31.07.2013 Views

PCR for detection of bacteria in orthopedic samples - Journal of ...

PCR for detection of bacteria in orthopedic samples - Journal of ...

PCR for detection of bacteria in orthopedic samples - Journal of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JCM Accepts, published onl<strong>in</strong>e ahead <strong>of</strong> pr<strong>in</strong>t on 2 May 2012<br />

J. Cl<strong>in</strong>. Microbiol. doi:10.1128/JCM.00362-12<br />

Copyright © 2012, American Society <strong>for</strong> Microbiology. All Rights Reserved.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

Runn<strong>in</strong>g title: <strong>PCR</strong> <strong>for</strong> <strong>detection</strong> <strong>of</strong> <strong>bacteria</strong> <strong>in</strong> <strong>orthopedic</strong> <strong>samples</strong> (revised manuscript)<br />

Improvement <strong>of</strong> <strong>detection</strong> <strong>of</strong> <strong>bacteria</strong>l pathogens <strong>in</strong> normally sterile body sites with a<br />

focus on <strong>orthopedic</strong> <strong>samples</strong> by use <strong>of</strong> a commercial 16S rRNA broad-range <strong>PCR</strong> and<br />

sequence analysis<br />

K. Grif # , I. Heller # , W. M. Prod<strong>in</strong>ger * , K. Lechleitner, C. Lass-Flörl, D. Orth<br />

Division <strong>of</strong> Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck,<br />

Austria<br />

Revised manuscript<br />

*<br />

Correspond<strong>in</strong>g author. Mail<strong>in</strong>g address: Division <strong>of</strong> Hygiene and Medical Microbiology,<br />

Innsbruck Medical University, Schoepfstrasse 41, 6020 Innsbruck, Austria. Phone: 43 512<br />

900370703. Fax: 43 512 900373700. E-mail: wolfgang.prod<strong>in</strong>ger@i-med.ac.at<br />

# These authors contributed equally to this study.<br />

1


20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

ABSTRACT<br />

A new commercially available universal 16S and 18S rRNA gene <strong>PCR</strong> test, which is followed<br />

by sequence analysis <strong>of</strong> amplicons (SepsiTest), was evaluated <strong>for</strong> rapid identification <strong>of</strong><br />

pathogens <strong>in</strong> the diagnosis <strong>of</strong> bone and jo<strong>in</strong>t <strong>in</strong>fections. Eighty three <strong>orthopedic</strong> <strong>samples</strong> and<br />

21 specimens from other normally sterile body sites collected from 84 patients were analysed<br />

<strong>in</strong> parallel by culture and <strong>PCR</strong> <strong>for</strong> <strong>detection</strong> <strong>of</strong> <strong>bacteria</strong> and fungi. Compared to culture, the<br />

diagnostic sensitivity and specificity <strong>of</strong> <strong>PCR</strong> were 88.5% and 83.5%, respectively. The<br />

<strong>detection</strong> rate <strong>of</strong> <strong>PCR</strong> (34.6%) was higher than that <strong>of</strong> <strong>bacteria</strong>l culture (25.0%) as a<br />

consequence <strong>of</strong> the presence <strong>of</strong> fastidious and non-cultivable species <strong>in</strong> <strong>samples</strong> and antibiotic<br />

treatment <strong>of</strong> patients. Thirteen culture negative <strong>in</strong>fections were identified by <strong>PCR</strong> and <strong>PCR</strong><br />

was able to detect culture-proven polymicrobial <strong>in</strong>fections. On the other hand, three <strong>samples</strong><br />

were culture positive, but <strong>PCR</strong> negative. SepsiTest demonstrated to be a valuable<br />

supplemental tool <strong>in</strong> the rapid <strong>detection</strong> <strong>of</strong> <strong>bacteria</strong>, especially <strong>for</strong> fastidious and non-<br />

cultivable organisms, allow<strong>in</strong>g earlier pathogen-adapted therapy <strong>in</strong> patients with bone and<br />

jo<strong>in</strong>t <strong>in</strong>fections.<br />

2


35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

INTRODUCTION<br />

Rapid <strong>detection</strong> <strong>of</strong> pathogens <strong>in</strong> cl<strong>in</strong>ical <strong>samples</strong> is an important issue <strong>for</strong> a better<br />

patient outcome. In the last decade, molecular-based methods <strong>for</strong> the identification <strong>of</strong> blood<br />

stream pathogens became more important due to their rapidity, sensitivity, and<br />

reproducibility. These methods are an attractive alternative, when conventional<br />

bacteriological techniques fail to identify microorganisms, particularly slow-grow<strong>in</strong>g,<br />

fastidious, or non-cultivable organisms. Interfer<strong>in</strong>g factors such as antimicrobial therapy may<br />

cause false-negative culture results even <strong>in</strong> cases <strong>of</strong> <strong>in</strong>fections due to easy-to-culture<br />

pathogens such as staphylococci and streptococci (6,16).<br />

Molecular techniques <strong>in</strong>clude pathogen-specific, multiplex and broad-range assays.<br />

The cl<strong>in</strong>ical usefulness <strong>of</strong> pathogen specific techniques is limited by the large number <strong>of</strong><br />

pathogens potentially <strong>in</strong>volved <strong>in</strong> different k<strong>in</strong>ds <strong>of</strong> <strong>in</strong>fections. Multiplex real-time <strong>PCR</strong><br />

assays, on the other hand, facilitate the rapid identification <strong>of</strong> pathogens and are a promis<strong>in</strong>g<br />

approach <strong>for</strong> rout<strong>in</strong>e use. Several studies have shown the value <strong>of</strong> this diagnostic tool <strong>for</strong><br />

rapid <strong>detection</strong> <strong>of</strong> blood stream pathogens, particularly <strong>in</strong> pre-treated patients (4,5,25). Also<br />

<strong>for</strong> cl<strong>in</strong>ical specimens other than blood, these assays show a great potential <strong>for</strong> diagnos<strong>in</strong>g<br />

