01.08.2013 Views

Torsion (cont.) - Faculty of Aerospace Engineering

Torsion (cont.) - Faculty of Aerospace Engineering

Torsion (cont.) - Faculty of Aerospace Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Non-Homogeneous Composite Beams<br />

under Tip Loading<br />

M. Grebshtein, M. Kazar, V. Rovenski and O.Rand<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> <strong>Engineering</strong><br />

Technion – Israel Institute <strong>of</strong> Technology<br />

Haifa 32000, Israel.<br />

Presented at the<br />

The 7th Annual Israeli Symposium On Composite Materials and Structures,<br />

Technion - IIT, June 30, 2003.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

1


Outline<br />

• Motivation and Background<br />

> Notation<br />

> Material properties<br />

> Non-homogeneous cross-section definition<br />

> Interlaminar conditions<br />

• The proposed analytical methodology<br />

> St. Venant’s Semi-Inverse methodology<br />

> The three auxiliary problems <strong>of</strong> plane deformation<br />

> The bending and torsion functions<br />

• Illustrative examples<br />

> <strong>Torsion</strong><br />

> Bending<br />

• Concluding remarks<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

2


Motivation<br />

• Fiber-reinforced composite materials are extensively used in many engineering<br />

applications (civil and military aircraft, space, automotive, commercial,<br />

etc.), from replacement pieces to all-composite design.<br />

• Composite structures exhibit some pr<strong>of</strong>ound advantages:<br />

> Specific strength and stiffness<br />

> Improved fatigue characteristics<br />

> Elastic coupling (for beams: “bending-twist”, “bending-extension”<br />

and “extension-twist”).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

3


Existing Methods<br />

• Analytic formulations (linear theory) [Lechnitskii (50), Sokolnik<strong>of</strong>f (56),<br />

Muskhelishvili (53), Rukhadze].<br />

• Semi-analytic methods [Kosmatka (91), Kim and Dugundje (93),<br />

Rand (93,94,97), Yamane and Friedmann (93),<br />

Pai and Nyfeh (94), Robbins and Reddy (93-95),<br />

Laulusa (94), Zapfe and Lesieutre (95),<br />

Francescatti and Kaiser (96), Betti and Gjelsvik (96),<br />

Song and Librescu (97), Soldatos and Watson (97)].<br />

• High order theories [Robbins and Reddy (93-95), Suresh and Nagaraj (96),<br />

McCarthy and Chattopadhyay (96)].<br />

• Numerical (approximate) methods [Sankar (93), Floros and Smith (97),<br />

Chopra et al (95-97), Makeev and Armanios (99)].<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

4


Notation<br />

Tip loads<br />

Surface loads<br />

Body loads<br />

“root”<br />

“outer<br />

surface”<br />

v(x,y,z)<br />

“tip”<br />

u(x,y,z)<br />

w (x,y,z)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

5


Material Properties<br />

Orthotropic<br />

‘x’,y’,z<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

6


Non-Homogeneous Cross-Section<br />

Definition<br />

Generic Laminated<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

7


The Interlaminar Conditions<br />

Stress resultants (equilibrium):<br />

Displacements (compatibility):<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

8


The proposed analytical methodology<br />

St. Venant’s Semi-Inverse methodology (“solution hypothesis”).<br />

The three auxiliary problems <strong>of</strong> plane deformation (biharmonic BVP).<br />

The bending and torsion functions (harmonic BVP).<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

9


Tip Axial Force Effect<br />

Homogeneous<br />

Non-Homogeneous<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

10


Transverse Bending Force Effect<br />

bending function <strong>of</strong> the first kind<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

11


The three auxiliary problems <strong>of</strong> plane deformation<br />

No external surface loads:<br />

Internal loads equilibrium:<br />

{<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

12


The three auxiliary problems <strong>of</strong> plane deformation (<strong>cont</strong>.)<br />

Prescribed deformation dis<strong>cont</strong>inuity:<br />

The first auxiliary problem:<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

13


The three auxiliary problems <strong>of</strong> plane deformation (<strong>cont</strong>.)<br />

Biharmonic BVP:<br />

{<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

14


Source <strong>of</strong> the Three Auxiliary Plane-Strain Problems<br />

a) The First Auxiliary Problem:<br />

Extension by a tip force.<br />

b) The Second Auxiliary Problem:<br />

Bending about the x direction by a tip<br />

force or a tip moment.<br />

c) The Third Auxiliary Problem:<br />

Bending about the y direction by a tip<br />

force or a tip moment.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

15


The Bending Function <strong>of</strong> the First Kind<br />

Harmonic BVP:<br />

Field Equation:<br />

B.C.:<br />

:Continuity<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

16


Displacement:<br />

Strain:<br />

Stress:<br />

Field Equation:<br />

Stress:<br />

<strong>Torsion</strong>al Moment Effect<br />

Displacement:<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

17


Combining all Tip Loads Effects<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

18


Example: <strong>Torsion</strong> <strong>of</strong> Non-Homogenous Beam<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

19


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

<strong>Torsion</strong> function ϕ<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

20


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

Stress component τ yz<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

21


<strong>Torsion</strong> (<strong>cont</strong>.)<br />

τ<br />

Stress component xz<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

22


Bending <strong>of</strong> Non-Homogenous Beam<br />

y<br />

x<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

23


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

x<br />

24


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem (<strong>cont</strong>.)<br />

x<br />

x<br />

y<br />

y<br />

σ xx<br />

σ yy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

x<br />

25


Bending <strong>of</strong> Non-Homogenous Beam<br />

(<strong>cont</strong>.)<br />

Solution <strong>of</strong> the third auxiliary problem (<strong>cont</strong>.)<br />

x y<br />

σ zz<br />

x<br />

τ xy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

26


Bending <strong>of</strong> Non-Homogenous Beam (<strong>cont</strong>.)<br />

y<br />

The bending function χ 1<br />

x<br />

x<br />

The bending function χ 2<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

27


The <strong>Torsion</strong> Function<br />

x<br />

The torsion function ϕ<br />

y<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

28


Solution for Py<br />

x<br />

σ xx<br />

y<br />

x<br />

Py<br />

σ yy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

29


Solution for Py (<strong>cont</strong>.)<br />

x<br />

σ zz<br />

y<br />

Py<br />

τ xy<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

x<br />

y<br />

y<br />

x<br />

30


Solution for Py (<strong>cont</strong>.)<br />

x<br />

τ yz<br />

y<br />

x<br />

τ xz<br />

Py<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

y<br />

y<br />

x<br />

31


Concluding Remarks<br />

• The paper presents a derivation and closed-form exact analytic<br />

solutions for the Saint-Venant's problem <strong>of</strong> beams <strong>of</strong> nonhomogenous<br />

cross-sections.<br />

• The proposed methodology is composed <strong>of</strong> six sub-solutions<br />

for the tip loads effect.<br />

• The derivation is founded on three auxiliary biharmonic BVPs<br />

and exploits Saint-Venant's semi-inverse methodology and known<br />

solutions for homogeneous beams. In addition, the derivation<br />

employs Neumann-type BVPs for the bending and the torsion<br />

functions.<br />

• Illustrative examples <strong>of</strong> solutions were carried out via polynomial<br />

expansion <strong>of</strong> the involved stress functions.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Aerospace</strong> Eng., Technion - I.I.T.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!