04.08.2013 Views

A Corona Theorem for Multipliers on Dirichlet Space - Internet ...

A Corona Theorem for Multipliers on Dirichlet Space - Internet ...

A Corona Theorem for Multipliers on Dirichlet Space - Internet ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Integr. equ. oper. theory 49 (2004), 123–139<br />

0378-620X/010123-17, DOI 10.1007/s00020-002-1196-6<br />

c○ 2004 Birkhäuser Verlag Basel/Switzerland<br />

Integral Equati<strong>on</strong>s<br />

and Operator Theory<br />

A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong><br />

<strong>Space</strong><br />

Tavan T. Trent<br />

Abstract. We prove a cor<strong>on</strong>a theorem <str<strong>on</strong>g>for</str<strong>on</strong>g> infinitely many functi<strong>on</strong>s from the<br />

multiplier algebra <strong>on</strong> <strong>Dirichlet</strong> space.<br />

Mathematics Subject Classificati<strong>on</strong> (2000). 30H05, 46E22, 46J15.<br />

Keywords. <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> theorem, multipliers, <strong>Dirichlet</strong> space, reproducing kernels.<br />

In this paper we wish to extend the cor<strong>on</strong>a theorem <strong>on</strong> the multiplier algebra<br />

of <strong>Dirichlet</strong> space to infinitely many functi<strong>on</strong>s. For a finite number of functi<strong>on</strong>s,<br />

the corresp<strong>on</strong>ding theorem is due to Tolok<strong>on</strong>nikov [T]. (Another source <str<strong>on</strong>g>for</str<strong>on</strong>g> this is<br />

Nikolskii [N].) For infinitely many functi<strong>on</strong>s in H ∞ (D), the cor<strong>on</strong>a theorem is due<br />

to Rosenblum [R] and to Tolok<strong>on</strong>nikov [T]. Our methods are in principle close to<br />

those of Rosenblum [R]. All of these ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts were made possible by Wolff’s beautiful<br />

proof of Carles<strong>on</strong>’s original cor<strong>on</strong>a theorem. (See [G].)<br />

Our proof is based <strong>on</strong> three parts. First, since the reproducing kernel of<br />

<strong>Dirichlet</strong> space has <strong>on</strong>e positive square, the commutant lifting theorem comes into<br />

play. This reduces the general M(D 2 (D))-cor<strong>on</strong>a problem to the D 2 (D)-cor<strong>on</strong>a<br />

problem and we may employ Hilbert space methods. Next, we have a series of tedious<br />

lemmas that basically say that multipliers <strong>on</strong> <strong>Dirichlet</strong> space can be naturally<br />

extended to multipliers <strong>on</strong> (boundary values of) Harm<strong>on</strong>ic <strong>Dirichlet</strong> space. Third,<br />

a linear algebra result allows us to explicitly write down proposed soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

the D(D)-cor<strong>on</strong>a problem in the smooth case. This is our key innovati<strong>on</strong>. Finally,<br />

simple estimates and a compactness argument allow us to remove the smoothness<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

Partially supported by NSF Grant DMS-0100294.


124 Trent IEOT<br />

We will establish our notati<strong>on</strong>. D2 (D) orjustDwill denote the <strong>Dirichlet</strong><br />

space <strong>on</strong> the unit disk, D. Thatis<br />

∞<br />

D = { f : D → C |f is analytic <strong>on</strong> D and <str<strong>on</strong>g>for</str<strong>on</strong>g> f(z) = anz n ,<br />

f 2 D =<br />

∞<br />

(n +1)|an| 2 < ∞}.<br />

n=0<br />

For a nice account of many interesting properties of <strong>Dirichlet</strong> space see the survey<br />

article of Wu [W].<br />

We will use two other equivalent norms <str<strong>on</strong>g>for</str<strong>on</strong>g> smooth functi<strong>on</strong>s in D. Namely,<br />

and<br />

f 2 π<br />

D = |f| 2 <br />

dσ +<br />

−π<br />

f 2 π<br />

D =<br />

−π<br />

D<br />

n=0<br />

|f ′ (z)| 2 dA(z), where dA(z) = dm2(z)<br />

π<br />

|f| 2 π π<br />

|f(e<br />

dσ +<br />

−π −π<br />

it ) − f(eiθ )| 2<br />

|eit − eiθ | 2 dσdσ. (1)<br />

Also, we will c<strong>on</strong>sider D 2 l 2(D), or ∞<br />

⊕ 1 D, which can be c<strong>on</strong>sidered as l 2 -valued<br />

<strong>Dirichlet</strong> space. The norms in this case are as above, but with absolute values<br />

replaced by l 2 -norms in the appropriate spots. In additi<strong>on</strong>, we will need Harm<strong>on</strong>ic<br />

<strong>Dirichlet</strong> space, HD (restricted to the boundary of D), and its vector analog. But<br />

again we will <strong>on</strong>ly use this norm <str<strong>on</strong>g>for</str<strong>on</strong>g> smooth functi<strong>on</strong>s in this space. So if f is<br />

smooth <strong>on</strong> ∂D, the boundary of the unit disk, then<br />

f 2 π<br />

HD = |f|<br />

−π<br />

2 π π<br />

|f(e<br />

dσ +<br />

−π −π<br />

it ) − f(eiθ )| 2<br />

|eit − eiθ | 2 dσdσ.<br />

Of course, this is <str<strong>on</strong>g>for</str<strong>on</strong>g>mally the same as (1), but the functi<strong>on</strong>s in HD may have<br />

n<strong>on</strong>vanishing negative fourier coefficients.<br />

The algebra of operators which we c<strong>on</strong>sider is the multiplier algebra <strong>on</strong> <strong>Dirichlet</strong><br />

space, M(D) ={ φ ∈D: φf ∈D ∀f ∈D}, and the multiplier algebra<br />

<strong>on</strong> Harm<strong>on</strong>ic <strong>Dirichlet</strong> space, M(HD), defined similarly (but <strong>on</strong>ly <strong>on</strong> ∂D). We<br />

will use Mφ to denote the operator multiplicati<strong>on</strong> by φ <str<strong>on</strong>g>for</str<strong>on</strong>g> φ ∈ M(D) (and <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