<strong>bacteria</strong>l <strong>in</strong>fections (21). An obvious limitation is the <strong>in</strong>ability to detect microorganisms that<br />

are not <strong>in</strong>cluded <strong>in</strong> the targeted spectrum <strong>of</strong> the multiplex <strong>PCR</strong>.<br />

The <strong>PCR</strong> <strong>of</strong> conserved regions <strong>of</strong> microbial genomes, <strong>in</strong> particular the 16S rRNA <strong>of</strong><br />

<strong>bacteria</strong> and the 18S rRNA <strong>of</strong> fungi, respectively, is a broad-range approach when comb<strong>in</strong>ed<br />

with sequence analysis. This method potentially allows the direct <strong>detection</strong> <strong>of</strong> any cultivable<br />

or non-cultivable <strong>bacteria</strong>l or fungal pathogen. Specific applications <strong>of</strong> broad-range 16S and<br />

18S rRNA <strong>PCR</strong> <strong>in</strong> cl<strong>in</strong>ical diagnosis <strong>in</strong>clude sepsis, endocarditis, men<strong>in</strong>gitis and other central<br />

nervous system <strong>in</strong>fections and bone and jo<strong>in</strong>t <strong>in</strong>fections (16,22).<br />

3


59<br />

60<br />

61<br />

62<br />

63<br />

The SepsiTest (Molzym, Bremen, Germany), a commercial assay based on this<br />

technique, has been evaluated <strong>for</strong> different k<strong>in</strong>ds <strong>of</strong> cl<strong>in</strong>ical <strong>samples</strong> like whole blood and<br />

heart valves (14,23). The aim <strong>of</strong> this study was to evaluate SepsiTest <strong>for</strong> <strong>samples</strong> from other<br />

normally sterile body sites with a focus on <strong>orthopedic</strong> <strong>samples</strong> such as synovial fluid (SF) and<br />

jo<strong>in</strong>t tissues (JT).<br />

4


64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

MATERIALS AND METHODS<br />

Study population. One hundred and four cl<strong>in</strong>ical <strong>samples</strong> from 59 patients <strong>of</strong> the<br />

University Hospital Innsbruck (n=78), from 14 patients <strong>of</strong> four smaller district hospitals<br />

(n=15) and from 11 patients <strong>of</strong> general practitioners <strong>in</strong> Tyrol (n=11) were collected<br />

prospectively at the Division <strong>of</strong> Hygiene and Medical Microbiology, Innsbruck Medical<br />

University, between September 2010 and February 2011. The majority <strong>of</strong> <strong>samples</strong> were SF<br />

(n=47) and JT (n=36). Additionally 21 non-<strong>orthopedic</strong> <strong>samples</strong>, i. e. cerebrosp<strong>in</strong>al fluid (CSF)<br />

(n=8), heart valves (HV) (n=6), peritoneal fluid (n=3), lymph node tissue (n=1), lung tissue<br />

(n=1) and tissue <strong>samples</strong> ga<strong>in</strong>ed at post mortem exam<strong>in</strong>ation (bra<strong>in</strong> and liver, n=1 each) were<br />

<strong>in</strong>vestigated. Samples were aseptically divided <strong>in</strong>to two fractions <strong>for</strong> SepsiTest assay and <strong>for</strong><br />

culture, respectively. Various microbiological <strong>samples</strong> from other body sites were also<br />

collected <strong>for</strong> test<strong>in</strong>g when cl<strong>in</strong>ically <strong>in</strong>dicated. Cl<strong>in</strong>ical data and the antimicrobial therapy<br />

adm<strong>in</strong>istered were recorded on the day <strong>of</strong> sampl<strong>in</strong>g.<br />

The study was approved by the ethic committee <strong>of</strong> the Innsbruck Medical University (Nr.<br />

290/4.7)<br />

DNA isolation. All <strong>samples</strong> were prepared <strong>for</strong> molecular analysis with<strong>in</strong> 48 h after<br />

tak<strong>in</strong>g the specimens from the patients. DNA was extracted with UMD Universal assay kit<br />

accord<strong>in</strong>g to the protocol supplied by the manufacturer (Molzym, Bremen, Germany) and<br />

eluates were stored at -20°C. To avoid contam<strong>in</strong>ation <strong>of</strong> the DNA <strong>samples</strong>, DNA isolation<br />

was prepared <strong>in</strong> a lam<strong>in</strong>ar flow cab<strong>in</strong>et decontam<strong>in</strong>ated daily by UV radiation, and strictly<br />

separated from <strong>PCR</strong> process<strong>in</strong>g.<br />

<strong>PCR</strong> and sequence analysis. The broad-spectrum rRNA real-time <strong>PCR</strong> assay was<br />

per<strong>for</strong>med <strong>in</strong> a Light Cycler 2.0 Instrument (Roche Diagnostics, Vienna, Austria) accord<strong>in</strong>g to<br />

the manufacturer’s <strong>in</strong>structions (SepsiTest, Molzym, Bremen, Germany). The procedure<br />

5


88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

described elsewhere <strong>in</strong> detail (23) <strong>in</strong>cludes real-time <strong>PCR</strong> analysis us<strong>in</strong>g primers target<strong>in</strong>g<br />

conserved regions <strong>of</strong> the 16S and 18S rRNA-genes <strong>of</strong> <strong>bacteria</strong> and fungi, respectively.<br />

Sequenc<strong>in</strong>g <strong>of</strong> 16S rRNA amplicons employs two primers encompass<strong>in</strong>g Gram-negative and<br />

Gram-positive <strong>bacteria</strong>, respectively, and a separate primer <strong>for</strong> 18S rRNA amplicons.<br />

Amplicons from positive <strong>PCR</strong> reactions were purified with ExoSap-it (Affymetrix,<br />

Cleveland, USA) and sequenced us<strong>in</strong>g sequenc<strong>in</strong>g primers supplied <strong>in</strong> the SepsiTest kit.<br />

