strong> Iberian<br />

ra<strong>in</strong>fall <strong>in</strong> w<strong>in</strong>tertime. J Climate 6:1161-1171<br />

Suter GW (1993) Ecological risk assessment. Lewis Publishers,<br />

Michigan<br />

Thompson DQ, Stuckey RL, Thompson EB (1987) Spread, impact,<br />

and control of purple loosestrife (Lythrum salicaria) <strong>in</strong> North<br />

American wetlands. US Fish and Wildlife Service ResearCh Report<br />

2, Wash<strong>in</strong>g<strong>to</strong>n D.C., 55 P<br />

Tobolski K (1982) Anthropogenic changes <strong>in</strong> vegetation of the<br />

Gardno- Leba lowland, North Poland. Prelim<strong>in</strong>ary report. Acta<br />

Palaeobot XXII:131-139<br />

Tol RSJ, de Vos AF (1998) A Bayesian statistical analysis of the enhanced<br />

greenhouse effect. Climatic Change 38:87-112<br />

T6th F, Bruckner T, Filssel HM, Leimbach M, Petschel-Held G,<br />

Schellnhuber H-J (1997) From impact <strong>to</strong> emission: the <strong>to</strong>lerable<br />

w<strong>in</strong>dows approach. In: IPCC (ed) climate change and <strong>in</strong>tegrated<br />

assessment models -bridg<strong>in</strong>g the gaps. CGER-Report-<br />

1029-97. Center for Global Environmental Research, Tsukuba,<br />

Japan<br />

Townshend JR, Justic GC, Li W, Gurney C, McManus J (1991) Global<br />

land-cover classification by remote sens<strong>in</strong>g: present capabilities<br />

and future possibilities. Remote Sens Environ 35:243-355<br />

Trotter PC (1987) Cutthroat: native trout of the west. Colorado Associated<br />

University Press, Boulder<br />

Thrk JT, Campbell DH, Ingersoll GP, Clow DA (1992) Initial f<strong>in</strong>d<strong>in</strong>gs<br />

of synoptic snowpack sampl<strong>in</strong>g <strong>in</strong> the Colorado RoCky Mounta<strong>in</strong>s.<br />

US Geological Survey, Denver, CO<br />

Thrner C (1975) Der E<strong>in</strong>fluB groBer Mammalier auf die <strong>in</strong>terglaziale<br />

Vegetation. Quartarpalaon<strong>to</strong>logie 1:13-19<br />

Turner BL, Skole DL, Sanderson S, Fischer G, Fresco L, Leemans R<br />

(1995) Land-use and Land-cover change: science/research plan.<br />

International Geosphere-Biosphere Programme, Human Dimensions<br />

of Global Environmental Change Programme, S<strong>to</strong>ckholm,<br />

132 p<br />

UNEP (2000) Assess<strong>in</strong>g human <strong>vulnerability</strong> due <strong>to</strong> <strong>environmental</strong><br />

change; concepts, issues, methods and case studies. United<br />

Nations Environmental Programme, Nairobi, Kenya<br />

United Nations (1997) Comprehensive assessment of the freshwater<br />

resources of the World. World Meteorological Organization,<br />

Geneva<br />

United Nations Population Division (1998) World population prospects:<br />

the 1998 Revision. United Nations, New York<br />

United States Geological Survey (1990) National water summary<br />

1987 -Hydrologic events and water supply and use. In: USGS<br />

National Water Summary Series WSP 2350, Denver, Colorado<br />

United States Geological Survey (1993) National water summary<br />

1990-1991- Hydrologic events and stream water quality. In: USGS<br />

National Water Summary Series WSP 2400, Wash<strong>in</strong>g<strong>to</strong>n D.C.


