01.08.2013 Views

A slip factor calculation in centrifugal impellers based on linear ...

A slip factor calculation in centrifugal impellers based on linear ...

A slip factor calculation in centrifugal impellers based on linear ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g> <str<strong>on</strong>g>calculati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>centrifugal</str<strong>on</strong>g> <str<strong>on</strong>g>impellers</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong><br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade data<br />

Dr. Abraham Frenk<br />

Becker Turbo System Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g (2005).<br />

(Presented by Dr. E. Shalman)


Abstract<br />

Accurate model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the flow <str<strong>on</strong>g>slip</str<strong>on</strong>g> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st directi<strong>on</strong><br />

of rotati<strong>on</strong> is essential for correct predicti<strong>on</strong> of the<br />

<str<strong>on</strong>g>centrifugal</str<strong>on</strong>g> impeller performance. The process is<br />

characterized by a <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g>. Most correlati<strong>on</strong>s<br />

available for <str<strong>on</strong>g>calculati<strong>on</strong></str<strong>on</strong>g> of the <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g> use<br />

parameters characteriz<str<strong>on</strong>g>in</str<strong>on</strong>g>g basic impeller geometry<br />

(review of Wiesner (1967) and Backstrom (2006)).<br />

Approach presented below is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> reducti<strong>on</strong> of<br />

radial cascade to equivalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade. The<br />

reducti<strong>on</strong> allows to calculate characteristics of<br />

radial blade row us<str<strong>on</strong>g>in</str<strong>on</strong>g>g well established<br />

experimental data obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascades,<br />

diffusers and axial blade rows.<br />

2


Rotors with splitters or with high load<str<strong>on</strong>g>in</str<strong>on</strong>g>g must be<br />

divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to few radial blade rows. In the case of<br />

multiple rotor blade rows the <str<strong>on</strong>g>slip</str<strong>on</strong>g> angle is calculated<br />

for each blade row. The <str<strong>on</strong>g>slip</str<strong>on</strong>g> angle of the rotor is a<br />

sum of the <str<strong>on</strong>g>slip</str<strong>on</strong>g> angles obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for each row.<br />

Suggested reducti<strong>on</strong> of radial blade rows allows also<br />

calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g of other parameters essential for impeller<br />

design.<br />

Suggested method allows also determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e additi<strong>on</strong>al<br />

causes <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g>. The <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g><br />

depends not <strong>on</strong>ly <strong>on</strong> parameters characteriz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

basic impeller geometry, but <strong>on</strong> difference of <str<strong>on</strong>g>in</str<strong>on</strong>g>let<br />

flow angle from stall flow angle. In the rotors with the<br />

same basic geometry parameters <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g><br />

depends <strong>on</strong> the length of the blade. Slip <str<strong>on</strong>g>factor</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases with blade length.<br />

3


Axial compressor Centrifugal compressor<br />

4


Slip flow <str<strong>on</strong>g>in</str<strong>on</strong>g> Centrifugal compressor<br />

Busemann (1928) called this<br />

displacement flow;<br />

other authors refer to its<br />

rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g cells as<br />

relative eddies.<br />

C 2<br />

C u2<br />

C a2<br />

σ = 1−<br />

v R s<str<strong>on</strong>g>in</str<strong>on</strong>g> β<br />

s 2 2k<br />

π = Ω<br />

θ<br />

π s<str<strong>on</strong>g>in</str<strong>on</strong>g> β<br />

σ = 1−<br />

Z<br />

2k<br />

vθ s<br />

ΩR<br />

2<br />

Stodola (1927)<br />

(def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>)<br />

2k<br />

Z<br />

5


Axial compressor Centrifugal compressor<br />

X f<br />

Howell (1945)<br />

Deviati<strong>on</strong> angle δ = β 2 - β 2k .<br />

2 ( 2 ) + 0.<br />

002(<br />

β δ )<br />

( 0.<br />

23<br />

) θ t<br />

δ +<br />

= x f<br />

2k<br />

t<br />

c<br />

σ = 1− − β<br />

u<br />

σ = 1−<br />

C u<br />

Z-number of blades<br />

Slip <str<strong>on</strong>g>factor</str<strong>on</strong>g> σ or <str<strong>on</strong>g>slip</str<strong>on</strong>g> angle δ = β 2 - β 2k .<br />

