01.08.2013 Views

Lecture 1-constraint diagrams - MAELabs UCSD

Lecture 1-constraint diagrams - MAELabs UCSD

Lecture 1-constraint diagrams - MAELabs UCSD

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Copyright © 2005-06 by Don Edberg. All rights reserved.<br />

Overview<br />

Creating Constraint<br />

Diagrams<br />

• What are <strong>constraint</strong> <strong>diagrams</strong>?<br />

• Constraints for takeoff<br />

• Constraints for cruise<br />

• Landing <strong>constraint</strong>s<br />

• The <strong>constraint</strong> diagram<br />

• Concluding remarks<br />

Embraer ERJ-145 Regional Jet<br />

1


Aircraft Weight (in 1000 lb)<br />

What are Constraint Diagrams?<br />

• Diagrams that show what airplanes can and cannot do.<br />

TSL<br />

• Choose a design point based on and<br />

W<br />

• Constraint <strong>diagrams</strong> are used for optimization<br />

• The design point will lie within the <strong>constraint</strong> boundaries<br />

• Design points are usually optimum near the <strong>constraint</strong><br />

lines<br />

TO<br />

WTO S<br />

Example Constraint Diagram<br />

2


!<br />

The Governing Equation<br />

• Derived from the equation for specific<br />

excess power (Brandt et al, § 5.15)<br />

• Thrust-to-weight vs. wing loading<br />

0<br />

2<br />

*<br />

,<br />

T SL"<br />

W TO<br />

= # 2 ,<br />

q C<br />

D<br />

$ n# '<br />

2<br />

2 ,<br />

$ WTO '<br />

1 , +k<br />

" # $ W ' 1&<br />

) & )<br />

2 ,<br />

& TO % q ( % S<br />

2<br />

(<br />

,<br />

%<br />

S )<br />

2 , (<br />

3<br />

+<br />

- 4<br />

/ 2<br />

/ 2<br />

/ 2<br />

/ 5<br />

/ 2<br />

/ 2<br />

/ 2<br />

. 6<br />

+ 1<br />

V<br />

dh'<br />

)<br />

)<br />

dt (<br />

+ 1 $ dv &<br />

&<br />

g%<br />

dt<br />

Variables in Constraint Equation<br />

α = T/T TO = ratio of actual thrust to takeoff thrust<br />

β = W/W TO = weight fraction<br />

k 1 = induced drag term<br />

h = altitude<br />

n = load factor<br />

q = ρv 2 /2 = dynamic pressure<br />

V = velocity<br />

$<br />

&<br />

&<br />

%<br />

'<br />

)<br />

)<br />

(<br />

3


Flight Path Considerations<br />

If level flight, dh/dt = 0<br />

No turns or loads means n = 1<br />

If non-accelerating, dV/dt = 0<br />

Takeoffs are done at 1.2 × stall speed<br />

(factor of 1.44 affects max lift coefficient)<br />

Landings are done at 1.3 × stall speed<br />

(factor of 1.69 affects C Lmax)<br />

Example Constraints for Takeoff<br />

Governing Equation:<br />

Name<br />

β<br />

ρ<br />

α<br />

g<br />

S TO<br />

W<br />

CLMAX<br />

TSL TO<br />

TO<br />

#<br />

!" C gs<br />

2<br />

1.<br />

44<br />

=<br />

L<br />

MAX<br />

TO<br />

Value<br />

1<br />

0.00238 slugs/ft 3<br />

0.84<br />

2.2<br />

W<br />

S<br />

32.2 ft/s 2<br />

2500 ft<br />

4


TSL TO = . 004<br />

W<br />

Resulting Takeoff Constraint Equation<br />

TO<br />

Governing Eqn:<br />

W<br />

S<br />

Constraints for Cruise<br />

W<br />

' -<br />

4 ! q + CD<br />

= & +<br />

5 ! 4 W<br />

+<br />

! % , S<br />

Name<br />

β<br />

α<br />

q<br />

C L<br />

k 1<br />

WTO S<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

200<br />

&<br />

$<br />

%<br />

lb<br />

2<br />

ft<br />

#<br />

