04.08.2013 Views

22. Amplitude-Shift Keying (ASK) Modulation - Engineering

22. Amplitude-Shift Keying (ASK) Modulation - Engineering

22. Amplitude-Shift Keying (ASK) Modulation - Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

<strong>22.</strong> <strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong><br />

The transmission of digital signals is increasing at a rapid rate. Low-frequency analogue<br />

signals are often converted to digital format (PAM) before transmission. The source<br />

signals are generally referred to as baseband signals. Of course, we can send analogue<br />

and digital signals directly over a medium. From electro-magnetic theory, for efficient<br />

radiation of electrical energy from an antenna it must be at least in the order of magnitude of<br />

a wavelength in size; c = fλ, where c is the velocity of light, f is the signal frequency<br />

and λ is the wavelength. For a 1kHz audio signal, the wavelength is 300 km. An<br />

antenna of this size is not practical for efficient transmission. The low-frequency signal is<br />

often frequency-translated to a higher frequency range for efficient transmission. The<br />

process is called modulation. The use of a higher frequency range reduces antenna size.<br />

In the modulation process, the baseband signals constitute the modulating signal and the<br />

high-frequency carrier signal is a sinusiodal waveform. There are three basic ways of<br />

modulating a sine wave carrier. For binary digital modulation, they are called binary<br />

amplitude-shift keying (B<strong>ASK</strong>), binary frequency-shift keying (BFSK) and binary phaseshift<br />

keying (BPSK). <strong>Modulation</strong> also leads to the possibility of frequency multiplexing.<br />

In a frequency-multiplexed system, individual signals are transmitted over adjacent, nonoverlapping<br />

frequency bands. They are therefore transmitted in parallel and simultaneously<br />

in time. If we operate at higher carrier frequencies, more bandwidth is available for<br />

frequency-multiplexing more signals.<br />

Binary <strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (B<strong>ASK</strong>)<br />

A binary amplitude-shift keying (B<strong>ASK</strong>) signal can be defined by<br />

s(t) = A m(t) cos 2πf c t, 0 < t < T (<strong>22.</strong>1)<br />

where A is a constant, m(t) = 1 or 0, fc is the carrier frequency, and T is the bit<br />

duration. It has a power P = A2 /2, so that A = 2P . Thus equation (<strong>22.</strong>1) can be<br />

written as<br />

s(t) = 2P cos 2πfct, 0 < t < T<br />

= PT<br />

2<br />

cos 2πfct, T<br />

0 < t < T<br />

= E<br />

2<br />

cos 2πfct, T<br />

0 < t < T (<strong>22.</strong>2)<br />

<strong>22.</strong>1


<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

where E = PT is the energy contained in a bit duration. If we take<br />

φ1 (t) = 2<br />

T cos 2πfct as the orthonormal basis function, the applicable signal space or<br />

constellation diagram of the B<strong>ASK</strong> signals is shown in Figure <strong>22.</strong>1.<br />

Figure <strong>22.</strong>1 B<strong>ASK</strong> signal constellation diagram.<br />

Figure <strong>22.</strong>2 shows the B<strong>ASK</strong> signal sequence generated by the binary sequence<br />

0 1 0 1 0 0 1. The amplitude of a carrier is switched or keyed by the binary signal m(t).<br />

This is sometimes called on-off keying (OOK).<br />

Figure <strong>22.</strong>2 (a) Binary modulating signal and (b) B<strong>ASK</strong> signal.<br />

The Fourier transform of the B<strong>ASK</strong> signal s(t) is<br />

S(f) = A<br />

∞<br />

∫ [m(t) e<br />

2 −∞<br />

j 2πfct ] e-j2πft dt +<br />

A<br />

∞<br />

2<br />

∫ [m(t) e<br />

−∞<br />

-j 2πfct ] e-j2πft dt<br />

S(f) =<br />

A<br />

2 M(f - fc ) +<br />

A<br />

2 M(f + fc ) (<strong>22.</strong>3)<br />

The effect of multiplication by the carrier signal Acos 2πf c t is simply to shift the<br />

spectrum of the modulating signal m(t) to f c . Figure <strong>22.</strong>3 shows the amplitude<br />

spectrum of the B<strong>ASK</strong> signals when m(t) is a periodic pulse train.<br />

