01.08.2013 Views

BALLISTIC TRAJECTORIES

BALLISTIC TRAJECTORIES

BALLISTIC TRAJECTORIES

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>BALLISTIC</strong> <strong>TRAJECTORIES</strong><br />

It’s time we face reality, my friends…we’re not exactly rocket scientists


Hour 1:<br />

LECTURE ISSUES<br />

• The Two Body Problem<br />

• EOB parameters for a given range<br />

Hour 2:<br />

• The Hit Equation<br />

• Sensitivity parameters<br />

• Lofted and Depressed trajectories<br />

Hour 3:<br />

• Effect of earth rotation<br />

• Approximate method for estimating ballistic missile parameters


THE TWO BODY PROBLEM (1)


THE TWO BODY PROBLEM (2)


CONSTANTS OF MOTION (1)<br />

SPECIFIC ANGULAR MOMENTUM


CONSTANTS OF MOTION (2)<br />

SPECIFIC ENERGY


CONSTANTS OF MOTION (3)<br />

SPECIFIC ENERGY


Trajectory Equation (1)


Trajectory Equation (2)


Trajectory Equation (3)


Trajectory Equation (4)


THE FOUR TYPES OF ORBITS


SPACE VEHICLE <strong>TRAJECTORIES</strong><br />

Example: if e1 (hyperbola) E must be positive


ORBIT<br />

CHARACTERIZATION


SOLUTIONS OF THE TWO BODY PROBLEM (1)


SOLUTIONS OF THE TWO BODY PROBLEM (2)


THE ORBITAL VELOCITY (1)<br />

= 0


THE ORBITAL VELOCITY (2)<br />

GEOSYNCHRONOUS ORBIT


GEOSYNCHRONOUS MISSION DESIGN


THE ESCAPE VELOCITY<br />

• A vehicle will escape earth if it has a parabolic<br />

(e=1) or hyperbolic (e>1) trajectory<br />

• In the case of a parabolic trajectory, the kinetic<br />

and potential energies are equal<br />

• The escape velocity is larger than orbital<br />

velocity by a factor of 2 1/2<br />

• If at burnout V b Km/sec the vehicle will<br />

escape earth independent of the direction of<br />

motion


Ballistic Missile Trajectory<br />

Satellite Orbit<br />

THE ELLIPTICAL ORBIT<br />

GEOMETRICAL RELATIONS


<strong>BALLISTIC</strong> MISSILE TRAJECTORY


THE LINK BETWEEN GEOMETRICAL AND<br />

PHYSICAL PARAMETERS


APOGEE PARAMETERS


• At the end of a rocket launch<br />

of a space vehicle, the<br />

burnout velocity is 9 km/sec<br />

in a direction due north and 3 0<br />

above the local horizon<br />

• The altitude above sea level is<br />

500 mi<br />

• The burnout point is located<br />

at the 27 th parallel above the<br />

equator<br />

• Calculate and plot the<br />

trajectory of the space vehicle<br />

Anderson/<br />

Introduction to Flight P.312<br />

EXAMPLE 1


SOLUTION OF EXAMPLE 1


SOLUTION OF EXAMPLE 1


References<br />

• Thomson: Introduction to Space Dynamics<br />

• Bate: Fundamentals of Astrodynamics<br />

• Anderson: Introduction to Flight<br />

• Regan: Re-Enrty Vehicles Dynamics<br />

• Madonna: Orbital Mechanics<br />

• Battin: An Introduction to the Mathematics and<br />

Methods of Astrodynamics


<strong>BALLISTIC</strong> MISSILE S<br />

! "<br />

!


Trajectory Equation (5)<br />

The Keplerian Trajectory


THE HIT EQUATION<br />

• Hit equation calculates optimal<br />

burnout angle as well as burnout<br />

velocity for minimum Energy<br />

trajectories<br />

• Initial data required:<br />

(1) Burnout altitude<br />

(2) Burnout range<br />

Minimum Energy


BURNOUT VELOCITY AS FUNCTION OF RANGE AND<br />

BURNOUT TRAJECTORY ANGLE


MINIMUM ENERGY <strong>TRAJECTORIES</strong>


OPTIMAL BURNOUT ANGLE<br />

(MINIMUM ENERGY)