Sequence analysis <strong>of</strong> all amplicons was accomplished with the 3500 Genetic Analyzer<br />

(Applied Biosystems, Darmstadt, Germany). Pathogens were identified by us<strong>in</strong>g the<br />

SepsiTest-BLAST tool database (http://www.sepsitest-blast.net) and the onl<strong>in</strong>e search<br />

BLAST tool (2). Analysis <strong>of</strong> mixed sequences was per<strong>for</strong>med us<strong>in</strong>g the web based RipSeq<br />

s<strong>of</strong>tware (13). Genus and species identification was presumed <strong>in</strong> cl<strong>in</strong>ical <strong>samples</strong> with<br />

sequence identities <strong>of</strong> > 97 % and > 99 %, respectively, to reference sequences <strong>of</strong> stra<strong>in</strong>s <strong>in</strong><br />

the database.<br />

Interpretation criteria <strong>for</strong> discrepant results. A microorganism detected by <strong>PCR</strong><br />

only was def<strong>in</strong>ed as a “true pathogen”, if (i) this pathogen was cultured from further<br />

specimens collected from the same <strong>in</strong>fectious site dur<strong>in</strong>g the same <strong>in</strong>fectious episode and/or<br />

(ii) the species was specific <strong>for</strong> the patient’s type <strong>of</strong> <strong>in</strong>fection. “Possible pathogen” was<br />

assigned, if the respective pathogen detected by only one method has been reported as a<br />

causative agent <strong>in</strong> the literature. “Indeterm<strong>in</strong>ate” was assigned to positive <strong>PCR</strong> results<br />

meet<strong>in</strong>g neither the “true” nor the “possible” pathogen def<strong>in</strong>ition. A pathogen identified only<br />

by culture was regarded as “true” as culture was def<strong>in</strong>ed as the golden standard <strong>for</strong> this study<br />

Culture. The specimens were immediately cultured on 5% sheep blood Columbia agar<br />

(Heipha, Eppelheim, Germany), Chocolate agar (Heipha, Eppelheim, Germany) and<br />

Schaedler´s agar (Oxoid, Bas<strong>in</strong>gstoke, UK) and <strong>in</strong>cubated at 37°C <strong>in</strong> parallel <strong>in</strong> aerobic and<br />

anaerobic atmosphere <strong>for</strong> 48 h. Additionally, specimens were <strong>in</strong>oculated <strong>in</strong>to bra<strong>in</strong> heart<br />

6


113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

<strong>in</strong>fusion broth (Mast Group, Merseyside, UK) and thioglycollate broth (Becton Dick<strong>in</strong>son,<br />

Heidelberg, Germany), and <strong>in</strong>cubated at 37°C <strong>for</strong> 7 days. Isolated colonies were identified<br />

with standard microbiological procedures. In brief, isolates were first evaluated based on plate<br />

morphologies after overnight growth. Colonies consistent with staphylococci were confirmed<br />

with rapid catalase, Staphylococcus aureus was dist<strong>in</strong>guished from coagulase negative<br />

staphylococci (CoNS) with the Slidex Staph Plus latex agglut<strong>in</strong>ation test (bioMérieux, Marcy<br />

l´Etoile, France) and coagulase test<strong>in</strong>g. CoNS were identified to group level and not further<br />

differentiated. Beta-hemolytic streptococci were grouped with the Phadebact latex<br />

agglut<strong>in</strong>ation test (Bactus AB, Hudd<strong>in</strong>ge, Sweden). Other streptococci, Gram-negative and<br />

anaerobic <strong>bacteria</strong> were identified with different commercial identification systems,<br />

pr<strong>in</strong>cipally the API and Vitek2 systems (bioMérieux).<br />

Statistical analysis. Calculation <strong>of</strong> significance <strong>for</strong> comparison <strong>of</strong> SepsiTest and<br />

culture <strong>for</strong> <strong>detection</strong> <strong>of</strong> pathogens was per<strong>for</strong>med by us<strong>in</strong>g the McNemar’s test. A P value <strong>of</strong><br />


127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

RESULTS<br />

Of the 104 <strong>samples</strong>, 26 <strong>samples</strong> from 18 patients were culture positive. <strong>PCR</strong> yielded<br />

positive results <strong>in</strong> 36 <strong>samples</strong> from 25 patients. Among 47 synovial fluid specimens, 3 (6.4%)<br />

were positive with culture and 9 (19.1%) were positive with <strong>PCR</strong>. Fifteen (41.7%) culture<br />

positive and 13 (37.1%) <strong>PCR</strong> positive results were detected with<strong>in</strong> 36 jo<strong>in</strong>t tissues. Twenty-<br />

one non-<strong>orthopedic</strong> specimens showed 38.1% positive culture f<strong>in</strong>d<strong>in</strong>gs and 66.7% <strong>PCR</strong><br />

positive signals. The <strong>detection</strong> rate <strong>of</strong> <strong>PCR</strong> (34.6%) was higher than that <strong>of</strong> culture (25.0%) (p<br />

= 0.02). Compared to culture, the diagnostic sensitivity and specificity <strong>of</strong> the <strong>PCR</strong> were<br />

88.5% and 83.5%, respectively. Only <strong>bacteria</strong>l species, no fungal organisms were detected.<br />

Eleven different <strong>bacteria</strong>l species were found by culture and 16 species by <strong>PCR</strong>. Sequence<br />

analysis was successful with species identification <strong>in</strong> 34 cases, <strong>in</strong> one case at the genus level<br />

only (clostridial bacterium). In one case <strong>PCR</strong> could not differentiate between Shigella sonnei<br />

and Escherichia fergusonii. All <strong>PCR</strong> controls run with each series <strong>of</strong> experiments (<strong>in</strong>ternal,<br />

positive and negative <strong>PCR</strong> controls) yielded the expected results.<br />

