17.10.2012 Views

Full-Chip Verification for Mboa-compliant UWB Radio

Full-Chip Verification for Mboa-compliant UWB Radio

Full-Chip Verification for Mboa-compliant UWB Radio

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Full</strong>-chip <strong>Verification</strong> <strong>for</strong> MBOA-<strong>compliant</strong><br />

<strong>UWB</strong> <strong>Radio</strong><br />

Dr. Lawrence Williams<br />

Director of Business Development


Ansoft’s <strong>UWB</strong> <strong>Radio</strong> From 2004<br />

� Last Year<br />

� System and Circuit design <strong>for</strong> a <strong>UWB</strong> radio based on the<br />

Multiband OFDM Alliance (MBOA) Specification<br />

� This Year<br />

� Accomplished: Production-ready <strong>UWB</strong> Circuits With Layout<br />

� Resulted in: A New Design Flow <strong>for</strong> RFIC


UMC - Ansoft <strong>UWB</strong> Project<br />

� Circuit and System Design of a<br />

“Mode 1” radio that supports the<br />

MBOA proposal.<br />

� Direct conversion architecture<br />

� All circuits implemented in UMC<br />

0.13 um process – Nexxim<br />

design kit available.<br />

� Ansoft Designs Circuits; UMC<br />

Per<strong>for</strong>ms Layout and Fabrication


Last Year<br />

� Last year we presented initial circuit designs and simulation<br />

results <strong>for</strong> T/R Switch, LNA, Synthesizer, I/Q Mod/Demod,<br />

and Power Amplifier


Circuit Modification Summary*<br />

� T/R Switch - Slight changes to compensate <strong>for</strong> package<br />

parasitics and new LNA match.<br />

� LNA - Changed from a single ended design to a pseudodifferential<br />

design so that LNA is less sensitive to package<br />

parasitics and less likely to oscillate.<br />

� Synthesizer - A fixed frequency filter and tracking filter added<br />

at output of the 1st and 2nd complex mixer <strong>for</strong> better spur<br />

rejection; added real striped-band switching VCO<br />

� I/Q demod - No change, aside from some minor biasing<br />

changes.<br />

� Baseband signal conditioning - Re-designed <strong>for</strong> bandwidth<br />

enhancements and more aggressive low pass filtering.<br />

*See appendix <strong>for</strong> full details


Today<br />

� Complete, production-ready circuits with layout that take into<br />

account packaging, on-chip passive parasitics, and actual<br />

implementation of sources (VCO), bias, etc.


