31.07.2013 Views

Space Systems Laboratory - Dave Akin's Web Site

Space Systems Laboratory - Dave Akin's Web Site

Space Systems Laboratory - Dave Akin's Web Site

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Course Overview/Design Project<br />

• Lecture #01 – August 30, 2012<br />

• Course Overview<br />

– Goals<br />

– <strong>Web</strong>-based Content<br />

– Syllabus<br />

– Policies<br />

• 2012/13 Design Projects<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

1<br />

© 2012 David L. Akin - All rights reserved<br />

http://spacecraft.ssl.umd.edu<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Contact Information<br />

Dr. <strong>Dave</strong> Akin<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong><br />

Neutral Buoyancy Research Facility/Room 2100D<br />

301-405-1138<br />

dakin@ssl.umd.edu<br />

http://spacecraft.ssl.umd.edu<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

2<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Goals of ENAE 483/484 (and 788D)<br />

• Learn the basic tools and techniques of systems<br />

analysis and space vehicle design<br />

• Understand the open-ended and iterative nature of<br />

the design process<br />

• Simulate the cooperative group engineering<br />

environment of the aerospace profession<br />

• Develop experience and skill sets for working in<br />

teams<br />

• Perform and document professional-quality systems<br />

design of focused space mission concepts<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

3<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Outline of <strong>Space</strong> <strong>Systems</strong><br />

• ENAE 483/788D (Fall)<br />

– Lecture style, problem sets and quizzes<br />

– Design as a discipline<br />

– Disciplinary subjects not contained in curriculum<br />

– Engineering graphics<br />

• ENAE 484 (Spring)<br />

– Single group design project<br />

– Externally imposed matrix organization<br />

– Engineering presentations<br />

– Group dynamics<br />

– Peer evaluations<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

4<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


But... (Recent Changes)<br />

• Emphasize project content<br />

– Start 484 project at beginning of 483<br />

– Build teams for spring term in the fall<br />

– Add specific lectures for project specialties<br />

– Provide opportunities for both experimentalists and<br />

theoreticians<br />

• “Design/Build/Test/Evaluate”<br />

– <strong>Space</strong> equivalent to “design/build/fly” for aero side<br />

– Parallels mission-level design activities<br />

– Major system(s) relevant to national programs<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

5<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


<strong>Web</strong>-based Course Content<br />

• Data web site at http://spacecraft.ssl.umd.edu<br />

– Syllabus and course information<br />

– Lecture notes<br />

– Problems and solutions<br />

• Collaboration site and lecture videos at https://<br />

elms.umd.edu (Blackboard)<br />

• Akin’s Laws of <strong>Space</strong>craft Design at<br />

http://spacecraft.ssl.umd.edu/akins_laws.html<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

6<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #1<br />

Engineering is done with numbers.<br />

Analysis without numbers is only an<br />

opinion.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

7<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Overview of the Design Process<br />

Program Objectives<br />

System Requirements<br />

Increasing complexity<br />

Increasing accuracy<br />

Vehicle-level Estimation<br />

(based on a few parameters<br />

from prior art)<br />

Decreasing ability<br />

to comprehend the “big<br />

picture”<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

8<br />

System-level Estimation<br />

(system parameters based on<br />

prior experience)<br />

Basic Axiom: Relative<br />

rankings between<br />

competing systems will<br />

remain consistent from<br />

level to level<br />

System-level Design<br />

(based on disciplineoriented<br />

analysis)<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #3<br />

Design is an iterative process. The<br />

necessary number of iterations is one more<br />

than the number you have currently done.<br />

This is true at any point in time.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

9<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Syllabus Overview<br />

• Fundamentals of <strong>Space</strong>craft Design<br />

- Principles and tools of <strong>Systems</strong> Engineering<br />

- Vehicle-level design<br />

- <strong>Systems</strong>-level estimation<br />

• Component Detailed Design<br />

- Crew systems<br />

- Avionics<br />

- Power, Propulsion, and Thermal Analysis<br />

- Loads, Structures, and Mechanisms<br />

• Team Projects<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

10<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Syllabus 1: Fundamentals of <strong>Space</strong> <strong>Systems</strong><br />

• <strong>Systems</strong> Engineering<br />

• <strong>Space</strong> Environment<br />

• Orbital Mechanics<br />

• Engineering Graphics<br />

• Engineering Economics<br />

• Design Case Studies<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

11<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Syllabus 2: Vehicle/System-Level Design<br />