544<br />

References Part E<br />

United States Geological Survey (1999) Streamflow <strong>in</strong>formation<br />

for the next century: a plan for the national streamflow <strong>in</strong>formation<br />

program of the USGS. USGS, pp 99-456<br />

United States Geological Survey -EROS Data Center (1998) Globalland-cover<br />

characterization based on l-km AVHRR data<br />

for 1992/93. US Geological Survey Earth Resources Data Center,<br />

Sioux Falls, SD<br />

van Noortijk J, Kok M, Cooke RM (1997) Optimal Decisions that<br />

Reduce Flood Damage along the Meuse: an Uncerta<strong>in</strong>ty Analysis.<br />

In: French S,Smith JQ (eds) The practice of Bayesian Analysis.<br />

Arnold, London, pp 151-172<br />

Veblen TT, Lorenz DC (1991) The Colorado Front Range: A century<br />

of ecological change. University of Utah Press, Salt Lake City<br />

Veblen TT, Kitzberger T, Donnegan J (2000) Climatic and human<br />

<strong>in</strong>fluences on fire regimes <strong>in</strong> ponderosa p<strong>in</strong>e forests <strong>in</strong> the Colorado<br />

Front Range. Ecol Appll0:U78-1195<br />

Vi<strong>to</strong>usek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human<br />

dom<strong>in</strong>ation of earth's ecosystems. Science 277:494-499<br />

Vogel C (1998) Vulnerability and global <strong>environmental</strong> change.<br />

LUCC Newsletter 3:15-19<br />

V"6rosmarty CJ, Sahagian D (2000) Anthropogenic disturbance of<br />

the terrestrial water cycle. Bioscience 50:753-765<br />

V"6rosmarty CJ, Sharma KP, Fekete BM, Copeland AH, Holden J,<br />

Marble J, Lough JA (1997) S<strong>to</strong>rage and ag<strong>in</strong>g of cont<strong>in</strong>ental<br />

runoff <strong>in</strong> large reservoir systems of the world. Ambio 26:<br />

210-219<br />

V"6rosmarty CJ, Birkett C, D<strong>in</strong>gman L, Lettenmaier DP, Kim Y, Rodriguez<br />

E,Emmitt GD (1999) HYDRA-SAT: hydrological applications<br />

satellite. A report from the NASA POst-2002 Land Surface<br />

Hydrology Plann<strong>in</strong>g Workshop, Irv<strong>in</strong>e, California, April 12-14,<br />

1999<br />

Vorosmarty CJ (lead), Askew A, Grabs W, Barry RG, Birkett C, Doll<br />

P, Grabs W, Hall A, Jenne R, Kitaev L, Landwehr J, Keeler M,<br />

Leavesley J, Schaake J, Strzepek K, Sundarvel S, Takeuchi K,<br />

Webster F (IAHS Ad Hoc Group on Global Water Data Sets)<br />

(2001) Global water data: a newly endangered species. An op<strong>in</strong>ion<br />

edi<strong>to</strong>rial <strong>to</strong> AGU Eos Transactions 82:54-58<br />

V"6rosmartyCJ, Fekete BM,MeybeckM, Lammers R (2000) A simulated<br />

<strong>to</strong>pological network represent<strong>in</strong>g the global system of rivers<br />

at30-m<strong>in</strong>ute spatial resolution (STN-30). Global Biogeochem<br />

Cy 14:599-621<br />

Wang G, Eltahir EAB (2000) Biosphere-atmosphere <strong>in</strong>teractions<br />

over West Africa. 2. Multiple Equilibria. Q J Roy Meteor Soc 126:<br />

1261-1280<br />

Washburn AL (1973) Geocryology. A survey of periglacial processes<br />

and environments. E. Arnold, London<br />

Watson A, Lovelock J (1983) Biological homeostasis of the global<br />

environment: the parable of Daisyworld. Tellus 49B:249-262<br />

WBGU (German Advisory Council on Global Change) (1994)<br />

World <strong>in</strong> transition: the threat <strong>to</strong> the soils. Economica, Bonn<br />

