02.08.2013 Views

z −2i

z −2i

z −2i

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

[Marks]<br />

[2]<br />

[2]<br />

[4]<br />

[2]<br />

[2]<br />

[2]<br />

MATH 3007A<br />

Test 2 Solutions<br />

October 21, 2011<br />

1. (a) Find all possible values of (−i) i .<br />

Solution:<br />

All possible values of log(−i) are − πi<br />

+2πik, kɛZ. Hence, all possible values of<br />

2<br />

(−i) i = e i log(−i) πi i(−<br />

are e 2 +2πik) = e π<br />

2 −2πk .<br />

(b) Find (−i) i if arg(z) ɛ [0, 2π).<br />

Solution:<br />

arg(z) ɛ [0, 2π) ⇒ (−i) i 3π −<br />

= e 2 .<br />

2. Evaluate the following limits.<br />

z<br />

(a) lim<br />

z→2i<br />

2 +4<br />

z − 2i<br />

Solution:<br />

z<br />

lim<br />

z→2i<br />

2 +4 (z − 2i)(z +2i)<br />

= lim<br />

=4i<br />

z − 2i z→2i z − 2i<br />

1<br />

(b) lim<br />

n→∞ (1 − i) n<br />

Solution:<br />

|1 − i| = √ 1<br />

2 > 1 ⇒ lim =0<br />

n→∞<br />

n (1 − i)<br />

z<br />

z→∞<br />

2 − 2z +3<br />

2z2 − iz +2i<br />

(c) lim<br />

Solution:<br />

z<br />

lim<br />

z→∞<br />

2 − 2z +3<br />

2z2 − iz +2i<br />

z<br />

(d) lim<br />

z→2<br />

5 − 32<br />

z − 2<br />

Solution:<br />

= lim<br />

z→∞<br />

1 − 2/z +3/z 2<br />

f(z) =z 5 ⇒ f ′ (z) =5z 4 ⇒ lim<br />

z→2<br />

3. Let f(z) =|z| 4 .<br />

1<br />

=<br />

2 2 − i/z +2i/z 2<br />

z 5 − 32<br />

z − 2 = f ′ (2) = 80.<br />

(a) Show that f is differentiable at z = 0 and compute f ′ (0).<br />

Solution:<br />

f ′ |z|<br />

(0) = lim<br />

z→0<br />

4<br />

z<br />

= lim<br />

z z→0<br />

2 z 2<br />

z =0<br />

(b) Show that f is not differentiable at any z = 0.<br />

Solution:<br />

h(z, z) =z 2 z 2 ⇒ h z =2z 2 z = 0 for any z = 0.<br />

(c) Is f analytic at 0? Justify your answer.<br />

Solution:<br />

No, since f is not differentiable in any neighbourhood of 0 except at 0.


[2]<br />

[4]<br />

[2]<br />

[4]<br />

[4]<br />

4. Let u(x, y) =x 4 − 6x 2 y 2 + y 4 .<br />

(a) Show that u is harmonic on R 2 .<br />

Solution:<br />

u x =4x 3 − 12xy 2 , u xx =12x 2 − 12y 2 , u y = −12x 2 y +4y 3 ,<br />

u yy = −12x 2 +12y 2 , u xx + u yy =0.<br />

(b) Find a harmonic conjugate v. (You need not compute f(z).)<br />

Solution:<br />

v y = u x =4x 3 −12xy 2 ⇒ v(x, y) =4x 3 y−4xy 3 +g(x), v x =12x 2 y−4y 3 +g ′ (x) =<br />

−u y =12x 2 y − 4y 3 ⇒ g ′ (x) =0 ⇒ g(x) =c ⇒ v(x, y) =4x 3 y − 4xy 3 + c, for<br />

any constant c.<br />

5. Let f(z) = 1<br />

z<br />

on an open set A not containing 0.<br />

(a) Express f(z) asu(x, y)+iv(x, y).<br />

Solution:<br />

f(z) = 1<br />

z =<br />

1<br />

x + iy<br />

x − iy<br />

=<br />

x2 =<br />

2 + y<br />

x<br />

x2 − i<br />

2 + y<br />

y<br />

x 2 + y 2<br />

(b) Employ the Cauchy-Riemann theorem to show that f is analytic on A.<br />

Solution:<br />

u =<br />

2xy<br />

x<br />

x2 + y2 , ux = y2 − x 2<br />

(x2 + y2 ) 2 , uy = −2xy<br />

(x2 + y2 −y<br />

, v =<br />

2 ) x2 + y2 , vx =<br />

(x2 + y2 ,<br />

2 )<br />

v y = y2 − x 2<br />

(x 2 + y 2 ) 2 , all are continuous on A and u x = v y and u y = −v x. Hence, f is<br />

analytic on A.<br />

(c) Employ the Cauchy-Riemann theorem to find f ′ (z) for any zɛA, and express it<br />

in terms of z.<br />

Solution:<br />

f ′ (z) =ux + ivx = y2 − x 2 + i(2xy)<br />

.<br />

(x2 + y2 ) 2<br />

(x 2 + y 2 ) 2 = |z| 4 = z 2 z 2 , and<br />

y 2 − x 2 2 z − z<br />

+ i(2xy) =<br />

f ′ (z) = −z2<br />

z 2 z<br />

1<br />

= − .<br />

2 2 z<br />

2i<br />

<br />

z + z<br />

−<br />

2<br />

2<br />

+2i<br />

<br />

z + z z − z<br />

2<br />

2i<br />

<br />

2<br />

= −z 2 . Hence,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!