• Rocket Performance<br />

• Parametric Analysis<br />

• Cost Estimation<br />

• Reliability and Redundancy<br />

• Confidence, Risk, and Resiliency<br />

• Mass Estimating Relations<br />

• Resource Budgeting<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

12<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Problem Sets<br />

• Each of the <strong>Systems</strong> Design lectures (during the<br />

first third of the course) will have associated<br />

problem sets<br />

• These problem sets will form the knowledge basis<br />

for the midterm exam<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

13<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Syllabus 3: Component-Level Design<br />

• Loads, Structures, and Mechanisms<br />

– Loads Estimation<br />

– Structural Analysis<br />

– Structures and Mechanisms Design<br />

• Propulsion, Power, and Thermal<br />

– Propulsion System Design<br />

– Power System Design<br />

– Thermal Design and Analysis<br />

• Avionics <strong>Systems</strong><br />

– Attitude Dynamics/Proximity Operations<br />

– Data Management; GN&C<br />

– Communications<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

14<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Syllabus 4: Component-Level Design<br />

• Crew <strong>Systems</strong><br />

<strong>Space</strong> Physiology<br />

Human Factors and Habitability<br />

Life Support <strong>Systems</strong> Design<br />

• Other Topics<br />

Case studies (e.g., last year’s project)<br />

Special lectures for this year’s project(s)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

15<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Team Design Exercises<br />

• Each of the four specialty areas will have an<br />

associated design project<br />

• This will be performed by teams of 4-5 students -<br />

I will assign people to each team<br />

• The results of the design exercise will be<br />

submitted as presentation slides (PowerPoint or<br />

equivalent)<br />

• Team grades will be assigned for each design<br />

exercise, including adherence to the principles of<br />

the engineering communications lecture<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

16<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Course Syllabus<br />

• Maintained on web site (follow links or<br />

http://spacecraft.ssl.umd.edu/academics/<br />

483F12/483F12.index.html)<br />

• Contains links to reference material, problem sets,<br />

solution sets, team project details, etc.<br />

• Notes and announcements will be posted at top of<br />

syllabus page as necessary<br />

• Every class has associated homework content;<br />

every homework has a full solution set posted after<br />

homework due date<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

17<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Fall 2012 Initial Syllabus (1)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

18<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Fall 2012 Initial Syllabus (2)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

19<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Grading Policies<br />

• Grade Distribution<br />

– 20% Homework Problems<br />

– 20% Midterm Exam<br />

– 30% Team Design Exercises*<br />

– 30% Final Exam<br />

• Late Policy<br />

– On time: Full credit<br />

– Before solutions: 70% credit<br />

– After solutions: 20% credit<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

20<br />

* Team Grades<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


A Word on Homework Submissions...<br />

• Good methods of handing in homework<br />

– Hard copy in class (best!)<br />

– Scanned copies via e-mail (please put “ENAE483” or<br />

“ENAE788D” in subject line)<br />

• Methods that don’t work so well<br />

– Leaving it in my mailbox (particularly in EGR)<br />

– Leaving it in my office<br />

– Spreadsheets or .m files<br />

– Handing it to me in random locations<br />

– Handing it to Dr. Bowden<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

21<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


A Word about Homework Grading<br />

• Homework is graded via a discrete filter<br />

– ✓ for homework problems which are essentially<br />

correct (10 pts)<br />

– ✓- for homework with significant problems (7 pts)<br />

– ✓-- for homework with major problems (4 pts)<br />

– ✓+ for homework demonstrating extra effort (12 pts)<br />

– 0 for missing homework<br />

• A detailed solution document is posted for each<br />

problem after the due date, which you should<br />

review to ensure you understand the techniques<br />

used<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

22<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Selection of Class Projects<br />

• Criteria - needs to be<br />

– a significant engineering challenge<br />

– of relevance to the current or future space program<br />

– requiring the use of tools from 483 and prior classes<br />

– and of appropriate scope for this class.<br />

• Preferable to be appropriate for entry into design<br />

competitions<br />

• My personal preference is to look at topical issues<br />

and pursue options not currently being considered<br />

in detail by NASA<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

23<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


NASA’s <strong>Space</strong> Exploration Program<br />

• Developing Saturn V-class launch vehicle (“<strong>Space</strong><br />

Launch System” or SLS) and 4-person spacecraft<br />

(“Multi-Purpose Crewed Vehicle” or MPCV)<br />

• SLS will cost between $20B and $40B, starting at<br />

70 MT payload and evolving to 130 MT<br />

• No human flights until ~2020; start developing<br />

lunar landing vehicle then - first human lunar<br />

landing probably 2029-2030<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

24<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Logistics and Operations versus<br />