( tan(<br />

β + δ ) ( ) )<br />

a2<br />

2<br />

2k<br />

tan<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g> β<br />

Z<br />

0.<br />

7<br />

2k<br />

C a<br />

2k<br />

(Wiesner)<br />

2k<br />

6


∆P<br />

ρ w<br />

1<br />

General Inviscid<br />

∆P<br />

ρ w<br />

eqv<br />

2<br />

1<br />

1<br />

2<br />

2 ( 2 ) + 0.<br />

002(<br />

β δ )<br />

( 0.<br />

23<br />

) θ t<br />

δ +<br />

= x f<br />

2k<br />

W 1<br />

C a1<br />

2<br />

1<br />

β 1,eqv<br />

2<br />

⎛ w<br />

= 1−<br />

⎜<br />

⎝ w<br />

⎛ w<br />

= 1−<br />

⎜<br />

⎝ w<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

W 2<br />

2<br />

1<br />

C a2<br />

⎟ ⎞<br />

⎠<br />

In L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade C a1 = C a2<br />

⎛ cos<br />

= 1−<br />

⎜<br />

⎝ cos<br />

2<br />

β 2,eqv<br />

( β1,<br />

eqv )<br />

( β )<br />

2,<br />

eqv<br />

⎟ ⎞<br />

⎠<br />

2<br />

General blade row<br />

∆P<br />

ρ w<br />

1<br />

2<br />

1<br />

⎛ w<br />

= 1−<br />

2 ⎜<br />

⎝ w<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎛ cos<br />

= 1−<br />

⎜<br />

⎝ cos<br />

( β1)<br />

( β )<br />

2<br />

K D<br />

Equivalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade<br />

∆P = ∆P eqv<br />

β 2 =β 2,eqv<br />

( ) = K cos(<br />

)<br />

cos β1<br />

ε − β<br />

β1, eqv D<br />

eqv = β1,<br />

eqv 2<br />

eqv − i + δ θ eqv<br />

2 = β 2 k δ<br />

k i + = 1 β1<br />

ε =<br />

β +<br />

β<br />

7<br />

⎞<br />

⎟ ⎟<br />

⎠<br />

2


Calculati<strong>on</strong> of equivalent pitch (solidity)<br />

β<br />

eqv<br />

2k<br />

, eqv<br />

( ( ) ( ) 2<br />

0.<br />

23 2x<br />

f + 0.<br />

002 β k δ θeqv<br />

teqv<br />

δ +<br />

= 2<br />

b<br />

t eqv<br />

( t + t ) b b ( t ) 1 + t2<br />

( . 23(<br />

2 ) 0.<br />

002(<br />

) ( 1)<br />

2<br />

x + β + δ θ t −<br />

= β2k<br />

+ 0 f<br />

2k<br />

eqv eqv<br />

=<br />

1<br />

2t<br />

c<br />

σ =<br />

1− − β<br />

u<br />

( tan(<br />

β + δ ) ( )<br />

a2<br />

2<br />

2k<br />

, eqv eqv tan<br />

2<br />

2<br />

2<br />

1<br />

=<br />

t<br />

2<br />

2k<br />

, eqv<br />

2t<br />

2<br />

8


( ) w / w<br />

( w / w )<br />

2<br />

2<br />

( ) = K cos(<br />

)<br />

cos β<br />

β1, eqv D<br />

Calculati<strong>on</strong> of the coefficient K D<br />

1. Influence of the channel height h.<br />

Stratford (1959) obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the height (h) of the diffuser<br />

with given length (b) that has maximal static pressure<br />

rise coefficient. The velocity ratio w 2 /w 1 depends <strong>on</strong> the<br />

ratio b/h. The experimental data for l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade<br />

were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for h=2b. The experimental data of<br />