WBGU (German Advisory Council on Global Change) (1999)<br />

World <strong>in</strong> transition: ways <strong>to</strong>wards susta<strong>in</strong>able management of<br />

freshwater resources. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong><br />

Weber SL (2001) On homeostasis <strong>in</strong> Daisyworld. Climatic Change<br />

48:465-485<br />

Weeks J, Gutentag E (1988) Region 17: high pla<strong>in</strong>s. In: Back W, Rosenshe<strong>in</strong><br />

J, Seaber P (eds) Hydrogeology. Geological Society of<br />

America, Boulder, CO, 524 P<br />

Weisberg PI, Baker WL (1995) Spatial variation <strong>in</strong> tree seedl<strong>in</strong>g and<br />

Krummholz growth <strong>in</strong> the forest-tundra eco<strong>to</strong>ne of Rocky Mounta<strong>in</strong><br />

Nati9nal Park, Colorado, USA Arctic Alp<strong>in</strong>e Res 27:116-129<br />

Weyant J, Davidson O. Dowlabathi H, Edmonds J, Grubb M, Parson<br />

EA. Richels R, Rotmans J, Shukla R, Tol RSJ, Cl<strong>in</strong>e W (1996)<br />

Integrated assessment of climate change: an overview and comparison<br />

of approaches and results. In: Bruce JP, Lee H, Haites<br />

EF (eds) Climate change 1995. Economic and social dimensions<br />

of climate change. Cambridge University Press, Cambridge<br />

White R, Engelen G, Uljee I (1997) The use of constra<strong>in</strong>ed cellular<br />

au<strong>to</strong>mata for high-resolution modell<strong>in</strong>g of urban land-use dynamics.<br />

Environ Plann B 24:323-343<br />

Whitlock C (1993) Post-glacial vegetation and climate of Grand Te<strong>to</strong>n<br />

and southern Yellows<strong>to</strong>ne National Parks. Ecol Monogr 63:173-198<br />

Wikle CK, Berl<strong>in</strong>er LM, Cressie N (1998) Hierarchical Bayesian<br />

space-time models. Environ Ecol Stat 5:117-154<br />

Wilhite DA (ed) (2000) Drought: a global assessment. Routledge<br />

Press, London<br />

Williams MW, Baron JS, Ca<strong>in</strong>e N, Sommerfeld RA, Sanford RL<br />

(1996) Nitrogen saturation <strong>in</strong> the Rocky Mounta<strong>in</strong>s. Environ<br />

Sci Technol 30:640-646<br />

World Bank (1993) Water resources management: a World Bank<br />

policy paper (prep. by Easter KW, Feder G, Le Moigne G, Duda<br />

AM). The World Bank, Wash<strong>in</strong>g<strong>to</strong>n DC, 141 P<br />

~ Bank (1996) Mexico -Water resources management project:<br />

staff appraisal report. The World Bank, Water Resources Management<br />

Project No. 15435, May 1996, 182 P<br />

World Bank (1998a) Evaluat<strong>in</strong>g the Bank's water resources management<br />

policy: an approach paper (prep. by Bruce-Konuah A).<br />

The World Bank, Water Resources Management Program, Oc<strong>to</strong>ber<br />

1998, 6 P<br />

World Bank (1998b) Morocco -Water resources management project:<br />

staff appraisal report. The World Bank, Water Resources<br />

Management Project No. 15760, January 1998, 76 P<br />

World Resources Institute (1996) World resources: 1996-1997. Oxford<br />

University Press, New York<br />

Wu SM, Huang GH, Guo HC (1997) An <strong>in</strong>teractive <strong>in</strong>exact-fuzzy<br />

approach for multiobjective plann<strong>in</strong>g of water resources systems.<br />

Water Sci Technol 36:235-242<br />

Zhou HM (1995) Towards an operational risk assessment <strong>in</strong> flood<br />

alleviation -theory, operationalization and application. Technical<br />

University, Delft, Netherlands, 204 p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!