φ ∈ M(HD)).<br />

Given {fj} ∞ j=1 ⊂ M(D), we let F (z) =(f1(z),f2(z),...). We use M R F to<br />

denote the (row) operator from ∞<br />

⊕ D to D defined by<br />

1<br />

Similarly, M C F<br />

M R F ({hj} ∞ j=1) =<br />

∞<br />

j=1<br />

fjhj <str<strong>on</strong>g>for</str<strong>on</strong>g> {hj} ∞ j=1 ∈ ∞<br />

⊕ D.<br />

1<br />

will denote the (column) operator from D to ∞<br />

⊕ 1 D defined by<br />

M C F (h) =<br />

∞<br />

fjh <str<strong>on</strong>g>for</str<strong>on</strong>g> h ∈D.<br />

j=1


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 125<br />

The cor<strong>on</strong>a theorem <str<strong>on</strong>g>for</str<strong>on</strong>g> H∞ (D) is due to Carles<strong>on</strong> [C]. The infinite versi<strong>on</strong>,<br />

given by Rosenblum [R] and Tolok<strong>on</strong>nikov [T], can be <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as follows:<br />

<str<strong>on</strong>g>Theorem</str<strong>on</strong>g> C. Let {fj} ∞ j=1 ⊂ H∞ (D) with 0 0 <str<strong>on</strong>g>for</str<strong>on</strong>g> all n.<br />

This property of the reproducing kernel referred to as “<strong>on</strong>e-positive square”<br />

or “Nevanlinna–Pick” (N-P) has been much studied recently in, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, [A],<br />

[M], [AM], [BT], [BLTT], [BTV], [CM], and [GRS]. This property will be exploited<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> “ 1<br />

2 ” of the cor<strong>on</strong>a theorem in <strong>Dirichlet</strong> space. The useful relati<strong>on</strong>ship between<br />

multiplier spaces and reproducing kernels is that <str<strong>on</strong>g>for</str<strong>on</strong>g> φ ∈ M(D) andz∈D M ∗ φkz = φ(z)kz. (2)<br />

It immediately follows from this that φ∞ ≤Mφ, soM(D) ⊂ H ∞ (D).<br />

we have<br />

Similarly, if φij ∈ M(D) andM [φij] ∞ j=1<br />

It again follows from this that<br />

and<br />

sup<br />

z∈D<br />

M ∗ [φij] (xkz) =[φij(z)] ∗ xkz.<br />

[φij(z)]B(l2 ) ≤M [φij] ∞<br />

B( ⊕ D)<br />

1<br />

M( ∞<br />

⊕ 1 D) ⊂ H ∞ B(l 2 ) (D).<br />

∈ B(∞⊕<br />

D), then <str<strong>on</strong>g>for</str<strong>on</strong>g> x ∈ l<br />

1 2 and z ∈ D,<br />

For part of the pointwise hypothesis of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> C (that ∞<br />

j=1 |fj(z)| 2 ≤ 1),<br />

we note that if T R F and T C ∞<br />

F are defined <strong>on</strong> ⊕ H<br />

1<br />

2 (D) andH2 (D) (Hardy spaces) in<br />

analogy to that of M R F and M C F ,wehave<br />

T R F = T C F =sup<br />

z∈D<br />

∞<br />

(<br />

|fj(z)|<br />

j=1<br />

2 ) 1<br />

2 .<br />

Thus <strong>on</strong>e part of the pointwise hypothesis of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> C gives the boundedness<br />

of the operators T R F and T C F . We will need a similar hypothesis <str<strong>on</strong>g>for</str<strong>on</strong>g> our versi<strong>on</strong>


126 Trent IEOT<br />

<strong>on</strong> <strong>Dirichlet</strong> space. But since M(D) H∞ (D), (e.g., ∞ n=1 zn3<br />

n2 is in H∞ (D) but<br />

is not in D), a pointwise upper bound hypothesis will not suffice. Moreover, it is<br />

not hard to check that I − 1 ⊗ 1= ∞ n=1 cnM n z M ∗n<br />

z and ∞ n=1 cn =1,where<br />

1 − 1<br />

kw(z) = ∞ n=1 cnznw n .Thus,<str<strong>on</strong>g>for</str<strong>on</strong>g>fj = √ cjMz j with j ≥ 1andf0 =1,wehave<br />

M R F<br />

=(Mf0 ,Mf1 ,...) ∈ B(∞⊕<br />

D, D) andM<br />

1<br />

R F =1.<br />

Now<br />

M C F (1)2 D<br />

= <br />

∞<br />

n=1<br />

√ cnz n 2 D =<br />

∞<br />

∞<br />

(n +1)cn≥ ncn.<br />

But<br />

∞<br />

2 ncnu 2n−1 = d<br />

du (−(ku(u)) −1 ) ≈ (1 − u) −1 1<br />

(ln (<br />

(1 − u) ))−2 →∞as u ↗ 1.<br />

n=1<br />

Thus M C F<br />

M R F ≤√ 18 M C F .<br />

Lemma 1. Let M C F<br />

n=1<br />

∞<br />

/∈ B(D, ⊕ D). However, as the next lemma shows, we always have<br />

1<br />

∈B(D, ∞<br />

⊕ 1 D). ThenM R F<br />

n=1<br />

∈ B(∞⊕<br />

D, D) and M<br />

1 R F ≤√18 M C F .<br />

Proof. First note that from our earlier discussi<strong>on</strong>, M C F ≤1 implies that F (z)F (z)∗<br />