Congruence <strong>of</strong> culture and <strong>PCR</strong> results. Seventy n<strong>in</strong>e <strong>samples</strong> yielded congruent<br />

results regard<strong>in</strong>g culture and <strong>PCR</strong>. Fourteen <strong>samples</strong> from 12 patients showed identical<br />

positive results. The follow<strong>in</strong>g organisms were detected: Staphylococcus aureus (n=7),<br />

CoNS/Staphylococcus epidermidis (n=4), Streptococcus pneumoniae (n=2), and Neisseria<br />

men<strong>in</strong>gitidis (n=1). Sixty five specimens from 57 patients showed negative results by both<br />

methods. Thus, the concordance <strong>of</strong> <strong>PCR</strong> and culture <strong>for</strong> both identical positive and negative<br />

<strong>samples</strong> was (14+65/104), i.e., 76.0%.<br />

<strong>PCR</strong> positive, culture negative results. In 13 specimens from 11 patients a positive<br />

<strong>PCR</strong> result <strong>in</strong> culture negative <strong>samples</strong> was found (Table 1). These <strong>samples</strong> were distributed<br />

among six SF, one JT, three HV, one peritoneal fluid and two specimens from bra<strong>in</strong> and liver<br />

tissue. <strong>PCR</strong> sequences <strong>of</strong> 11 different <strong>bacteria</strong>l species were found. In two patients the <strong>PCR</strong><br />

8


152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

174<br />

175<br />

f<strong>in</strong>d<strong>in</strong>gs were supported by the <strong>detection</strong> <strong>of</strong> the same pathogen <strong>in</strong> other specimens from the<br />

same <strong>in</strong>fectious site. Four <strong>of</strong> these 11 patients had received adequate antibiotic therapy at the<br />

time <strong>of</strong> sampl<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g all three patients <strong>in</strong> whom a “true” pathogen was detected by <strong>PCR</strong><br />

only. Of the rema<strong>in</strong><strong>in</strong>g seven patients, five had been untreated. In two no <strong>in</strong><strong>for</strong>mation about<br />

antibiotic pre-treatment was available.<br />

<strong>PCR</strong> negative, culture positive results. Three <strong>orthopedic</strong> <strong>samples</strong> were positive by<br />

culture, but negative by <strong>PCR</strong> (Table 1). Two <strong>of</strong> them conta<strong>in</strong>ed CoNS and one Streptococcus<br />

mitis. In one case the culture f<strong>in</strong>d<strong>in</strong>g was supported by culture results yield<strong>in</strong>g the same<br />

pathogen (CoNS) <strong>in</strong> other specimens from the same <strong>in</strong>fectious site.<br />

Discordances <strong>in</strong> species identification. In 9 <strong>samples</strong> from 4 patients, culture and <strong>PCR</strong><br />

identified different organisms: one <strong>of</strong> these <strong>samples</strong> was matched at the genus level<br />

(Streptococcus mitis vs. Streptococcus milleri). The other <strong>samples</strong> with discordant species<br />

identification were l<strong>in</strong>ked to polymicrobial <strong>in</strong>fections (Table 1). An <strong>in</strong>fection was presumed<br />

as polymicrobial, if two or more microorganisms were detected by <strong>PCR</strong> or by culture or <strong>in</strong><br />

other <strong>samples</strong> collected from the same <strong>in</strong>fectious site dur<strong>in</strong>g the same <strong>in</strong>fectious episode.<br />

With<strong>in</strong> 5 tissue <strong>samples</strong> from patient ID #89 (a case with prosthetic jo<strong>in</strong>t <strong>in</strong>fection)<br />

polymicrobial <strong>in</strong>fection with Enterococcus faecalis and CoNS (Staphylococcus epidermidis)<br />

was found by <strong>PCR</strong> <strong>in</strong> 2 <strong>samples</strong> and <strong>in</strong> 1 sample by culture. Each method missed one <strong>of</strong> the<br />

pathogens: <strong>PCR</strong> failed to detect Enterococcus faecalis <strong>in</strong> 3 <strong>samples</strong>, whereas culture missed<br />

Staphylococcus epidermidis <strong>in</strong> 4 <strong>samples</strong>. Several other specimens from the same <strong>in</strong>fectious<br />

site (jo<strong>in</strong>t tissue knee) showed growth <strong>of</strong> both organisms.<br />

One <strong>of</strong> two <strong>samples</strong> <strong>of</strong> hip tissue from patient ID #99 (case with septic arthritis) yielded<br />

Streptococcus dysgalactiae by <strong>PCR</strong>, but CoNS by culture, though both <strong>of</strong> them were found <strong>in</strong><br />

other specimens dur<strong>in</strong>g the same <strong>in</strong>fectious episode.<br />

9


176<br />

177<br />

178<br />

179<br />

180<br />

Both patients (ID #89 and #99) were under adequate antibiotic therapy at time <strong>of</strong> sampl<strong>in</strong>g.<br />

One <strong>of</strong> two peritoneal fluid <strong>samples</strong> <strong>of</strong> patient ID #81 yielded Escherichia coli, Streptococcus<br />

pyogenes and Bacteroides fragilis by culture, whereas <strong>PCR</strong> missed E. coli, but identified the<br />

other two pathogens. In the second sample only one <strong>of</strong> three species was detected by each<br />

method: Bacteroides fragilis by culture and Streptococcus pyogenes by <strong>PCR</strong> (Table 1).<br />