Heavy Lift: Examining Approaches to<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

Human Exploration in a<br />

Cost-Constrained Era<br />

David L. Akin<br />

AIAA Paper 2011-7221<br />

<strong>Space</strong> 2011 Conference<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Amundsen-Scott South Pole Station<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

26<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Logistics Support for Station Construction<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

27<br />

• 24,000,000 pounds of<br />

hardware and<br />

consumables<br />

• Flown in on 925 flights<br />

of existing LC-130<br />

cargo aircraft<br />

• Mean average<br />

temperature -47°C<br />


Parallels in Transport <strong>Systems</strong>?<br />

LC-130<br />

11,800 kg payload<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

28<br />

Delta IV Heavy<br />

23,000 kg payload to LEO<br />

9980 kg to LTO<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Study Phase 1 Summary<br />

• AIAA Paper 2010-2293, <strong>Space</strong>Ops 2010<br />

• Assumptions:<br />

– Delta IV Heavy only<br />

– In-space use of storable hypergolics only<br />

– No propellant depots or transfers<br />

– Keep annual funding ≤ $3B<br />

• Focus of study effort<br />

– Feasibility of modular vehicle performance for lunar<br />

landing<br />

– Assessment of cost benefits of large production and<br />

flight rates<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

29<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Notional Program Elements<br />

Crew Vehicle<br />

4990 kg<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

30<br />

Lunar Landing<br />

Module (LLM)<br />

6950 kg<br />

Orbital Propulsion<br />

Module (OPM)<br />

6950 kg<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Single Launch Lunar Cargo Mission<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

Landed Cargo 1890 kg<br />

31<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


LLO Staging for Human Lunar Landing<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

32<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Notional Vehicle in Landing Configuration<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

33<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Comparison of Lunar Landing Vehicles<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

34<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Results of Phase 1 Study<br />

• Use direct injection into Lunar transfer orbit and<br />

perform all in-space operations in low Lunar orbit<br />

(LLO)<br />

• Develop three vehicles based on LTO payload of<br />

DIVH and mutual performance<br />

– Orbital Maneuvering Stage (OMS)<br />

– Terminal Landing Stage (TLS)<br />

– Crew Module<br />

• Adapt standard modules to specific missions<br />

through multiple stages, offloading propellant<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

35<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Year-by-Year Program Costs<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

36<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Study Phase 2 Summary<br />

• AIAA Paper 2010-8610, <strong>Space</strong> 2010<br />

• Assumptions:<br />

– Mixed launch fleet (Delta IV Heavy and Atlas 402)<br />

– In-space use of storable hypergolics only<br />

– No propellant depots or transfers<br />

– Keep annual funding ≤ $3B<br />

• Focus of study effort<br />

– Probabilistic risk analysis of multilaunch missions<br />

– Cost incorporation of (limited) multiple launch vehicles<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

37<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Monolythic vs. Modular Reliability<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

38<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Design Reference Mission<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

39<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Annual Program Expenditures<br />

85% Learning Curve used for all repetitive production<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

40<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Focus of This Study (Phase 3)<br />

• Improve accuracy of vehicle design estimates<br />

– Incorporate mass dependence of stage inert mass<br />

fraction<br />

– Investigate sensitivity to specific impulse assumptions<br />

• Revisit lunar architecture with revised vehicle<br />

parameters<br />

• Extend architecture to near-Earth objects (NEOs)<br />

and Mars orbit destinations<br />

• Perform trade studies for phased introduction of<br />

additional technologies<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

41<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Cost Sensitivity to Vehicle Size<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

42<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Sensitivity to Specific Impulse<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

43<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Comparison of New Module Parameters<br />

OPM<br />

LLM<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

44<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Lunar Cargo Mission Performance<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

45<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Human Lunar Landing Configuration<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

46<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Implications of Parametric Resizing<br />

• Reduced OPM performance eliminates singlemodule<br />

lunar ascent option<br />

– Two OPMs landed for ascent with partial fueling in first<br />

stage<br />

– Both OPMs are single failure points for ascent<br />

• Since abort-to-orbit option exists throughout<br />

descent, no change in crew safety for that phase,<br />

but additional risk to mission success<br />

• Introduce option for larger vehicles → assume<br />

Falcon Heavy availability (16,000 kg to TLI)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