≤ 1 <str<strong>on</strong>g>for</str<strong>on</strong>g> all z in D. Let{uk} ∞ k=1<br />

So<br />

M R F ({uk} ∞ k=1) 2 =<br />

<br />

∂D<br />

|<br />

∈ ∞<br />

⊕ 1 D.Then<br />

k=1<br />

≤u 2 σ +<br />

≤u 2 σ +2<br />

∞<br />

fkuk| 2 ∞<br />

dσ + | (fkuk)<br />

D<br />

k=1<br />

′ | 2 dA<br />

∞<br />

| fku ′ ∞<br />

k + f ′ kuk| 2 dA<br />

D<br />

<br />

≤ 2 u 2 <br />

D +2<br />

≤ 2 u 2 <br />

D +4<br />

≤ 2 u 2 D +4 2<br />

≤ 18 u 2 D.<br />

k=1<br />

D<br />

k=1<br />

k=1<br />

∞<br />

|u ′ k| 2 <br />

dA +2<br />

∞<br />

∞<br />

D<br />

k=1 j=1<br />

∞<br />

D<br />

k=1 j=1<br />

∞<br />

j=1<br />

D<br />

f ′ kukf ′<br />

juj dA<br />

∞<br />

|f ′ kuj| 2 dA<br />

M C F (uj) 2 D<br />

|<br />

∞<br />

f ′ kuk| 2 dA<br />

k=1<br />

M R F ≤ √ 18 M C F .


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 127<br />

Thus our replacement <str<strong>on</strong>g>for</str<strong>on</strong>g> “ ∞<br />

j=1 |fj(z)| 2 ≤ 1” <str<strong>on</strong>g>for</str<strong>on</strong>g> z ∈ D will be M C F ≤1.<br />

We plan to prove<br />

<str<strong>on</strong>g>Theorem</str<strong>on</strong>g> 1. Let {fj} ∞ j=1 ⊂ M(D). Assume that<br />

M C F ≤1 and 0


128 Trent IEOT<br />

Of course, <str<strong>on</strong>g>Theorem</str<strong>on</strong>g>s A and B with δ = 1,500<br />

ɛ3 −1<br />

complete the proof of<br />

<str<strong>on</strong>g>Theorem</str<strong>on</strong>g> 1.<br />

To prove <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> B, we use the commutant lifting theorem <str<strong>on</strong>g>for</str<strong>on</strong>g> multipliers<br />

<strong>on</strong> <strong>Dirichlet</strong> space from [CM]. But we state it in our c<strong>on</strong>text using the versi<strong>on</strong><br />

from [BTV]. The reader should note that the sec<strong>on</strong>d part of the cor<strong>on</strong>a theorem<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> multiplier algebras <strong>on</strong> reproducing Hilbert space with complete N-P kernels<br />

holds as in the following argument.<br />

<str<strong>on</strong>g>Theorem</str<strong>on</strong>g> 2 (CLT). Let M∗, N∗ be invariant subspaces <str<strong>on</strong>g>for</str<strong>on</strong>g> M ∗ z <strong>on</strong> M<br />

⊕ D and<br />

1 N<br />

⊕ D,<br />

1<br />

respectively, where 1 ≤ M, N ≤ ∞. Assume that X∗ ∈ B(M∗, N∗) satisfies<br />

X∗M ∗ z |M∗ = M ∗ z |N∗ X∗ . Then there exists a Y ∗ ∈ B( M<br />

⊕ D,<br />

1<br />

N<br />

⊕ D) so that<br />

1<br />

(i) Y ∗ |M∗ = X∗<br />

(ii) Y ∗ M ∗ z = M ∗ z Y ∗<br />

(iii) Y ∗ = X ∗ .<br />

Note that if we view Y as an M by N matrix, then the entries of Y are in<br />

M(D) by (ii). This follows since analytic polynomials are dense in D.<br />

Proof of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> B. Define M = ∞, N =1,M∗ = range MR ∗<br />

F , N∗ = D. Let<br />

Then<br />

and<br />

So<br />

X ∗ =[M R F (M R F ) ∗ ] −1 (M R F ).<br />

X ∗ ≤ 1<br />

δ<br />

X ∗ M ∗ z ((M R F ) ∗ u)=X ∗ (M R F ) ∗ M ∗ z u = M ∗ z u<br />

= M ∗ z (X ∗ (M R F ) ∗ u).<br />

X ∗ M ∗ z |M∗ = M ∗ z X ∗ .<br />

Thus, by CLT there exists a Y ∗ ∈ B( ∞<br />

⊕ D, D) satisfying (i), (ii), and (iii).<br />

1<br />

By (ii), Y has entries in M(D), say gj, soY = M C G .By(i),Y∗ (M R F )∗ = I, so<br />

M R F M C G = I. Finally, (iii) gives us that M C 1<br />

G = Y = X ≤ δ . <br />

Now we proceed with our proof of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A. First we note that it is a<br />

simple operator theoretic fact that <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A is equivalent to <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A ′ .<br />

<str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A ′ . Let {fj} ∞ j=1 ⊂ M(D). Assume that M C F ≤ 1 and 0 < ɛ2 ≤<br />

∞ j=1 |fj(z)| 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> all z ∈ D. Then <str<strong>on</strong>g>for</str<strong>on</strong>g> every h ∈D,thereexistsuh∈ ∞<br />

⊕ D with<br />

1<br />

(i) M R F (u h )=h


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 129<br />

and<br />

(ii) u hD ≤<br />

1, 500<br />

hD.<br />

ɛ3 Actually, it suffices to prove <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A ′ <str<strong>on</strong>g>for</str<strong>on</strong>g> any dense set of functi<strong>on</strong>s in D.<br />

We take functi<strong>on</strong>s of D smooth across ∂D. The general plan is as follows. Assume<br />