Stafford may be approximated by equati<strong>on</strong><br />

Experimental data for diffusers<br />

1<br />

1<br />

h=<br />

2b<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

2b<br />

h<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

0.<br />

1<br />

9


W 1<br />

C a1<br />

Calculati<strong>on</strong> of the coefficient K D<br />

β 1,eq<br />

v<br />

2. Influence of the ratio C a1/C a2.<br />

Cascade with c<strong>on</strong>stant height and solidity:<br />

w 2 =<br />

w<br />

1<br />

K<br />

c<br />

c<br />

T<br />

a2<br />

a1<br />

=<br />

cos<br />

cos<br />

c<br />

c<br />

a2<br />

a1<br />

( β ) 1<br />

( β )<br />

If the solidity is changed, then velocity ratio <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

equivalent cascade must be multiplied by the pitch ratio<br />

w 2 =<br />

w<br />

1<br />

W 2<br />

KT<br />

C a2<br />

β 2,eq<br />

v<br />

cos<br />

cos<br />

( ) = K cos(<br />

)<br />

cos β<br />

β1, eqv D<br />

( β ) 1<br />

( β ) 2<br />

1<br />

t<br />

t<br />

1<br />

2<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

2b ⎞<br />

⎟⎠<br />

h<br />

0.<br />

1<br />

10


W 1<br />

K<br />

Calculati<strong>on</strong> of the coefficient K D<br />

C a1<br />

In General case<br />

D<br />

β 1,eq<br />

v<br />

=<br />

( ) = K cos(<br />

)<br />

cos β<br />

K<br />

β1, eqv D<br />

W 2<br />

1<br />

2<br />

T<br />

C a2<br />

KT<br />

β 2,eq<br />

v<br />

where<br />

For axial compressors<br />

w<br />

w<br />

2<br />

1<br />

where<br />

1<br />

=<br />

cos<br />

cos<br />

K<br />

( β ) 1,<br />

eqv<br />

( β )<br />

T<br />

2,<br />

eqv<br />

=<br />

c<br />

c<br />

a2<br />

a1<br />

=<br />

t<br />

t<br />

1<br />

2<br />

K<br />

T<br />

cos<br />

cos<br />

( β ) 1<br />

( β )<br />

2<br />

Hence, K T =K D<br />

⎛<br />

⎜<br />

⎝<br />

2b ⎞<br />

⎟⎠<br />

h<br />

(effect of boundary layer separati<strong>on</strong> and blockage)<br />

K<br />

T<br />

=<br />

c<br />

c<br />

a2<br />

a1<br />

t<br />

t<br />

1<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

2b ⎞<br />

⎟⎠<br />

h<br />

0.<br />

1<br />

0.<br />

1<br />

11


Impellers with high blade load<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

and splitters<br />

The rotor with splitters<br />

is divided <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

sequence of rotors.<br />

Each rotor has the<br />

same number of blades<br />

at <str<strong>on</strong>g>in</str<strong>on</strong>g>let and exit.<br />

For high loaded rotors<br />

the load<str<strong>on</strong>g>in</str<strong>on</strong>g>g of each<br />

equivalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear<br />

cascade must be less<br />

then maximal allowed.<br />

12


Impellers with high blade load<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Rotor 1<br />

and splitters<br />

Rotor 2<br />

Calculate <str<strong>on</strong>g>slip</str<strong>on</strong>g> angle<br />

for each rotor.<br />

The <str<strong>on</strong>g>slip</str<strong>on</strong>g> angle of<br />

the rotor is a sum<br />

of the <str<strong>on</strong>g>slip</str<strong>on</strong>g> angles<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for each<br />