Figure <strong>22.</strong>3 (a) Modulating signal, (b) spectrum of (a), and (c) spectrum of B<strong>ASK</strong><br />

signals.<br />

Since we define the bandwidth as the range occupied by the baseband signal m(t) from 0<br />

Hz to the first zero-crossing point, we have B Hz of bandwidth for the baseband signal<br />

and 2B Hz for the B<strong>ASK</strong> signal. Figure <strong>22.</strong>4 shows the modulator and a possible<br />

implementation of the coherent demodulator for B<strong>ASK</strong> signals.<br />

Figure <strong>22.</strong>4 (a) B<strong>ASK</strong> modulator and (b) coherent demodulator.<br />

M-ary <strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (M-<strong>ASK</strong>)<br />

An M-ary amplitude-shift keying (M-<strong>ASK</strong>) signal can be defined by<br />

s(t) = A ⎧ i cos 2πfct, 0≤t<br />

≤T<br />

⎨<br />

⎩0,<br />

elsewhere<br />

<strong>22.</strong>2<br />

(<strong>22.</strong>4)


where<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

A i = A[2i - (M - 1)] (<strong>22.</strong>5)<br />

for i = 0, 1, ..., M - 1 and M > 4. Here, A is a constant, fc is the carrier frequency,<br />

and T is the symbol duration. The signal has a power Pi = Ai 2 /2, so that Ai = 2Pi .<br />

Thus equation (<strong>22.</strong>4) can be written as<br />

s(t) = 2Pi cos 2πfct, 0 < t < T<br />

= Pi T<br />

2<br />

cos 2πfct, T<br />

0 < t < T<br />

= Ei 2<br />

cos 2πfct, T<br />

0 < t < T (<strong>22.</strong>6)<br />

where E i = P i T is the energy of s(t) contained in a symbol duration for i = 0, 1, ...,<br />

M - 1. Figure <strong>22.</strong>5 shows the signal constellation diagrams of M-<strong>ASK</strong> and 4-<strong>ASK</strong><br />

signals.<br />

Figure <strong>22.</strong>5 (a) M-<strong>ASK</strong> and (b) 4-<strong>ASK</strong> signal constellation diagrams.<br />

Figure <strong>22.</strong>6 shows the 4-<strong>ASK</strong> signal sequence generated by the binary sequence<br />

00 01 10 11.<br />

Figure <strong>22.</strong>6 4-<strong>ASK</strong> modulation: (a) binary sequence, (b) 4-ary signal, and (b) 4-<strong>ASK</strong><br />

signal.<br />

Figure <strong>22.</strong>7 shows the modulator and a possible implementation of the coherent<br />

demodulator for M-<strong>ASK</strong> signals.<br />

References<br />

Figure <strong>22.</strong>7 (a) M-<strong>ASK</strong> modulator and (b) coherent demodulator.<br />

[1] M. Schwartz, Information Transmission, <strong>Modulation</strong>, and Noise, 4/e, McGraw<br />

Hill, 1990.<br />

[2] P. Z. Peebles, Jr., Digital Communication Systems, Prentice Hall, 1987.<br />

<strong>22.</strong>3


s<br />

0<br />

0<br />

s 1<br />

E<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

φ<br />

1<br />

( t )<br />

= 2<br />

T cos 2 π f c t<br />

Figure <strong>22.</strong>1 B<strong>ASK</strong> signal constellation diagram.<br />

Binary<br />

0 1 0 1 0 0 1<br />

sequence<br />

m(t )<br />

B<strong>ASK</strong><br />

signal<br />

A<br />

1<br />

0<br />

0<br />

-A<br />

s (t )<br />

(a)<br />

(b)<br />

T<br />

Time<br />

Time<br />

Figure <strong>22.</strong>2 (a) Binary modulating signal and (b) B<strong>ASK</strong> signal.<br />