47<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


OPM Parameters for FH Variant<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

48<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Lunar Landing Configuration Options<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

49<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Assessment of FH Module Options<br />

• Use of OPM-F for ascent propulsion provides<br />

maximum reliability<br />

• Either of the last two options (all OPM-F or all<br />

OMP-F/LLM-F) provide human lunar surface<br />

missions with six launches, and are acceptable for<br />

lunar exploration program<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

50<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Future Work<br />

• Better graphics!<br />

• Detailed design of vehicles (crew module, propulsion<br />

modules)<br />

• Perform analysis for forward-staging modules in low<br />

Martian orbit for cargo and human Mars surface access<br />

• Perform reliability and costing analyses for NEO and<br />

Mars cases<br />

• Develop overall program design incorporating phased<br />

development of additional capabilities (Falcon Heavy<br />

modules, LEO staging modules, LOX/LH2 stages) into<br />

active mission model with budget caps<br />

• Consider additional advanced technologies (orbital<br />

depots, aerobraking, reusability) for future missions<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

51<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


Conclusions<br />

• Use of simple existing technologies still provides<br />

early, affordable, repeatable human access to the<br />

lunar surface<br />

• More conservative vehicle estimates support use<br />

of larger launch vehicles if available<br />

• Deep space missions should be staged in LEO<br />

• Long-duration LOX/LH2 stages facilitate NEO<br />

missions and are highly advantageous for Mars<br />

• An evolutionary program concept using on-orbit<br />

staging will provide a robust, ongoing human<br />

exploration program without waiting for the<br />

development of super-heavy lift vehicles<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

52<br />

<strong>Space</strong> <strong>Systems</strong> <strong>Laboratory</strong>


A Few Additional Notes<br />

• All of these papers are posted on the web site<br />

under Lecture #01<br />

• Fourth paper in the series in preparation for AIAA<br />

<strong>Space</strong> 2012 conference; preprint will be available<br />

next week<br />

• This material is presented only as point of<br />

departure (POD); it is to provide some initial<br />

guidance, not to be accepted as “gospel”<br />

• I expect the 42 of you to go into much greater<br />

depth of design analysis than I did on my own!<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

53<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Organization of the Design Project<br />

• You will be divided into three cooperating teams:<br />

– Human spacecraft design team<br />

– Transportation design team<br />

– Surface systems design team<br />

• There will also be a program-level systems<br />

integration and mission planning team<br />

• All of the design projects this term will be directly<br />

applicable to the capstone project for 484<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

54<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Design/Build/Test/Evaluate<br />

• Hardware design, fabrication, and testing will be an<br />

integral part of the 484 capstone project<br />

• A requirement for this term is to figure out what<br />

you’re building next term<br />

• Choice is based on<br />

– Getting design data unobtainable by analysis (e.g.,<br />

human factors evaluation of crew capsule interior)<br />

– Enabling meaningful mission simulations<br />

– Providing value for competitions<br />

• Leveraging facilities and infrastructure of SSL<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

55<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


End Goal: RASC-AL Competition<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

56<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Matrix Organization<br />

• Each project team is divided into six specialty<br />

groups<br />

– <strong>Systems</strong> Integration (SI)<br />

– Mission Planning and Analysis (MPA)<br />

– Loads, Structures, and Mechanisms (LSM)<br />

– Power, Propulsion, and Thermal (PPT)<br />

– Crew <strong>Systems</strong> (CS)<br />

– Avionics and Software (AVS)<br />

• You will be assigned to a project and a specialty<br />

group - but you do get to express your preferences<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

57<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


<strong>Systems</strong> Integration<br />

• Overall coordination of design activities<br />

• Creation and tracking of budgets, particularly mass<br />

and cost<br />

• Maintenance of canonical system configuration<br />

documents<br />

• Vehicle- and system-level trade studies<br />

• Cost estimation<br />

• Tracking of vehicle center of gravity and inertia<br />

matrix<br />

• Advanced technology (e.g., robotics, EVA)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

58<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Mission Planning and Analysis<br />

• Creation and maintenance of design reference<br />

mission(s) (DRM)<br />

• Orbital mechanics and launch/entry trajectories<br />

• Determination of operational mission objectives<br />

• Concept of operations (CONOPS)<br />

• Programmatic planning (sequence of missions)<br />

• Science instrument/payload definition<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