F is analytic <strong>on</strong> D1+ɛ(0). Given h ∈Danalytic <strong>on</strong> D1+ɛ(0), write the most general<br />

soluti<strong>on</strong> of the pointwise problem <strong>on</strong> D. Thatis<br />

v h (z) =F (z) ∗ (F (z)F (z) ∗ ) −1 h − Q(z)k(z),<br />

where range Q(z) =kernel F(z), Q(z) isanalytic,andk(z) ∈ l 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> z ∈ D. In<br />

fact, we will show that <str<strong>on</strong>g>for</str<strong>on</strong>g> each z ∈ D,<br />

(F (z)F (z) ∗ )I − F (z) ∗ F (z) =Q(z)Q(z) ∗ .<br />

We must find k(z) sothatv h ∈ ∞<br />

⊕ 1 D.Thuswewant<br />

∂zv h =0 inD.<br />

So take u h = F ∗ (FF ∗ ) −1 h − Q Q∗ F ′∗ h<br />

(FF ∗ ) 2 ,where k is the Cauchy trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

of k <strong>on</strong> D. Thatis,<str<strong>on</strong>g>for</str<strong>on</strong>g>ksmooth <strong>on</strong> D and z ∈ D,<br />

k(z) def<br />

<br />

k(w)<br />

=<br />

z − w dA(w)<br />

D<br />

and we have ∂z k = k in D.<br />

Clearly, Fu h = h and u h is analytic. Thus we are d<strong>on</strong>e (in the smooth case<br />

of F )if<br />

u hD ≤<br />

1, 500<br />

hD.<br />

ɛ3 Let k = Q∗ F ′∗ h<br />

(FF ∗ ) 2 . Our procedure is to show that<br />

and the main estimate,<br />

F ∗ (FF ∗ ) −1 hHD ≤ C1hD,<br />

Q kHD ≤ C2 kHD,<br />

kHD ≤ C3hD.<br />

The next three lemmas involve extending multipliers <strong>on</strong> D to multipliers <strong>on</strong><br />

HD, where we are just c<strong>on</strong>sidering HD <strong>on</strong> ∂D.<br />

Lemma 2. (a) Let α ∈ M(D), then α ∈ M(HD) and α B(HD) ≤ √ 20 α B(D).<br />

(b) Let {fi} ∞ i=1 ⊂ M(D). Then M C F B(HD, ∞<br />

⊕ 1<br />

HD) ≤ √ 20 M C F B(D, ∞<br />

⊕ D)<br />

1<br />

.


130 Trent IEOT<br />

Proof. We will <strong>on</strong>ly show (a), since (b) follows by summing the results of (a). Let<br />

def<br />

α ∈ M(D). As we have observed, α∞ ≤αB(D) = C. Letp, q0 be analytic<br />

polynomials with q0(0) = 0. We need <strong>on</strong>ly estimate α(p + q0)HD, since{p + q0} is dense in HD.<br />

α(p + q0) 2 π<br />

HD = |α(p + q0)| 2 dσ<br />

−π<br />

π π<br />

+<br />

−π<br />

π<br />

−π<br />

≤ 2 |αp| 2 π<br />

dσ +2 |αq0| 2 dσ<br />

−π<br />

π π<br />

+2<br />

−π<br />

π π<br />

+2<br />

−π<br />

|(α(p + q 0))(e it ) − (α(p + q 0))(e iθ )| 2<br />

|e it − e iθ | 2<br />

−π<br />

|(αp)(e<br />

−π<br />

it ) − (αp)(eiθ )| 2<br />

|eit − eiθ | 2<br />

|(αq0)(eit ) − (αq0)(eiθ )| 2<br />

−π<br />

≤ 2C 2 p 2 D +2C 2<br />

π<br />

+4<br />

−π<br />

|e it − e iθ | 2<br />

π<br />

|q0| 2 dσ<br />

dσdσ<br />

dσdσ<br />

−π<br />

|α(e<br />

−π<br />

it ) − α(eiθ )| 2<br />

|eit − eiθ | 2 |q0(e it )| 2 dσdσ<br />

|α(e<br />

−π<br />

it )| 2 |q0(eit ) − q0(eiθ )| 2<br />

|eit − eiθ | 2 dσdσ<br />

π<br />

π π<br />

+4<br />

−π<br />

≤ 2C 2 p 2 D +2C 2<br />

+4C 2<br />

π<br />

−π<br />

π<br />

|q0| 2 dσ +16C 2 q0 2 D<br />

−π<br />

|q0(e<br />

−π<br />

it ) − q0(eiθ )| 2<br />

|eit − eiθ | 2<br />

π<br />

≤ 2C 2 p 2 D +(4C 2 +16C 2 )q0 2 D<br />

≤ 20C 2 (p 2 D + q0 2 D)<br />

=20C 2 p + q 0 2 HD.<br />

dσdσ<br />

dσ(t)dσ(θ)<br />

Hereweareusingthefactthatp⊥q0in HD and q02 HD = q02 D . <br />

Lemma 3. Assume that M C F ≤1. Then<br />

and<br />

M (FF ∗ ) ∈ B(HD)<br />

MFF ∗≤86.