<strong>22.</strong>4


3<br />

T<br />

m ( t )<br />

1<br />

0 1 0 1<br />

0<br />

T<br />

2T 3T<br />

(a)<br />

1<br />

2T<br />

2B<br />

1<br />

c<br />

c T<br />

-<br />

-f<br />

1<br />

c<br />

T<br />

+<br />

-f -f<br />

t<br />

3<br />

c<br />

T<br />

+ -f<br />

S ( f )<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

-3<br />

T<br />

Envelope<br />

-2<br />

T<br />

-1<br />

T<br />

Envelope<br />

M( f )<br />

0<br />

B =<br />

1<br />

T<br />

(b)<br />

1<br />

2T<br />

2<br />

T<br />

1<br />

2T<br />

3<br />

T<br />

0<br />

(c)<br />

...<br />

2B<br />

fc<br />

f 1<br />

c<br />

T<br />

f<br />

+ f 3<br />

c<br />

T<br />

+<br />

f 1<br />

c<br />

T<br />

-<br />

f 3<br />

c<br />

T<br />

-<br />

...<br />

Figure <strong>22.</strong>3 (a) Modulating signal, (b) spectrum of (a), and (c) spectrum of B<strong>ASK</strong><br />

signals.<br />

m (t )<br />

x<br />

Acos 2π fct 0.5 A m (t ) cos 4 π fct +<br />

0.5A<br />

m (t )<br />

s ( t ) s (t ) x<br />

f t<br />

cos 2π c<br />

(a) (b)<br />

Figure <strong>22.</strong>4 (a) B<strong>ASK</strong> modulator and (b) coherent demodulator.<br />

<strong>22.</strong>5<br />

~ 0.5A<br />

m (t )<br />

f


s<br />

... i ...<br />

0 E<br />

i<br />

(a)<br />

φ (<br />

1<br />

t )<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

= 2<br />

T cos 2 π f c t<br />

s 0 s 1<br />

0<br />

s 3<br />

s 2<br />

Figure <strong>22.</strong>5 (a) M-<strong>ASK</strong> and (b) 4-<strong>ASK</strong> signal constellation diagrams.<br />

Binary<br />

sequence<br />

4-ary<br />

signal<br />

4-<strong>ASK</strong><br />

signal<br />

0<br />

m (t )<br />

3<br />

1<br />

0<br />

-1<br />

-3<br />

s (t )<br />

A<br />

0<br />

-A<br />

-3 A<br />

1<br />

3 A<br />

0 0 0 1 1 0 1 1<br />

(a)<br />

(b)<br />

T T<br />

(c)<br />

(b)<br />

Time<br />

Time<br />

Time<br />

φ (<br />

1<br />

t )<br />

Figure <strong>22.</strong>6 4-<strong>ASK</strong> modulation: (a) binary sequence, (b) 4-ary signal, and (b) 4-<strong>ASK</strong><br />

signal.<br />

<strong>22.</strong>6


s (t )<br />

Binary<br />

sequence<br />

Serial<br />

to<br />

parallel<br />

converter<br />

log 2 M bits<br />

:<br />

(a)<br />

(b)<br />

<strong>Amplitude</strong>-<strong>Shift</strong> <strong>Keying</strong> (<strong>ASK</strong>) <strong>Modulation</strong> on Mac<br />

D/A<br />

converter<br />

m (t )<br />

x<br />

Acos 2π fct s (t )<br />

0.5 A m ( t ) cos 4π fct +<br />

0.5 A m( t )<br />

x ~ 0.5A<br />

m ( t )<br />

:<br />

m (t )<br />

A/D<br />

converter<br />

Binary<br />

sequence<br />

cos 2π fct Comparator<br />

Figure <strong>22.</strong>7 (a) M-<strong>ASK</strong> modulator and (b) coherent demodulator.<br />

<strong>22.</strong>7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!