!<br />

"<br />

3 n4<br />

0 3W<br />

+ k11<br />

. 1<br />

2 q / 2 S<br />

Value<br />

0.818<br />

0.93<br />

200 lb/ft 2<br />

0.575<br />

0.03<br />

0.03<br />

T<br />

W<br />

SL<br />

TO<br />

0.82<br />

0.16<br />

0.25<br />

0.33<br />

0.41<br />

0.49<br />

0.57<br />

0.65<br />

0.74<br />

0.82<br />

*<br />

$<br />

0(<br />

1 dh dV !<br />

. ( + + #<br />

/ ( V dt g dt !<br />

)<br />

! "<br />

2<br />

TSL o TO<br />

1<br />

TO<br />

CDo<br />

TO<br />

5


W<br />

Final Cruise Constraint Equation<br />

&<br />

$ 6.<br />

46<br />

= $ + .<br />

W<br />

$ TO<br />

% S<br />

TSL TO 003<br />

TO<br />

W<br />

S<br />

#<br />

!<br />

!<br />

!<br />

"<br />

W TO<br />

S<br />

&<br />

$<br />

%<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

200<br />

lb<br />

2<br />

ft<br />

Example Constraints for Landing<br />

Governing Equation:<br />

Name<br />

ρ<br />

CLMAX<br />

µ (friction coefficient)<br />

β<br />

S L (landing distance)<br />

#<br />

!<br />

"<br />

S " C gµ<br />

TO L L<br />

=<br />

S 1.<br />

69!<br />

W MAX<br />

Value<br />

0.65<br />

3000 ft<br />

T<br />

W<br />

0.00238 slugs/ft 3<br />

2.6 (Schaufele)<br />

0.3 (www.asft.se)<br />

SL<br />

TO<br />

0.38<br />

0.28<br />

0.29<br />

0.32<br />

0.36<br />

0.41<br />

0.46<br />

0.52<br />

0.57<br />

0.63<br />

6


Final Landing Constraint Equation<br />

WTO lb<br />

= 163<br />

S ft<br />

2<br />

WTO S<br />

163<br />

163<br />

163<br />

…<br />

163<br />

&<br />

$<br />

%<br />

lb<br />

2<br />

ft<br />

Construction of Constraint<br />

Diagram<br />

Plot all curves on a single graph<br />

Wing loading horizontal<br />

Thrust-to-weight vertical<br />

#<br />

!<br />

"<br />

T<br />

W<br />

SL<br />

TO<br />

0.1<br />

0.2<br />

0.3<br />

…<br />

1.0<br />

Identify which side of each curve is OK<br />

Make sure the <strong>constraint</strong> curves make<br />

sense!<br />

Choose and identify design point<br />

7


Tsl/Wto<br />

Sample Constraint Diagram Diagram for Regional (Regional Jet Mission Jet)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Design point<br />

(W/S = 50 psf,<br />

T/W = 0.33)<br />

0 50 100 150 200 250<br />

Wing Loading (lb/ft^2)<br />

Solution Space<br />

Example Constraint Diagram<br />

Takeoff<br />

Cruise<br />

Landing<br />

8


Comments on Design Point<br />

Must fit within all <strong>constraint</strong> curves<br />

Allow some margin (“wiggle room”) so<br />

design changes don’t move it out<br />

Typically, the lightest weight aircraft that<br />

meets <strong>constraint</strong>s is cheapest (often the<br />

lowest point on the plot)<br />

Less thrust = less engine required = less<br />

engine cost<br />

Concluding Remarks<br />

• Selected design point<br />

• Must satisfy all <strong>constraint</strong> curves<br />

• Must fit all <strong>constraint</strong>s and/or missions<br />

(for multiple-mission aircraft)<br />

• Go back and re-do <strong>constraint</strong> diagram<br />

when parameters change<br />

9


References<br />

1. Introduction to Aeronautics: A Design Perspective,<br />

Brandt, Stiles, Bertin, and Whitford, AIAA, 1997.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!