ERROR ANALYSIS


SENSITIVITY COEFFICIENTS


COORDINATES FOR ANALYSIS OF PLANAR<br />

<strong>BALLISTIC</strong> MISSILE TRAJECTORY<br />

ALBERT WHEELON: FREE FLIGHT OF A <strong>BALLISTIC</strong> MISSILE<br />

ARS JOURNAL DECEMBER 1959 PP.915-926


RANGE SENSITIVITY TO BURNOUT VELOCITY


RANGE SENSITIVITY TO BURNOUT TRAJECTORY ANGLE


SENSITIVITY COEFFICIENTS


RANGE SENSITIVITY TO BURNOUT VELOCITY


TIME OF FLIGHT


TIME OF FLIGHT (AND OTHER PARAMETERS)<br />

MINIMUM ENERGY <strong>TRAJECTORIES</strong>


Typical Trajectories of Theatre Ballistic Missiles (TBM)<br />

Range<br />

(km)<br />

120<br />

500<br />

1,000<br />

2,000<br />

3,000<br />

Burn-out<br />

velocity (km/s)<br />

1.0<br />

2.0<br />

2.9<br />

3.9<br />

4.7<br />

Boost Phase<br />

(s)<br />

16<br />

36<br />

55<br />

85<br />

122<br />

Flight Time<br />

(min)<br />

2.7<br />

6.1<br />

8.4<br />

11.8<br />

14.8


<strong>BALLISTIC</strong> MISSILE DISPERSION<br />

RANGE


ACCELERATION PROFILES FOR MEDIUM RANGE <strong>BALLISTIC</strong> MISSILES<br />

(1) dv = Gdt<br />

G – End of boost acceleration<br />

dt – Time delay due to thrust termination


<strong>BALLISTIC</strong> MISSILE DISPERSION<br />

SIDE DEVIATION


THE CEP CONCEPT


# %<br />

# "<br />

$<br />

#<br />

# % #<br />

Example: Sigma_R=2600 m Sigma_Y=3400 m CEP=3550 m


TRANSFORMING <strong>BALLISTIC</strong> TRAJECTORY INTO A<br />

SATELLITE TRAJECTORY


TRAJECTORY TYPES Lofted<br />

Minimum Energy<br />

Radar Beam<br />

Depressed<br />

Local<br />

Horizon


LOFTED AND DEPRESSED <strong>TRAJECTORIES</strong><br />

• For each range, there are<br />

infinite combinations of<br />

burnout velocity and<br />

burnout trajectory angle<br />

• If:<br />

(1) Burnout velocity is<br />

known (i.e. rocket motor<br />

is given)<br />

(2) A range (less than minimum<br />

energy range) has been<br />

specified<br />

There are two trajectories<br />

leading to this range:<br />

(a) Lofted trajectory<br />

(b) Depressed trajectory


LOFTED AND<br />

DEPRESSED TRAJ.<br />

• RANGE OF INTERCONTINENTAL<br />

<strong>BALLISTIC</strong> MISSILES IS ABOUT:<br />

10000 KM<br />

• RANGE OF SUBMARINE <strong>BALLISTIC</strong><br />

MISSILES IS ABOUT:<br />

5000 KM


TYPICAL <strong>TRAJECTORIES</strong> AND VELOCITY VS ALTITUDE<br />

ALTITUDE (KM)<br />

ALTITUDE (KM)<br />

2000 KM<br />

10000 KM<br />

RANGE (KM)<br />

VELOCITY (KM/SEC)


DEPRESSED <strong>TRAJECTORIES</strong><br />

• Late detection and relatively low interception<br />

altitudes (attacker’s advantage)<br />

• RV appears without its decoys (defense advantage)<br />

• Larger dispersion of impact points<br />

(as compared with Minimum Energy trajectories)<br />

• RV needs special design<br />

(aerodynamic heating problems)<br />

• Prediction of PIP less accurate<br />

(as compared with Minimum Energy trajectories)


LOFTED <strong>TRAJECTORIES</strong>


ICBM 9000 KM <strong>TRAJECTORIES</strong> FOR:<br />

15 deg,24 deg,35 deg and 40 deg


AN APPROXIMATE METHOD FOR ESTIMATING THE<br />

BASIC PARAMETERS OF A <strong>BALLISTIC</strong> MISSILE (1)


! " "<br />

&<br />

"<br />

# $<br />

%


<strong>BALLISTIC</strong> MISSILE LENTH/DIAMETER RATIO<br />

• Full configuration L/D = 12-15 (Upper limit set by aeroelasticity constraints<br />

• Ballistic Cone L/D = 2.5-3.0<br />

• Stabilizing Unit (including engine) L/D = 2.0<br />

• Equipment Section L/D = 1.5-2.0<br />

• Motor (or: Fuel/Oxidizer tanks) L/D = 5.0-9.0<br />

Compressed Air Bottles


BURN-OUT<br />

TIME VS RANGE


END OF BOOST<br />

ALTITUDE VS RANGE


AN APPROXIMATE METHOD FOR ESTIMATING THE<br />

BASIC PARAMETERS OF A <strong>BALLISTIC</strong> MISSILE (2)<br />

)


AN APPROXIMATE METHOD FOR ESTIMATING THE<br />

BASIC PARAMETERS OF A <strong>BALLISTIC</strong> MISSILE (3)


AN APPROXIMATE METHOD FOR ESTIMATING THE<br />

BASIC PARAMETERS OF A <strong>BALLISTIC</strong> MISSILE (4)


AN APPROXIMATE METHOD FOR ESTIMATING THE<br />

BASIC PARAMETERS OF A <strong>BALLISTIC</strong> MISSILE (5)