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 131<br />

Proof. We show that M (FF ∗ ) 1 2 ∈ B(HD) withM (FF ∗ ) 1 2 ≤ √ 86. This will com-<br />

plete the proof. Let p and q0 be analytic polynomials with q0(0) = 0. We let u<br />

denote p + q 0.Then<br />

M (FF ∗ ) 1 2 (u) 2 HD =<br />

So<br />

<br />

∂D<br />

<br />

+<br />

≤u 2 σ +2<br />

|FF ∗ ||u| 2 dσ<br />

∂D<br />

<br />

∂D<br />

|(FF ∗ ) 1<br />

2 (e it )u(e it ) − (FF ∗ ) 1<br />

2 (e iθ )u(e iθ )| 2<br />

|e it − e iθ | 2<br />

dσdσ<br />

<br />

|(FF<br />

∂D ∂D<br />

∗ ) 1<br />

2 (eit ) − (FF∗ ) 1<br />

2 (eiθ )| 2 |u(eit )| 2<br />

|eit − eiθ | 2<br />

dσdσ<br />

<br />

a<br />

<br />

+2 (FF<br />

∂D ∂D<br />

∗ )(e it ) |u(eit ) − u(eiθ )| 2<br />

|eit − eiθ | 2 dσdσ.<br />

|(FF ∗ ) 1<br />

2 (e it ) − (FF ∗ ) 1<br />

<br />

(a) ≤ 2<br />

<br />

≤ 4<br />

∂D<br />

∂D<br />

by Lemma 2. Thus<br />

<br />

<br />

<br />

+4<br />

∂D<br />

∂D<br />

∂D<br />

<br />

k<br />

<br />

<br />

k<br />

∂D<br />

2 (e iθ )| 2 ≤ <br />

k<br />

|Fk(e it ) − Fk(e iθ )| 2 .<br />

|Fk(eit ) − Fk(eiθ )| 2<br />

|eit − eiθ | 2 |u(e it )| 2 dσdσ<br />

|Fk(eit )u(eit ) − Fk(eiθ )u(eiθ )| 2<br />

|eit − eiθ | 2 |u(e it )| 2 dσdσ<br />

<br />

≤ 4 M C F (u) 2 HD +4u 2 HD<br />

≤ (4 · 20 + 4)k 2 HD<br />

k<br />

|Fk(e iθ ) u(eit ) − u(e iθ )| 2<br />

|e it − e iθ | 2<br />

dσdσ<br />

M (FF ∗ ) 1 2 (u) 2 HD ≤ 2 u 2 HD +84u 2 HD =86u 2 HD. <br />

Lemma 4. Let H ∈ Mult(HD) with 1 ≥|H(e it )|≥ɛ>0 <str<strong>on</strong>g>for</str<strong>on</strong>g> σ-a.e. t ∈ [−π, π].<br />

Then 1<br />

H<br />

∈ Mult(HD) and 1<br />

H B(HD) ≤ √ 10<br />

ɛ 2 H B(D).


132 Trent IEOT<br />

Proof. Let r ∈ HD be a rati<strong>on</strong>al polynomial <strong>on</strong> ∂D and let H B(HD) = C. Then<br />

1<br />

H r2 π<br />

HD =<br />

−π<br />

| r<br />

H |2 π π<br />

dσ +<br />

−π −π<br />

≤ 1<br />

ɛ2 π<br />

|r|<br />

−π<br />

2 dσ + 1<br />

ɛ4 π π<br />

−π −π<br />

≤ 1<br />

ɛ2 π<br />

|r|<br />

−π<br />

2 dσ + 2<br />

ɛ4 π π<br />

−π −π<br />

+ 2<br />

ɛ4 π π<br />

|( r<br />

H )(eit ) − ( r<br />

H )(eiθ )| 2<br />

|eit − eiθ | 2<br />

dσdσ<br />

|H(e iθ )r(e it ) − H(e it )r(e iθ )| 2<br />

|e it − e iθ | 2<br />

|H(e iθ )| 2 | r(eit ) − r(eiθ )<br />

eit − eiθ | 2 dσdσ<br />

|H(e<br />

−π −π<br />

iθ ) − H(eit )| 2<br />

|eit − eiθ |r(e<br />

|<br />

it )| 2 dσdσ<br />

≤ 2C2<br />

ɛ4 r2HD + 2<br />

ɛ4 (4C2r 2 HD)<br />

= 10C2<br />

ɛ 4 r2 HD.<br />

dσdσ<br />

Lemma 5. Let {fj} ∞ j=1 ⊂ M(D). Assume that M C F ≤1 and 0


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 133<br />

Proof. For k =1, 2,...,let<br />

⎡<br />

0 0 0<br />

⎤<br />

...<br />

⎢ .<br />

⎢ .<br />

⎢ck+1<br />

⎢<br />

Ak = ⎢−ck<br />

⎢ 0<br />

⎢<br />

⎣ 0<br />

.<br />

.<br />

ck+2<br />

0<br />

−ck<br />

0<br />

.<br />

.<br />

ck+3<br />

0<br />

0<br />

−ck<br />

.<br />

. ..<br />

⎥<br />

... ⎥<br />

... ⎥<br />

... ⎥<br />

... ⎥<br />

⎦<br />

. ..<br />

where the first k rows of Ak have <strong>on</strong>ly 0 entries.<br />

Then<br />

AkA ∗ ⎡<br />

0 ... 0 0 0 0 ...<br />

⎢<br />

.<br />

⎢<br />

⎢0<br />

k = ⎢<br />

⎢0<br />

⎢<br />

⎣<br />

0<br />

...<br />

...<br />

.<br />

0<br />

0<br />

.<br />

0<br />

.<br />

0<br />

.<br />

0<br />

...<br />

...<br />

∞ j=k+1 |cj| 2 0 ... 0 −ckck+2<br />

−ckck+2<br />

|ck|<br />

−ckck+3 ...<br />

2 0 ... 0 −ckck+3 0<br />

0<br />

|ck|<br />

...<br />

2 ⎤<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

⎥<br />

... ⎥<br />

⎦<br />

. ..<br />

Thus<br />

So let<br />

∞<br />

k=1<br />

AkA ∗ k =<br />

⎡<br />

⎢<br />

⎣<br />

∞ k=1 |ck| 2 −c1c2 −c1c3 ...<br />

∞ −c2c1 k=2 |ck| 2 −c2c3 ...<br />

∞ −c3c1 −c3c2 k=3 |ck| 2 ...<br />

.<br />

.<br />

.<br />

.<br />

= CC ∗ I − C ∗ C.<br />

.<br />

.<br />

⎤<br />

⎥<br />

⎦<br />

. ..<br />

Q =[A1,A2,...] ∈ B( ∞<br />

⊕ 1 l 2 ,l 2 ). <br />

Lemma 7. Let {fj} ∞ j=1 ⊂ M(D). Assume that <str<strong>on</strong>g>for</str<strong>on</strong>g> each j, fj is analytic <strong>on</strong> D1+ɛ(0)<br />

and M C F B(D) ≤ 1. Associate Q(z) to F (z) <str<strong>on</strong>g>for</str<strong>on</strong>g> each |z| =1.Then<br />