59<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Loads, Structures, and Mechanisms<br />

• Identification and estimation of loads sources<br />

• Structural design and analysis<br />

– Selection of structural shapes and materials<br />

– Stress modeling<br />

– Deformation estimation<br />

– Design optimization<br />

• Design of mechanisms (docking/berthing ports,<br />

separation mechanisms, launch holddowns, engine<br />

gimbals))<br />

• Tracking of critical margins of safety<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

60<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Power, Propulsion, and Thermal<br />

• Electrical power generation<br />

• Energy storage<br />

• Power management and conditioning<br />

• Primary propulsion (orbital maneuvering)<br />

• Reaction control system (rotation/translation)<br />

• Design of propellant storage and feed systems<br />

• Thermal modeling and analysis<br />

• Thermal control systems<br />

• Power budgets<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

61<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Crew <strong>Systems</strong><br />

• Internal layout<br />

• Emergency egress systems<br />

• Lighting and acoustics<br />

• Window and viewing analysis<br />

• Life support systems<br />

– Air revitalization<br />

– Water collection and regeneration<br />

– Cabin thermal control<br />

– Waste management<br />

– Food and hygiene<br />

• EVA accommodations<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

62<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Avionics and Software<br />

• Data management (flight computers)<br />

• Networking<br />

• Sensors<br />

• Power distribution<br />

• Guidance system<br />

• Control systems, including attitude control<br />

• Communications<br />

• Robot control systems<br />

• Software<br />

• Data transmission budgets<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

63<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #16<br />

The previous people who did a similar<br />

analysis did not have a direct pipeline to the<br />

wisdom of the ages. There is therefore no<br />

reason to believe their analysis over yours.<br />

There is especially no reason to present<br />

their analysis as yours.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

64<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #17<br />

The fact that an analysis appears in print<br />

has no relationship to the likelihood of its<br />

being correct.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

65<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


ENAE 788D Design Project – 2012<br />

• Grad students will form a team for the four design<br />

projects throughout the term<br />

• Grads will also perform systems analyses and<br />

mission design for the same lunar program for the<br />

484 capstone project<br />

• Grads will complete their project and give a final<br />

presentation on their results on the last day of the<br />

term<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

66<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #35<br />

(de Saint-Exupery's Law of Design) A<br />

designer knows that he has achieved<br />

perfection not when there is nothing<br />

left to add, but when there is nothing<br />

left to take away.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

67<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Documentation<br />

• In a group of 42 people, there are 861 possible<br />

communication paths between two people<br />

• Results and decisions you make will inevitably<br />

affect everyone else in the team<br />

• The 484 final report should be a comprehensive<br />

documentation of everything all 42 of you did on<br />

the project over this academic year<br />

• Document! Use archival electronic media (forums<br />

and postings on Blackboard) rather than informal<br />

(chat rooms, texts, e-mails)<br />

• If I can’t see it, you don’t get credit for it<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

68<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #22<br />

When in doubt, document.<br />

(Documentation requirements will<br />

reach a maximum shortly after the<br />

termination of a program.)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

69<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Closing Comments<br />

• Focus on numerical analysis and systems<br />

engineering → this is not “hardware-bashing”<br />

• Look for your own design solutions → this is also<br />

not “catalog shopping”<br />

• Approach everything rigorously with numbers →<br />

this is also also not “adjective engineering”<br />

• Manage scope and risk along with cost, mass, and<br />

other design parameters<br />

• Be innovative, while remaining real<br />

• What you get out of the process is directly<br />

proportional to what you put in<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

70<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Today’s Assignment<br />

• Download and read the POD papers from the<br />

spacecraft web site<br />

• Watch the clip on the design of the Apollo Lunar<br />

Module from the episode “Spider” from the miniseries<br />

“From the Earth to the Moon” (posted)<br />

• Do assignment posted on http://<br />

spacecraft.ssl.umd.edu under Lecture #01(due<br />

Thursday 9/6)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

71<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design


Akin’s Laws of <strong>Space</strong>craft Design - #9<br />

Not having all the information you need is<br />

never a satisfactory excuse for not starting<br />

the analysis.<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

72<br />

Course Introduction/Team Projects<br />

ENAE 483/788D - Principles of <strong>Space</strong> <strong>Systems</strong> Design

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!