10


181<br />

182<br />

183<br />

184<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

201<br />

202<br />

203<br />

204<br />

DISCUSSION<br />

In this study, we analysed 83 <strong>orthopedic</strong> <strong>samples</strong> and 21 specimens from other<br />

normally sterile body sites with SepsiTest, a new commercial <strong>PCR</strong> test. The concordance <strong>of</strong><br />

positive and negative <strong>PCR</strong> and culture results was 76.0%. The sensitivity <strong>of</strong> <strong>PCR</strong> compared to<br />

culture was 88.5%, which is <strong>in</strong> keep<strong>in</strong>g with the data from other studies that applied SepsiTest<br />

to analyse cl<strong>in</strong>ical <strong>samples</strong>: Well<strong>in</strong>ghausen and co-authors compared SepsiTest to blood<br />

culture <strong>for</strong> the diagnosis <strong>of</strong> blood stream <strong>in</strong>fections and found a sensitivity <strong>of</strong> 87% among 342<br />

blood <strong>samples</strong> (23). Kühn et al. evaluated SepsiTest <strong>for</strong> patients with <strong>in</strong>fectious endocarditis:<br />

thirty four HV were <strong>in</strong>vestigated, the sensitivity compared to culture was 85% (14).<br />

Regard<strong>in</strong>g <strong>PCR</strong> positive, but culture negative results, we used predef<strong>in</strong>ed criteria to<br />

categorize the detected pathogen as a “true” or “possible” cause. Of thirteen pathogens<br />

detected by <strong>PCR</strong> only, five were considered as “true” and seven as “possible” (one <strong>PCR</strong> result<br />

was “<strong>in</strong>determ<strong>in</strong>ate”). “True” was assigned to three <strong>samples</strong> from two patients (IDs #7 and<br />

#99; Table 1) upon further, corroborat<strong>in</strong>g culture results and to two <strong>samples</strong> from patient ID<br />

#84 due to <strong>PCR</strong>-<strong>detection</strong> <strong>of</strong> a diagnosis-specific pathogen, i. e., Neisseria men<strong>in</strong>gitidis <strong>in</strong><br />

autopsy <strong>samples</strong> <strong>of</strong> a case <strong>of</strong> men<strong>in</strong>gitis. All three patients had received adequate antibiotic<br />

therapy which may expla<strong>in</strong> the negative culture results.<br />

For the seven cases with “possible pathogens”, case reports underl<strong>in</strong>e the plausibility<br />

<strong>of</strong> the <strong>PCR</strong> result, i. e., Pseudomonas aerug<strong>in</strong>osa from a HV sample <strong>in</strong> endocarditis (1,7,17),<br />

Ureaplasma urealyticum <strong>in</strong> a female patient with peritonitis and adnexitis (3,24), and<br />

Staphylococcus epidermidis from SF <strong>in</strong> an arthritis patient (9). The four further <strong>orthopedic</strong><br />

<strong>samples</strong> yielded anaerobic, fastidious or non-cultivable organisms (i. e., a clostridial<br />

bacterium, F<strong>in</strong>egoldia magna, Granulicatella adiacens and Tropheryma whipplei) each <strong>of</strong><br />

which is a documented possible agent <strong>of</strong> arthritis (8,10-12,15,18-20).<br />

11


205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

217<br />

218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

In the “<strong>in</strong>determ<strong>in</strong>ate” case, <strong>PCR</strong> could not differentiate between Shigella sonnei and<br />

Escherichia fergusonii and no cultural or cl<strong>in</strong>ical data supported the <strong>PCR</strong> result.<br />

In three <strong>samples</strong> (2.9%) with <strong>PCR</strong> negative, but culture positive results, <strong>PCR</strong> was<br />

considered as false negative. False negative <strong>PCR</strong> results have also been observed <strong>in</strong> the other<br />

studies evaluat<strong>in</strong>g SepsiTest: seven <strong>samples</strong> (2.0%) among 342 blood culture specimens (23)<br />

and two <strong>of</strong> 34 (5.9%) tested HV <strong>samples</strong> (14). An explanation <strong>for</strong> the negative <strong>PCR</strong> results<br />

could be the process<strong>in</strong>g <strong>for</strong> the <strong>samples</strong>: they are split <strong>in</strong>to two parts, thus the lesser sample<br />

volume used <strong>for</strong> <strong>PCR</strong> analysis could result <strong>in</strong> a pathogen DNA amount be<strong>in</strong>g below the<br />

<strong>detection</strong> limit (23). In addition, the sensitivity <strong>of</strong> 1 cfu per specimen (as <strong>for</strong> well culturable<br />

pathogens) is hardly reached by <strong>PCR</strong>.<br />

It has been claimed that <strong>PCR</strong> assays cannot be used to identify each pathogen <strong>in</strong> cases<br />

<strong>of</strong> mixed <strong>in</strong>fection (26). Nevertheless, our data demonstrate the simultaneous <strong>detection</strong> <strong>of</strong> two<br />

species by <strong>PCR</strong> <strong>in</strong> two <strong>of</strong> the three culture-proven cases <strong>of</strong> polymicrobial <strong>in</strong>fection (Table 1).<br />

Although the comb<strong>in</strong>ations <strong>of</strong> all test results per patient give clear pictures, this is not the case<br />

on the level <strong>of</strong> the s<strong>in</strong>gle specimen, however, as only 3 <strong>of</strong> 7 <strong>PCR</strong>s and 2 <strong>of</strong> 7 cultures,<br />

respectively, yielded both pathogens. There<strong>for</strong>e, our study supports the notion that a<br />

comb<strong>in</strong>ation <strong>of</strong> methods is optimal <strong>for</strong> the <strong>detection</strong> <strong>of</strong> mixed <strong>in</strong>fections. Kühn and co-<br />

workers found three cases <strong>of</strong> polymicrobial <strong>in</strong>fection among 34 HV <strong>samples</strong> by SepsiTest<br />

only (14). In 11 <strong>of</strong> 342 blood <strong>samples</strong>, polymicrobial <strong>in</strong>fection was detected by <strong>PCR</strong> only, but<br />

was missed by <strong>PCR</strong> <strong>in</strong> four cases (23).<br />

In conclusion, SepsiTest appears as a valuable tool <strong>for</strong> diagnos<strong>in</strong>g bone and jo<strong>in</strong>t<br />