row<br />

13


( ) = K cos(<br />

)<br />

cos β<br />

β1, eqv D<br />

High blade load<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

1<br />

K<br />

D<br />

=<br />

Stall c<strong>on</strong>diti<strong>on</strong>s<br />

K<br />

1<br />

2K<br />

T<br />

T<br />

K<br />

T<br />

=<br />

c<br />

c<br />

a2<br />

a1<br />

t<br />

t<br />

1<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

2b ⎞<br />

⎟⎠<br />

h<br />

0.<br />

1<br />

14


Maximal pressure gradient<br />

Analysis of experimental data of Howell (1945), Emery (1957),<br />

Bunimovich (1967)allows obta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong> for<br />

coefficient of static pressure rise at stall c<strong>on</strong>diti<strong>on</strong>s (maximal<br />

pressure rise)<br />

m<br />

( ) = K cos(<br />

)<br />

cos β<br />

st<br />

β1, eqv D<br />

∆P<br />

2<br />

ρ w<br />

1<br />

=<br />

b<br />

∫<br />

0<br />

1<br />

st<br />

2<br />

⎛<br />

= 1−<br />

⎜<br />

⎝<br />

w<br />

w<br />

2,<br />

st<br />

1,<br />

st<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

1<br />

⎛ cos<br />

= 1−<br />

⎜<br />

⎝ cos<br />

( )<br />

2<br />

β ⎞ 1eqv,<br />

st ⎟<br />

1.<br />

124<br />

=<br />

( β ) ⎟ 1+<br />

m t<br />

2eqv,<br />

st<br />

( w ) ∫<br />

Sucti<strong>on</strong>Side<br />

− w1<br />

db ( w1<br />

− wPr<br />

essureSide)<br />

Parameter mst characterizes type of the cascade. E.g. For<br />

cascades studied by Howell mst =1.<br />

t = t / b is relative pitch of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade<br />

b<br />

0<br />

K<br />

D<br />

=<br />

K<br />

K<br />

1<br />

2<br />

T<br />

T<br />

⎠<br />

K<br />

T<br />

db<br />

=<br />

c<br />

c<br />

a2<br />

a1<br />

st<br />

t<br />

t<br />

1<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

2b ⎞<br />

⎟⎠<br />

h<br />

0.<br />

1<br />

15


Compressor Stages used to test the model<br />

1. Stage of turbojet Olympus<br />

2. Stage tested by Stechk<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

3. Stage designed by Beker Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g and tested at<br />

C<strong>on</strong>cept.<br />

4. Stage designed by Beker Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g , not tested<br />

5. Stage C1 (tandem blades) (data from USSR)<br />

6. M<strong>on</strong>ig et al. Trans ASME. Journal of turbomach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery<br />

1993,v115, p.565-571.<br />

7. Stage C9 (data from USSR)<br />

8. Musgrave D., Plehn N.J. Mixed flow stage design and test<br />

results with a pressure ratio of 3:1. ASME Gas turb<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