Q ∞<br />

B( ⊕ HD)<br />

1<br />

≤ √ 86.<br />

Proof. Since M C F B(D) ≤ 1, we have F (z) 2 l 2 ≤ 1. By Lemma 6, <str<strong>on</strong>g>for</str<strong>on</strong>g> z ∈<br />

D, Q(z)Q(z) ∗ ≤ (F (z)F (z) ∗ ) I l 2,soQ(z) B(l 2 ) ≤ 1. First, note that if r ∈ HD<br />

is a rati<strong>on</strong>al polynomial in z, then


134 Trent IEOT<br />

π π<br />

F (eit ) − F (eiθ )2 l2 −π<br />

−π<br />

by Lemma 2.<br />

Now <str<strong>on</strong>g>for</str<strong>on</strong>g> r ∈ ∞<br />

⊕ 1 HD<br />

π<br />

QrHD =<br />

so<br />

−π<br />

π<br />

≤<br />

−π<br />

|e it − e iθ | 2<br />

π π<br />

≤ 2<br />

|r(e it )| 2 dσdσ<br />

(F r)(e<br />

−π −π<br />

it ) − (F r)(eiθ )2 |eit − eiθ | 2<br />

π π<br />

|r(e<br />

+2<br />

−π −π<br />

it ) − r(eiθ )| 2<br />

|eit − eiθ | 2 dσdσ<br />

≤ 2 M C F 2<br />

B(HD, ∞<br />

⊕HD) 1<br />

r2HD +2r 2 HD<br />

≤ 42 r 2 HD<br />

(Qr)(e it ) 2 π<br />

l2 dσ +<br />

−π<br />

(r)(e it ) 2 π<br />

l2dσ +2<br />

−π<br />

π<br />

π<br />

−π<br />

−π<br />

π π<br />

+2 Q(e<br />

−π −π<br />

iθ ) 2 B(l2 )<br />

dσdσ<br />

(Qr)(e it ) − (Qr)(e iθ ) 2 l 2<br />

|e it − e iθ | 2<br />

dσdσ<br />

Q(eit ) − Q(eiθ )2 B(l2 )<br />

|eit − eiθ | 2 r(e it ) 2 l2dσdσ r(e it ) − r(e iθ ) 2<br />

|e it − e iθ | 2<br />

dσdσ.<br />

But using Lemma 6 pointwise with cj = fj(e it ) − fj(e iθ ), we get<br />

(Q(e it ) − Q(e iθ ))(Q(e it ) − Q(e iθ )) ∗ ≤ (F (e it ) − F (e iθ ))(F (e it ) − F (e iθ )) ∗ I l 2<br />

Q(e it ) − Q(e iθ ) 2 B(l 2 ) ≤F (eit ) − F (e iθ ) 2 .<br />

Combining the two estimates above, we get that<br />

Qr 2 HD ≤ 2 r 2 HD +2· 42 r 2 HD<br />

≤ 86 r 2 HD.<br />

We need <strong>on</strong>e more lemma to handle Cauchy trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ms.<br />

Lemma 8. Let k be smooth and l 2 -valued <strong>on</strong> ∂D. Then<br />

Proof.<br />

k 2 HD = k 2 π<br />

σ +<br />

k 2 HD ≤k 2 A + k 2 σ.<br />

π<br />

<br />

−π −π<br />

k(e it ) − k(e iθ )2 l2 |eit − eiθ | 2 dσdσ<br />

<br />

a<br />

Since all entries in k(e it ) involve <strong>on</strong>ly negative Fourier coefficients, we see that


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 135<br />

π π<br />

(a) =sup{| 〈<br />

−π −π<br />

k(e it ) − k(e iθ )<br />

eit − eiθ , p 0 (eit ) − p (e<br />

0 iθ )<br />

eit − eiθ 〉 dσdσ<br />

<br />

b<br />

analytic polynomial entries that vanish at 0 and p D ≤ 1}.<br />

0<br />

| 2 : p 0 has<br />

But<br />

π π<br />

1 1<br />

(b) =−<br />

〈k(z)[ −<br />

D −π −π z − eit z − eiθ ](eit − e iθ ) −1 , p 0 (eit ) − p (e<br />

0 iθ )<br />

eit − eiθ 〉dσdσdA<br />

π <br />

π<br />

1 p0 (e<br />

=<br />

〈k(z)<br />

it ) − p (e<br />

0 iθ <br />

)<br />

〉e it e iθ dσ(t)dσ(θ)dA<br />

<br />

=<br />

<br />

=<br />

<br />

=<br />

D<br />

D<br />

D<br />

D<br />

−π<br />

1<br />

2πi<br />

1<br />

2πi<br />

<br />

<br />

−π<br />

∂D<br />

∂D<br />

(e it − z)(e iθ − z) ,<br />

e it − e iθ<br />

<br />

1<br />

1<br />

〈k(z)<br />

2πi ∂D (u − z)(v − z) ,<br />

<br />

p0 (u) − p (v)<br />

0 〉 du dv dA(z)<br />

u − v<br />

1<br />

〈k(z)<br />

(v − z) ,<br />

<br />

p0 (z) − p (v)<br />

0 〉 dv dA(z)<br />

(z − v)<br />

〈k(z), p ′ (z)〉 dA(z)<br />

0<br />

by two applicati<strong>on</strong>s of Cauchy’s theorem.<br />

Now<br />

<br />

| 〈k(z), p<br />

D<br />

′<br />

<br />

(z)〉 dA| ≤(<br />

0<br />

D<br />

<br />

≤<br />

So<br />

k 2 dA) 1<br />

<br />

2 (<br />

k<br />

D<br />

2 1<br />

2<br />

dA<br />

D<br />

p ′<br />

0 2 dA) 1<br />

2<br />

(a) ≤k 2 A. <br />

We are now ready to proceed with a proof of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> A ′ in the smooth case.<br />