<strong>in</strong>fections <strong>in</strong> particular. In our op<strong>in</strong>ion the major advantage is its ability to detect and identify<br />

virtually any cultivable or non-cultivable <strong>bacteria</strong>l species and non-viable <strong>bacteria</strong> from<br />

patients treated with antibiotics. Nevertheless, SepsiTest should always be used <strong>in</strong><br />

comb<strong>in</strong>ation with culture, as this <strong>in</strong>creases sensitivity especially <strong>in</strong> cases <strong>of</strong> polymicrobial<br />

12


230<br />

231<br />

232<br />

<strong>in</strong>fections and culture is <strong>in</strong>dispensable <strong>for</strong> antimicrobial susceptibility test<strong>in</strong>g. Further studies<br />

are needed to evaluate the cost effectiveness <strong>of</strong> SepsiTest and, on the long run, the impact <strong>of</strong><br />

this assay on the cl<strong>in</strong>ical outcome <strong>of</strong> patients.<br />

13


233<br />

234<br />

235<br />

236<br />

237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

245<br />

246<br />

247<br />

248<br />

249<br />

250<br />

251<br />

252<br />

253<br />

254<br />

255<br />

REFERENCES<br />

1. Aggarwal, A., N. Ritter, L. Reddy, D. L<strong>in</strong>gutla, F. Nasar, N. El-Daher, and D.<br />

Hsi. 2011. Recurrent Pseudomonas aortic root abscess complicat<strong>in</strong>g mitral valve<br />

endocarditis. Heart Lung. <strong>in</strong> press, http://dx.doi.org/10.1016/j.hrtlng.2011.01.008,<br />

[Epub ahead <strong>of</strong> pr<strong>in</strong>t).<br />

2. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic<br />

local alignment search tool. J.Mol.Biol. 215:403-410.<br />

3. Bailey, E. A., L. R. Solomon, N. Berry, J. S. Cheesbrough, J. E. Moore, X. Jiru,<br />

D. R. Ware<strong>in</strong>g, T. Harrison, and D. Pitcher. 2002. Ureaplasma urealyticum CAPD<br />

peritonitis follow<strong>in</strong>g <strong>in</strong>sertion <strong>of</strong> an <strong>in</strong>trauter<strong>in</strong>e device: diagnosis by eu<strong>bacteria</strong>l<br />

polymerase cha<strong>in</strong> reaction. Perit.Dial.Int. 22:422-424.<br />

4. Bloos, F., F. H<strong>in</strong>der, K. Becker, S. Sachse, D. A. Mekontso, E. Straube, V.<br />

Cattoir, C. Brun-Buisson, K. Re<strong>in</strong>hart, G. Peters, and M. Bauer. 2010. A<br />

multicenter trial to compare blood culture with polymerase cha<strong>in</strong> reaction <strong>in</strong> severe<br />

human sepsis. Intensive Care Med. 36:241-247.<br />

5. Bravo, D., J. Blanquer, M. Tormo, G. Aguilar, R. Borras, C. Solano, M. A. Clari,<br />

E. Costa, B. Munoz-Cobo, M. Argueso, J. R. P<strong>in</strong>eda, and D. Navarro. 2011.<br />

Diagnostic accuracy and potential cl<strong>in</strong>ical value <strong>of</strong> the LightCycler SeptiFast assay <strong>in</strong><br />

the management <strong>of</strong> bloodstream <strong>in</strong>fections occurr<strong>in</strong>g <strong>in</strong> neutropenic and critically ill<br />

patients. Int.J.Infect.Dis. 15:326-331.<br />

6. Breitkopf, C., D. Hammel, H. H. Scheld, G. Peters, and K. Becker. 2005. Impact<br />

<strong>of</strong> a molecular approach to improve the microbiological diagnosis <strong>of</strong> <strong>in</strong>fective heart<br />

valve endocarditis. Circulation. 111:1415-1421.<br />

14


256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

7. Dawson, N. L., L. M. Brumble, B. S. Pritt, J. D. Yao, J. D. Echols, and S. Alvarez.<br />

2011. Left-sided Pseudomonas aerug<strong>in</strong>osa endocarditis <strong>in</strong> patients without <strong>in</strong>jection<br />

drug use. Medic<strong>in</strong>e (Baltimore). 90:250-255.<br />

8. Fenollar, F., P. Y. Levy, and D. Raoult. 2008. Usefulness <strong>of</strong> broad-range <strong>PCR</strong> <strong>for</strong><br />

the diagnosis <strong>of</strong> osteoarticular <strong>in</strong>fections. Curr.Op<strong>in</strong>.Rheumatol. 20:463-470.<br />

9. Fenollar, F., V. Roux, A. Ste<strong>in</strong>, M. Drancourt, and D. Raoult. 2006. Analysis <strong>of</strong><br />

525 <strong>samples</strong> to determ<strong>in</strong>e the usefulness <strong>of</strong> <strong>PCR</strong> amplification and sequenc<strong>in</strong>g <strong>of</strong> the<br />

16S rRNA gene <strong>for</strong> diagnosis <strong>of</strong> bone and jo<strong>in</strong>t <strong>in</strong>fections. J.Cl<strong>in</strong>.Microbiol. 44:1018-<br />

1028.<br />

10. Fukuda, R., M. Oki, A. Ueda, H. Yanagi, M. Komatsu, M. Itoh, A. Oka, M.<br />

Nish<strong>in</strong>a, H. Ozawa, and A. Takagi. 2010. Vertebral osteomyelitis associated with<br />

Granulicatella adiacens. Tokai J.Exp.Cl<strong>in</strong>.Med. 35:126-129.<br />

11. Hepburn, M. J., S. L. Fraser, T. A. Rennie, C. M. S<strong>in</strong>gleton, and B. Delgado, Jr.<br />

2003. Septic arthritis caused by Granulicatella adiacens: diagnosis by <strong>in</strong>oculation <strong>of</strong><br />

synovial fluid <strong>in</strong>to blood culture bottles. Rheumatol.Int. 23:255-257.<br />