EXAMPLE: 1360 KM TBM<br />

• Design a TBM to deliver 850 Kg (W/H) to a range of 1300 Km<br />

• Preliminary estimates:<br />

Burnout altitude: 72 Km<br />

Burnout range: 64 Km<br />

Burnout time: 107 Sec<br />

• Results:<br />

Burnout velocity: 3207 m/s<br />

Flight time (total): 646 sec<br />

Maximum altitude: 333 Km<br />

Velocity at apogee: 2342 m/s<br />

Central angle: 11.1 Deg


EXAMPLE: 1360 KM TBM


LAUNCH MASS(KG)<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

LAUNCH MASS OF A SINGLE STAGE<br />

SINGLE STAGE TBM RANGE=1360 KM<br />

ISP=240 SEC<br />

ISP=250 SEC<br />

ISP=260 SEC<br />

0<br />

0.90 0.92 0.94 0.96 0.98 1.00<br />

MASS RATIO = MP/(MP+MS)


LAUNCH MASS(KG)<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

LAUNCH MASS OF A SINGLE STAGE<br />

SINGLE STAGE TBM RANGE=2000 KM<br />

ISP=240 SEC<br />

ISP=250 SEC<br />

ISP=260 SEC<br />

0.95 0.96 0.97 0.98 0.99 1.00<br />

MASS RATIO = MP/(MP+MS)


DOUBLE STAGE TBM


DOUBLE STAGE TBM<br />

R=2000 KM


TWO IDENTICAL STAGES TBM<br />

RANGE: 2000 KM


THREE STAGES TBM<br />

RANGE: 2000 KM


EFFECTS OF EARTH ROTATION<br />

Example :<br />

• A ballistic missile with a range<br />

of 4750 Km and flight time of<br />

1386 seconds has been launched<br />

towards a target traveling on<br />

latitude 60 0<br />

• While flying in space, the<br />

target has changed its position<br />

(relative to an inertial frame of<br />

reference) by 321 Km


CORIOLIS ACCELERATION


HITING A MOVING TARGET<br />

(EARTH ROTATION EFFECTS)<br />

DATA: launch site and target Longitude and Latitude at the minute of launch<br />

PURPOSE: finding Elevation and Azimuth required to hit the target


HITTING A MOVING TARGET<br />

FLAT TRAJECTORY (1)


HITTING A MOVING TARGET<br />

FLAT TRAJECTORY (2)<br />

EQATIONS TO SOLVE: (3),(6)


HITTING A MOVING TARGET (3)<br />

SPACE TRAJECTORY


HITTING A MOVING TARGET (4)<br />

SPACE TRAJECTORY


HITTING A MOVING TARGET (5)<br />

SPACE TRAJECTORY


HITTING A MOVING TARGET (6)<br />

SPACE TRAJECTORY


EARTH ROTATION EFFECT ON IMPACT POINT


EARTH ROTATION EFFECT: VELOCITY RELATIVE TO INERTIAL SYSTEM


SOLVING THE ROTATING HIT PROBLEM (1)


SOLVING THE ROTATING HIT PROBLEM (2)


SOLVING THE ROTATING HIT PROBLEM (3)


SOLVING THE ROTATING HIT PROBLEM (4)


SOLVING THE ROTATING HIT PROBLEM (5)


IMPORTANT! IMPOTRANT!


HITTING A TARGET WITH <strong>BALLISTIC</strong> MISSILE


• A missile is fired<br />

from:<br />

North Korea (40 0 N,125 0 E)<br />

To:<br />

Anchorage, Alaska(62 0 N,150 0 E)<br />

• Missile Data:<br />

R=10000 KM<br />

V B =5900 m/sec<br />

h b =280 KM<br />

S b =300 KM<br />

t b =290 sec<br />

• Find the required azimuth and<br />

elevation angle (local values)<br />

to hit the target


KOREAN MISSILE: LAUNCH DATA


REFERENCES<br />

• Free flight of a ballistic missile<br />

Albert D. Wheelon<br />

ARS Journal, December 1959, pp.915-926<br />

• Re-Entry Vehicle Dynamics<br />

Frank J. Regan<br />

AIAA Education Series<br />

Careful! several printing mistakes in the text<br />

• Fundamentals of Astrodynamics<br />

Bate, Muller, White<br />

Dover


END OF SLIDES


• The Two Body Problem 3-24<br />

• Example (Anderson) 25-27<br />

• References 28<br />

• Ballistic Missiles Trajectories 29-41<br />

• Time Of Flight 42-44<br />

• Dispersions 45-49<br />

• Satellite Injection 50<br />

• Lofted and Depressed Traj. 51-57<br />

• BM Preliminary Design 58-72<br />

• Earth rotation Effects 73-90<br />

• Example 91-93<br />

• References 94


MIDDLE EAST RANGES


)<br />

920<br />

150<br />

1000<br />

26<br />

B<br />

&<br />

&<br />

&<br />

&<br />

&<br />

" '<br />

'<br />

( # $<br />

'<br />

'<br />

%<br />

)<br />

B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!