Proof. Assume that {fj} ∞ j=1 are analytic in |z| < 1+δ <str<strong>on</strong>g>for</str<strong>on</strong>g> all j, M C F ≤1, and<br />

0


136 Trent IEOT<br />

Thus we need <strong>on</strong>ly show that<br />

u h 2 D ≤<br />

1, 500<br />

Combining Lemmas 5, 7, and 8, we get<br />

u hD = u hHD = F ∗ h<br />

FF<br />

≤ F ∗h <br />

+ Q<br />

FF∗ ≤ 86 · √ 200<br />

ɛ 2<br />

But since Q(z)<br />

√ FF ∗ B(l 2 ) ≤ 1,<br />

ɛ 3<br />

2<br />

h 2 D.<br />

Q − Q ∗ ∗F ′∗h (FF∗ ) 2<br />

z<br />

HD<br />

Q∗F ′∗h (FF∗ ) 2<br />

z<br />

HD<br />

hD + √ <br />

<br />

<br />

86 <br />

<br />

Q∗ F ′∗h (FF∗ ) 2 2A + <br />

<br />

a<br />

Q∗F ′∗h (FF∗ ) 2<br />

z<br />

2 σ.<br />

<br />

b<br />

(a) ≤ 1<br />

ɛ 6 M C F (h) 2 HD ≤ 20<br />

ɛ 6 h2 D.<br />

To estimate (b), we need the cor<strong>on</strong>a estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> the H ∞ (D) cor<strong>on</strong>a theorem.<br />

Using the Wolff procedure (see Garnett [G]) of Paley-Littlewood estimates, we get<br />

that<br />

<br />

8 1<br />

(b) ≤ ln<br />

ɛ2 ɛ2 2 h 2 σ<br />

<br />

8<br />

≤<br />

ɛ3 2 h 2 D.<br />

See Trent [Tr2] <str<strong>on</strong>g>for</str<strong>on</strong>g> more details.<br />

Combining these estimates we see that in the smooth case,<br />

u h≤<br />

1, 500<br />

ɛ 3 hD. <br />

We show that the same estimate holds <str<strong>on</strong>g>for</str<strong>on</strong>g> the general case. The following<br />

two lemmas hold <str<strong>on</strong>g>for</str<strong>on</strong>g> any N-P r.k. kernel <strong>on</strong> the ball or polydisk in C n .<br />

Lemma 9. Let {fj} ∞ j=1 ⊂ M(D) with M C F =1.For0≤ r ≤ 1, letFr(z) =F (rz).<br />

Then M C Fr≤MC F and thus Fr ∈ M(D, ∞<br />

⊕ D).<br />

1<br />

Proof. We claim that<br />

I − M C Fr (M C Fr )∗ ≥ 0.<br />

That is, <str<strong>on</strong>g>for</str<strong>on</strong>g> any {c j } n j=1 ⊂ l2 and {zj} n j=1<br />

⊂ D,<br />

0 ≤ 〈(I − F (rzk)F (rzj) ∗ )c j ,c k 〉kzj (rzk). (3)


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 137<br />

But<br />

(3) =<br />

n<br />

n<br />

j=1 k=1<br />

〈(I − F (rzk)F (rzj) ∗ ) c j ,c k 〉krzj (rzk) · [<br />

kzj (zk)<br />

] (4)<br />

krzj (rzk)<br />

The expressi<strong>on</strong> (4) without the “boxed terms” is positive since I −M C F<br />

M C∗<br />

F ≥<br />

0. We need <strong>on</strong>ly note that the matrix whose ij-th entry is the boxed term is<br />

positive. Then Schur’s lemma gives us that (4) is positive.<br />

Now kw(z) isanN-Pkernel,infact<br />

Thus<br />

1 − 1<br />

kw(z) =<br />

kzj (zk)<br />

kzjr(zkr) =(1−<br />

=(1−<br />

=1+<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

cnzw n and cn > 0 <str<strong>on</strong>g>for</str<strong>on</strong>g> all n.<br />

n=1<br />

cnr 2n z n j z n k )kzj (zk)<br />

cnz n j z n k +<br />

∞<br />

n=1<br />

cn(1 − r 2n )z n j z n kkzj (zk).<br />

(1 − r 2n )cnz n k z n j )kzj (zk)<br />

Thus, [ kz (zk) j<br />

krz (rzk) j ]n j,k=1 is positive and we are d<strong>on</strong>e. <br />

Lemma 10. Let F∈M( ∞<br />

⊕ D). Thens-limr→1− M<br />

1<br />

∗ Fr = M ∗ F .<br />

Proof. Assume that MF B( ∞<br />

⊕ 1<br />

D) ≤ 1. By Lemma 8, MFr B( ∞<br />

⊕ D)<br />

1<br />

≤ 1 <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

0 ≤ r ≤ 1. Thus we need <strong>on</strong>ly show that limr→1− (M ∗ Fr − M ∗ F )x =0<str<strong>on</strong>g>for</str<strong>on</strong>g>xin a dense subset of ∞<br />