12. Koligi, K., D. Mertz, D. Benz, T. Vogt, G. V. Bloemberg, L. W<strong>in</strong>ter, A. Tyndall,<br />

M. Battegay, and U. A. Walker. 2011. Of bugs and jo<strong>in</strong>ts. Oligoarthritis caused by<br />

Tropheryma whipplei. Internist (Berl). 52:884-888.<br />

13. Kommedal, O., B. Karlsen, and O. Saebo. 2008. Analysis <strong>of</strong> mixed sequenc<strong>in</strong>g<br />

chromatograms and its application <strong>in</strong> direct 16S rRNA gene sequenc<strong>in</strong>g <strong>of</strong><br />

polymicrobial <strong>samples</strong>. J.Cl<strong>in</strong>.Microbiol. 46:3766-3771.<br />

14. Kuhn, C., C. Disque, H. Muhl, P. Orszag, M. Stiesch, and A. Haverich. 2011.<br />

Evaluation <strong>of</strong> commercial universal rRNA gene <strong>PCR</strong> plus sequenc<strong>in</strong>g tests <strong>for</strong><br />

15


279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

285<br />

286<br />

287<br />

288<br />

289<br />

290<br />

291<br />

292<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

299<br />

300<br />

identification <strong>of</strong> <strong>bacteria</strong> and fungi associated with <strong>in</strong>fectious endocarditis.<br />

J.Cl<strong>in</strong>.Microbiol. 49:2919-2923.<br />

15. Lange, U. and J. Teichmann. 2003. Whipple arthritis: diagnosis by molecular<br />

analysis <strong>of</strong> synovial fluid--current status <strong>of</strong> diagnosis and therapy. Rheumatology.<br />

42:473-480.<br />

16. Manc<strong>in</strong>i, N., S. Carletti, N. Ghidoli, P. Cichero, R. Burioni, and M. Clementi.<br />

2010. The era <strong>of</strong> molecular and other non-culture-based methods <strong>in</strong> diagnosis <strong>of</strong><br />

sepsis. Cl<strong>in</strong>.Microbiol.Rev. 23:235-251.<br />

17. Nasim, A., S. Baqi, and S. F. Akhtar. 2011. Pseudomonas aerug<strong>in</strong>osa endocarditis <strong>in</strong><br />

renal transplant recipients. Transpl.Infect.Dis. doi:10.1111/j.1399-3062.2011.00667.x.,<br />

[Epub ahead <strong>of</strong> pr<strong>in</strong>t].<br />

18. Prassler, R., T. Kempmann, and P. Vierl<strong>in</strong>g. 2008. Whipple's disease with<br />

segmental lesions <strong>in</strong> the proximal small <strong>in</strong>test<strong>in</strong>e. Dtsch.Med.Wochenschr. 133:460-<br />

463.<br />

19. Puechal, X., F. Fenollar, and D. Raoult. 2007. Cultivation <strong>of</strong> Tropheryma whipplei<br />

from the synovial fluid <strong>in</strong> Whipple's arthritis. Arthritis Rheum. 56:1713-1718.<br />

20. Riede, U., P. Graber, and P. E. Ochsner. 2004. Granulicatella (Abiotrophia)<br />

adiacens <strong>in</strong>fection associated with a total knee arthroplasty. Scand.J.Infect.Dis.<br />

36:761-764.<br />

21. Sancho-Tello, S., D. Bravo, R. Borras, E. Costa, B. Munoz-Cobo, and D. Navarro.<br />

2011. Per<strong>for</strong>mance <strong>of</strong> the LightCycler SeptiFast test Mgrade <strong>in</strong> detect<strong>in</strong>g microbial<br />

pathogens <strong>in</strong> purulent fluids. J.Cl<strong>in</strong>.Microbiol. 49:2988-2991.<br />

16


301<br />

302<br />

303<br />

304<br />

305<br />

306<br />

307<br />

308<br />

309<br />

310<br />

311<br />

312<br />

313<br />

314<br />

315<br />

316<br />

317<br />

318<br />

319<br />

320<br />

22. Sontakke, S., M. B. Cadenas, R. G. Maggi, P. P. D<strong>in</strong>iz, and E. B. Breitschwerdt.<br />

2009. Use <strong>of</strong> broad range16S rDNA <strong>PCR</strong> <strong>in</strong> cl<strong>in</strong>ical microbiology.<br />

J.Microbiol.Methods. 76:217-225.<br />

23. Well<strong>in</strong>ghausen, N., A. J. Kochem, C. Disque, H. Muhl, S. Gebert, J. W<strong>in</strong>ter, J.<br />

Matten, and S. G. Sakka. 2009. Diagnosis <strong>of</strong> bacteremia <strong>in</strong> whole-blood <strong>samples</strong> by<br />

use <strong>of</strong> a commercial universal 16S rRNA gene-based <strong>PCR</strong> and sequence analysis.<br />

J.Cl<strong>in</strong>.Microbiol. 47:2759-2765.<br />

24. Yager, J. E., E. S. Ford, Z. P. Boas, L. A. Haseley, B. T. Cookson, D. J. Sengupta,<br />

F. C. Fang, and G. S. Gottlieb. 2010. Ureaplasma urealyticum cont<strong>in</strong>uous<br />

ambulatory peritoneal dialysis-associated peritonitis diagnosed by 16S rRNA gene<br />

<strong>PCR</strong>. J.Cl<strong>in</strong>.Microbiol. 48:4310-4312.<br />

25. Yanagihara, K., Y. Kitagawa, M. Tomonaga, K. Tsukasaki, S. Kohno, M. Seki,<br />

H. Sugimoto, T. Shimazu, O. Tasaki, A. Matsushima, Y. Ikeda, S. Okamoto, N.<br />

Aikawa, S. Hori, H. Obara, A. Ishizaka, N. Hasegawa, J. Takeda, S. Kamihira, K.<br />