c<strong>on</strong>ference presentati<strong>on</strong> 87-GT-20.<br />

16


Results<br />

510.6<br />

165<br />

60.05<br />

0.612<br />

1.0<br />

1.78<br />

19.9<br />

2.89<br />

6.36<br />

12/24<br />

8<br />

520<br />

161<br />

46.25<br />

0.175<br />

0.56<br />

2.18<br />

6.25<br />

2.75<br />

6.79<br />

18/36<br />

7<br />

425<br />

160<br />

50.47<br />

0.316<br />

0.74<br />

2.0<br />

8.48<br />

2.0<br />

3.86<br />

15/30<br />

6<br />

455<br />

185.3<br />

46.65<br />

0.346<br />

0.25<br />

2.12<br />

9.0<br />

2.7<br />

4.54<br />

27/27<br />

5<br />

550<br />

182.9<br />

56.33<br />

0.641<br />

1.50<br />

2.1<br />

48.28<br />

1.0<br />

3.87<br />

7/14<br />

4<br />

500<br />

189.3<br />

57.48<br />

0.397<br />

1.27<br />

1.89<br />

12.0<br />

0.48<br />

5.23<br />

11/22<br />

3<br />

483<br />

170<br />

32.7<br />

-<br />

0.50<br />

2.30<br />

33.58<br />

3.0<br />

3.95<br />

12<br />

2<br />

472.3<br />

180<br />

57.8<br />

0.695<br />

1.0<br />

1.83<br />

16.99<br />

0.41<br />

4.35<br />

6/12<br />

1<br />

u 2<br />

m/s<br />

(tip<br />

velocity)<br />

c a2<br />

m/s<br />

β 1<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>let<br />

flow<br />

angle )<br />

t 2,mean<br />

(outlet<br />

relative<br />

pitch)<br />

t 1,mean<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>let<br />

relative<br />

pitch)<br />

β 2k<br />

(outlet<br />

blade<br />

angle)<br />

G<br />

Kg/s<br />

Rotor<br />

pressure<br />

ratio<br />

Z<br />

number<br />

of blades<br />

Rotor<br />

No.<br />

Table 1. Rotor parameters.<br />

1<br />

2<br />

r<br />

r<br />

17


Results<br />

Table 2. Slip <str<strong>on</strong>g>factor</str<strong>on</strong>g> and exit angle.<br />

0.877<br />

0.861<br />

0.887<br />

0.895<br />

0.890<br />

0.893<br />

35.0<br />

35.9<br />

8<br />

0.926<br />

0.931<br />

0.910<br />

0.919<br />

0.934<br />

0.933<br />

17.8<br />

17.9<br />

7<br />

0.896<br />

0.914<br />

0.890<br />

0.908<br />

0.896<br />

0.899<br />

23.0<br />

23.32<br />

6<br />

0.903<br />

0.910<br />

0.876<br />

0.902<br />

0.901<br />

0.915<br />

20.6<br />

20.17<br />

5<br />

0.870<br />

0.834<br />

0.762<br />

0.874<br />

0.875<br />

-<br />

56.3<br />

-<br />

4<br />

0.865<br />

0.880<br />

0.848<br />

0.888<br />

0.888<br />

0.887<br />

27.0<br />

27.0<br />

3<br />

0.840<br />

0.823<br />

0.72<br />

0.840<br />

0.896<br />

-<br />

43.8<br />

-<br />

2<br />

0.784<br />

0.718<br />

0.860<br />

0.832<br />

0.878<br />

0.881<br />

32.0<br />

31.8<br />

1<br />

σ<br />

Eck<br />

σ<br />

Stechk<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

σ<br />

Stodola<br />

σ<br />

Wiesner<br />

σ<br />

Present<br />

work<br />

σ<br />

measured<br />

β 2<br />

Present<br />

work<br />

β 2<br />

measured<br />

Rotor<br />

No.<br />

18


Measured and calculated <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g> for 6 <str<strong>on</strong>g>impellers</str<strong>on</strong>g><br />

19


Calculated <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g> for 8 <str<strong>on</strong>g>impellers</str<strong>on</strong>g><br />

20


C<strong>on</strong>clusi<strong>on</strong>s<br />

• Suggested method allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g reducti<strong>on</strong> of<br />

arbitrary rotor blade passage to<br />

equivalent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade<br />

• Method allows establish<str<strong>on</strong>g>in</str<strong>on</strong>g>g equivalence<br />

between axial and <str<strong>on</strong>g>centrifugal</str<strong>on</strong>g> <str<strong>on</strong>g>impellers</str<strong>on</strong>g><br />

• Method allows calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>slip</str<strong>on</strong>g> <str<strong>on</strong>g>factor</str<strong>on</strong>g><br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> well established l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear cascade<br />

correlati<strong>on</strong>s for deviati<strong>on</strong> angle<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!