⊕ D. By c<strong>on</strong>sidering finite sums of the <str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

1<br />

N j=1 c kzj j ,with<br />

{cj } N j=1 ⊂ l2 and {zj} N j=1 ⊂ D, we need <strong>on</strong>ly show that <str<strong>on</strong>g>for</str<strong>on</strong>g> e ∈ l2 and z ∈ D,<br />

limr→1− (M ∗ Fr − M ∗ F ) ekzD =0.<br />

Now<br />

Thus<br />

(M ∗ Fr − M ∗ F )(ekz) =F(rz) ∗ ekz −F(z) ∗ ekz<br />

= F(rz) ∗ ekrz<br />

= M ∗ F(ekrz) kz<br />

kz<br />

krz<br />

krz<br />

(M ∗ Fr − M ∗ F)(ekz) ≤krz − kz + krz<br />

−F(z) ∗ ekz<br />

− M ∗ F(ekz).<br />

<br />

sup |<br />

w∈D<br />

kz(w)<br />

<br />

− 1| . (5)<br />

krz(w)


138 Trent IEOT<br />

But<br />

| kz(w)<br />

krz(w) − 1| = |kz(w) − kz(rw)<br />

|≤<br />

krz(w)<br />

|kz(w) − kz(rw)|<br />

. (6)<br />

kz(1)<br />

Since kz is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly c<strong>on</strong>tinuous <strong>on</strong> D, we see that combining (5) and (6) completes<br />

the proof. <br />

Proof of <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> 1. Let {fj} ∞ j=1 ⊂ M(D), M C F ≤1andɛ2 ≤ F (z)F (z) ∗ <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

|z| < 1. By Lemma 8 <str<strong>on</strong>g>for</str<strong>on</strong>g> 0 ≤ r


Vol. 49 (2004) A <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> <str<strong>on</strong>g>Theorem</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Multipliers</str<strong>on</strong>g> <strong>on</strong> <strong>Dirichlet</strong> <strong>Space</strong> 139<br />

[GRS] D. Greene, S. Richter, and C. Sundberg, The structure of inner multipliers <strong>on</strong><br />

spaces with complete Nevanlinna–Pick kernels, preprint.<br />

[H] J.W. Helt<strong>on</strong>, Optimizati<strong>on</strong> over H ∞ and the Toeplitz cor<strong>on</strong>a theorem, J.Operator<br />

Theory 15 (1986), 359–375.<br />

[KMT] E. Katsoulis, R.L. Moore, and T. Trent, Interpolati<strong>on</strong> in nest algebras and applicati<strong>on</strong>s<br />

in operator cor<strong>on</strong>a theorems, J.OperatorTheory29 (1993), 115–123.<br />

[L] S.-Y. Li, <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> problems of several complex variables, Madis<strong>on</strong> Symposium<br />

of Complex Analysis, C<strong>on</strong>temporary Mathematics, vol. 137, Amer. Math. Soc.,<br />

Providence, 1991.<br />

[Li] K.C. Lin, H p cor<strong>on</strong>a theorem <str<strong>on</strong>g>for</str<strong>on</strong>g> the polydisk, Trans. Amer. Math. Soc.<br />

341 (1994), 371–375.<br />

[M] S. McCullough, The local deBranges-Rovnyak c<strong>on</strong>structi<strong>on</strong> and complete<br />

Nevanlinna–Pick kernels, Algebraic Methods in Operator Theory, Birkhauser,<br />

Bost<strong>on</strong>, 1994, 15–24.<br />

[N] N.K. Nikolskii, Treatise <strong>on</strong> the Shift Operator, Springer-Verlag, New York, 1985.<br />

[Q] P. Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true?,<br />

Integral Equati<strong>on</strong>s and Operator Theory 16 (1993), 244–266.<br />

[R] M. Rosenblum, A cor<strong>on</strong>a theorem <str<strong>on</strong>g>for</str<strong>on</strong>g> countably many functi<strong>on</strong>s, IntegralEquati<strong>on</strong>s<br />

and Operator Theory 3 (1980), 125–137.<br />

[S] C.F. Schubert, <str<strong>on</strong>g>Cor<strong>on</strong>a</str<strong>on</strong>g> theorem as operator theorem, Proc. Amer. Math. Soc.<br />

69 (1978), 73–76.<br />

[SNF] B. Sz.-Nagy and C. Foias, On c<strong>on</strong>tracti<strong>on</strong>s similar to Toeplitz operators, Ann.<br />

Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 553–564.<br />

[T] V.A. Tolok<strong>on</strong>nikov, The cor<strong>on</strong>a theorem in algebras of smooth functi<strong>on</strong>s, Translati<strong>on</strong>s<br />

(American Mathematical Society), series 2, vol. 149 (1991), 61–95.<br />

[Tr1] T.T. Trent, An H 2 cor<strong>on</strong>a theorem <strong>on</strong> the bidisk <str<strong>on</strong>g>for</str<strong>on</strong>g> infinitely many functi<strong>on</strong>s,<br />

preprint.<br />

[Tr2] T.T. Trent, A new estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the vector valued cor<strong>on</strong>a problem, J.Funct.Analysis<br />

189 (2002), 267–282.<br />

[W] Z. Wu, Functi<strong>on</strong> theory and operator theory <strong>on</strong> the <strong>Dirichlet</strong> space, Holomorphic<br />

<strong>Space</strong>s, Math. Sci. Res. Inst. (Berkeley), Publ. 33, Cambridge University Press,<br />

1998, 179–199.<br />

Tavan T. Trent<br />

Department of Mathematics<br />

The University of Alabama<br />

Box 870350<br />

Tuscaloosa, AL 35487-0350<br />

USA<br />

e-mail: ttrent@gp.as.ua.edu<br />

Submitted: May 10, 2002<br />

Revised: August 30, 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!