Sugahara, S. Asari, M. Murata, Y. Kobayashi, H. G<strong>in</strong>ba, Y. Sumiyama, and M.<br />

Kitajima. 2010. Evaluation <strong>of</strong> pathogen <strong>detection</strong> from cl<strong>in</strong>ical <strong>samples</strong> by real-time<br />

polymerase cha<strong>in</strong> reaction us<strong>in</strong>g a sepsis pathogen DNA <strong>detection</strong> kit. Crit Care. 14.<br />

doi:10.1186/cc9234, [Epub ahead <strong>of</strong> pr<strong>in</strong>t].<br />

26. Zimmerli, W., A. Trampuz, and P. E. Ochsner. 2004. Prosthetic-jo<strong>in</strong>t <strong>in</strong>fections.<br />

N.Engl.J.Med. 351:1645-1654.<br />

17


Patient<br />

ID<br />

TABLE 1. Discrepant test results <strong>for</strong> culture and <strong>PCR</strong> (25 specimens from 17 patients)<br />

Diagnosis Specimens<br />

No <strong>of</strong><br />

<strong>samples</strong><br />

Pathogen detected<br />

Culture<br />

positive<br />

<strong>PCR</strong><br />

positive<br />

Further specimens positive by culture<br />

Detection <strong>of</strong> a s<strong>in</strong>gle ”true” a 7 Endocarditis Heart valve tissue 2<br />

pathogen<br />

Streptococcus agalactiae 0 2 S. agalactiae <strong>in</strong> blood culture (d10-) b<br />

84 Men<strong>in</strong>gococcal sepsis Bra<strong>in</strong>, liver tissue 2 Neisseria men<strong>in</strong>gitidis 0 2 no<br />

13 Infected prosthetic jo<strong>in</strong>t Hip tissue 1 Streptococcus mitis 1 0 no<br />

40 Infected prosthetic jo<strong>in</strong>t Jo<strong>in</strong>t tissue knee 1 CoNS c 1 0 CoNS <strong>in</strong> tissue and swab (d0) from knee<br />

86 Infected prosthetic jo<strong>in</strong>t Jo<strong>in</strong>t tissue knee 1 CoNS 1 0 no<br />

78 Spondylodiscitis Sp<strong>in</strong>e tissue 1 Streptococcus mitis<br />

Streptococcus milleri<br />

Detection <strong>of</strong> >1 “true” a 89 Infected prosthetic jo<strong>in</strong>t Jo<strong>in</strong>t tissue knee 5<br />

pathogens<br />

Enterococcus faecalis<br />

CoNS/ Staphylococcus epidermidis d<br />

81 Fournier’s gangrene Peritoneal fluid 2 Streptococcus pyogenes<br />

Bacteroides fragilis<br />

Escherichia coli<br />

99 Septic arthritis Hip tissue 2 Streptococcus dysgalactiae<br />

CoNS<br />

0<br />

1<br />

5<br />

1<br />

1<br />

2<br />

1<br />

0<br />

1<br />

1<br />

0<br />

2<br />

5<br />

2<br />

1<br />

0<br />

2<br />

0<br />

no<br />

S. epidermidis, E. faecalis <strong>in</strong> jo<strong>in</strong>t tissue knee<br />

(d2-, d0)<br />

S. pyogenes, B. fragilis, E. coli <strong>in</strong> peritoneal<br />

fluid and tissue abdomen (d0)<br />

S. dysgalactiae <strong>in</strong> swab hip (d0), tissue hip<br />

(d1-), CoNS <strong>in</strong> jo<strong>in</strong>t tissue and swab hip (d0,<br />

d2+)<br />

Detection <strong>of</strong> a “possible” a 12 Arthritis Synovial fluid knee 1<br />

pathogen<br />

clostridial bacterium 0 1 no<br />

52 Infected prosthetic jo<strong>in</strong>t Synovial fluid knee 1 Granulicatella adiacens 0 1 S. epidermidis <strong>in</strong> synovial tissue knee (d0)<br />

27 Infected prosthetic jo<strong>in</strong>t Synovial fluid hip 1 F<strong>in</strong>egoldia magna 0 1 no<br />

50 Infected prosthetic jo<strong>in</strong>t Synovial fluid hip 1 Tropheryma whipplei 0 1 no<br />

83 Peritonitis, adnexitis Peritoneal fluid 1 Ureaplasma urealyticum 0 1 no<br />

4 Endocarditis Heart valve tissue 1 Pseudomonas aerug<strong>in</strong>osa 0 1 no<br />

41 Arthritis Synovial fluid knee 1 Staphylococcus epidermidis 0 1 no<br />

Indeterm<strong>in</strong>ate results a<br />

79 Arthritis Synovial fluid knee 1 Shigella sonnei/ Escherichia fergusonii 0 1 no<br />

a As described under Methods, a “true” pathogen is def<strong>in</strong>ed as (i) a pathogen cultured from further specimens collected from the same <strong>in</strong>fectious site dur<strong>in</strong>g the same <strong>in</strong>fectious<br />

episode and/or (ii) specific <strong>for</strong> the patient´s type <strong>of</strong> <strong>in</strong>fection. “Possible” pathogen: detected by only one method, but described as a causative agent <strong>in</strong> the literature.<br />

“Indeterm<strong>in</strong>ate” is assigned to positive <strong>PCR</strong> results meet<strong>in</strong>g neither the “true” nor the “possible” pathogen def<strong>in</strong>ition.<br />

b time po<strong>in</strong>t <strong>of</strong> pathogen <strong>detection</strong> <strong>in</strong> days: (-), pathogen <strong>detection</strong> be<strong>for</strong>e sampl<strong>in</strong>g: (+), pathogen <strong>detection</strong> after sampl<strong>in</strong>g.<br />

c coagulase negative staphylococci<br />

d differentiation: to group level by culture and to species level by <strong>PCR</strong>, respectively

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!