04.08.2013 Views

Nonlinear Optical Probes and Processes in Polymers and Liquid ...

Nonlinear Optical Probes and Processes in Polymers and Liquid ...

Nonlinear Optical Probes and Processes in Polymers and Liquid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.19 Speed of the PR decay as a function of the shallow detrapp<strong>in</strong>g rate β1. 88<br />

3.1 Materials used <strong>in</strong> this study . . . . . . . . . . . . . . . . . . . . . . . 109<br />

3.2 Experimental set-up for xerographic discharge technique . . . . . . . 116<br />

3.3 Typical experimental data from the xerographic discharge measurement.118<br />

3.4 Electric field dependence of the photogeneration cross-section . . . . . 121<br />

3.5 Experimental set-up for the time-of-flight (TOF) technique . . . . . . 123<br />

3.6 Example of a current pulse as observed <strong>in</strong> PVK with the TOF technique126<br />

3.7 Current transients as observed <strong>in</strong> PVK us<strong>in</strong>g TOF technique at various<br />

temperatures at the electric field 30 V/µm. . . . . . . . . . . . . . . . 129<br />

3.8 Dependence of the mobility on the electric field . . . . . . . . . . . . 130<br />

3.9 Dependence of the mobility on temperature . . . . . . . . . . . . . . 131<br />

3.10 Current transients at various temperatures . . . . . . . . . . . . . . . 133<br />

3.11 Experimental set-up for DC photoconductivity measurements . . . . 134<br />

3.12 Typical photocurrent transients observed on the short time scale DC<br />

photoconductivity experiment . . . . . . . . . . . . . . . . . . . . . . 137<br />

3.13 Example of the photocurrent transient analysis . . . . . . . . . . . . 139<br />

3.14 Trapp<strong>in</strong>g parameter γT MT 1 as a function of illum<strong>in</strong>ation <strong>in</strong>tensity I0 . 141<br />

3.15 Long time scale photocurrent dynamics . . . . . . . . . . . . . . . . . 143<br />

3.16 Example of the photocurrent dynamics analysis at long time scales . 145<br />

3.17 Experimental set-up for the two-beam coupl<strong>in</strong>g experiment. . . . . . 147<br />

3.18 Typical data for the 2BC experiment . . . . . . . . . . . . . . . . . . 148<br />

3.19 Electric field dependence of the ga<strong>in</strong> coefficient for p- <strong>and</strong> s-polarized<br />

beams at various temperatures . . . . . . . . . . . . . . . . . . . . . . 152<br />

3.20 Ratio of the ga<strong>in</strong> coefficients for p- <strong>and</strong> s-polarized <strong>in</strong>cident beams as<br />

a function of temperature . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

3.21 Experimental set-up used <strong>in</strong> the FWM experiment. . . . . . . . . . . 154<br />

3.22 Typical transient of the diffracted signal (I4) as observed <strong>in</strong> the FWM<br />

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

3.23 Electric field dependence of the diffraction efficiency . . . . . . . . . . 158<br />

3.24 Temperature dependence of the diffracted signal . . . . . . . . . . . . 160<br />

3.25 Dependence of the diffraction efficiency on the modulation parameter m162<br />

3.26 Dependence of the faster component of the PR speed ν1 on the electric<br />

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

3.27 Schematic representation of the PR grat<strong>in</strong>g decay . . . . . . . . . . . 167<br />

3.28 Dependence of the faster component of the PR decay on the electric<br />

field for various <strong>in</strong>tensities of eras<strong>in</strong>g beam. . . . . . . . . . . . . . . . 169<br />

3.29 Schematic representation of the PR composite with different chromophores.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

3.30 Intensity dependence of the faster PR speed for different composites . 183<br />

ix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!