index=8<br />

l=80.8u<br />

w=74.2u<br />

c_pad=38.6f<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

NMOS<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

p-type<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

gnd_sw<br />

ps_filt<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

do=136.01u<br />

w=6u<br />

s=1.8u<br />

nt=4.5<br />

mimcaps_rf<br />

c_tot_m=0.508p<br />

l=21.68u<br />

w=21.68u<br />

M=1<br />

vdd_sw<br />

0<br />

V53<br />

vdd_sw<br />

l_cr20k_rf<br />

p_ls=2.3n<br />

gnd_sw<br />

DC=1.2<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

0<br />

gnd_sw<br />

V58<br />

DC=0<br />

mimcaps_rf<br />

c_tot_m=0.446p<br />

l=20.27u<br />

w=20.27u<br />

M=1<br />

vdd_sw<br />

Port3<br />

nt=6.5<br />

s=1.8u<br />

w=1.9u<br />

do=149.12u<br />

gnd_sw<br />

gnd_sw<br />

U1<br />

TRswitch3<br />

rx<br />

ps_filt<br />

tx<br />

vdd_sw<br />

ctrl<br />

gnd_sw<br />

0<br />

gnd_sw<br />

V50<br />

Port1<br />

Port2<br />

DC=if(sw==1, 1.2, 0)<br />

Original Circuit<br />

p_ls=7.9n<br />

l_cr20k_rf<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1.8u<br />

nf=16<br />

M=3<br />

wt=28.8u<br />

rnhr_rf<br />

r_zbt=4.816k<br />

wt=28.8u<br />

M=3<br />

nf=16<br />

wf=1.8u<br />

lf=0.12u<br />

gnd_sw<br />

gnd_sw<br />

l=5u<br />

w=1u<br />

m=1<br />

l=5u<br />

w=1u<br />

vdd_sw<br />

m=1<br />

n_bpw_12_rf<br />

vdd_sw<br />

rnhr_rf<br />

r_zbt=4.816k<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

<strong>UWB</strong> T/R Switch<br />

ctrl<br />

� Modifications:<br />

p_12_rf<br />

lf=0.12u<br />

wf=2.4u<br />

nf=16<br />

M=1<br />

wt=38.4u<br />

n_12_rf<br />

vdd_sw<br />

lf=0.12u<br />

wf=1.8u<br />

nf=16<br />

M=1<br />

wt=28.8u<br />

gnd_sw<br />

� Tuned circuit to improve input match and<br />

insertion loss on receive channel with slight<br />

sacrifice of transmit characteristics.<br />

� Eliminated the one of inductors in the<br />

matching circuit<br />

� Reducing the size of the T/R switch.<br />

� Improved the receiving characteristics.<br />

gnd_sw<br />

Inductor removed<br />

to reduce layout<br />

size<br />

rnhr_rf<br />

r_zbt=20.636k<br />

rnhr_rf<br />

r_zbt=20.636k<br />

l=20u<br />

w=1u<br />

l=20u<br />

w=1u<br />

tx<br />

rx<br />

vdd_sw<br />

m=1<br />

vdd_sw<br />

m=1<br />

gnd_sw<br />

gnd_sw<br />

index=8<br />

l=80.8u<br />

w=74.2u<br />

c_pad=38.6f<br />

gnd_sw<br />

ps_f ilt<br />

vdd_sw<br />

gnd_sw<br />

mimcaps_rf<br />

c_tot_m=0.435p<br />

l=c1_len<br />

w=c1_len<br />

M=1<br />

gnd_sw<br />

do=Ls_do<br />

w=Ls_w<br />

s=Ls_s<br />

nt=Ls_nt<br />

vdd_sw<br />

l_cr20k_rf<br />

p_ls=1.8n<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

Modified Circuit<br />

mimcaps_rf<br />

c_tot_m=0.435p<br />

l=c2_len<br />

w=c2_len<br />

M=1<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

n_bpw_12_rf<br />

lf =0.12u<br />

wf =7.2u<br />

nf =16<br />

M=1<br />

wt=115.2u<br />

wt=86.4u<br />

M=1<br />

nf=16<br />

wf=5.4u<br />

lf=0.12u<br />

gnd_sw<br />

rnhr_rf<br />

r_zbt=4.816k<br />

gnd_sw<br />

l=5u<br />

w=1u<br />

m=1<br />

l=5u<br />

w=1u<br />

vdd_sw<br />

m=1<br />

n_bpw_12_rf<br />

vdd_sw<br />

rnhr_rf<br />

r_zbt=4.816k<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

ctrl<br />

p_12_rf<br />

lf =0.12u<br />

wf =2.4u<br />

nf =16<br />

M=1<br />

wt=38.4u<br />

n_12_rf<br />

vdd_sw<br />

lf =0.12u<br />

wf =1.8u<br />

nf =16<br />

M=1<br />

wt=28.8u<br />

gnd_sw<br />

Refernce: TALWALKAR et al.: Integrated CMOS Transmit-Receive Switch Using LC-Tuned<br />

Substrate Bias <strong>for</strong> 2.4-GHz and 5.2 GHz Applications, IEEE JOURNAL OF SOLID-STATE<br />

CIRCUITS, VOL. 39, NO. 6, JUNE 2004<br />

gnd_sw<br />

rnhr_rf<br />

r_zbt=20.636k<br />

rnhr_rf<br />

r_zbt=20.636k<br />

l=20u<br />

w=1u<br />

l=20u<br />

w=1u<br />

tx<br />

rx<br />

vdd_sw<br />

m=1<br />

gnd_sw<br />

vdd_sw<br />

m=1<br />

gnd_sw


sw=0, Receiving<br />

sw=1, Transmitting<br />

Simulation Results<br />

Original Circuit Modified Circuit<br />

sw=0, Receiving<br />

sw=1, Transmitting


Layout <strong>for</strong> <strong>UWB</strong> T/R Switch


Schedule<br />

� All circuit design is complete �<br />

� All circuit layout is complete �<br />

� Mask set complete and sent on July shuttle �<br />

� Shuttle returns mid-October, stay tuned <strong>for</strong> measured results!<br />

vdd_bln<br />

nt=5.5<br />

s=2u<br />

w=1.5u<br />

do=100u<br />

gnd_bln<br />

gnd_bln lf=0.12u<br />

wf=1.8u<br />

nf=4<br />

M=1<br />

wt=7.2u<br />

gnd_bln<br />

vdd_bln<br />

p_ls=3.43n<br />

l_cr20k_rf<br />

gnd_bln<br />

n_12_rf<br />

n_12_rf<br />

v_div2<br />

lf=0.12u<br />

wf=1.8u<br />

nf=8<br />

M=1<br />

wt=14.4u<br />

v_div1<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

gnd_bln<br />

M=1<br />

w=100u<br />

l=100u<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

l_cr20k_rf<br />

vg_cs p_ls=1.02n<br />

vg_cs<br />

do=120u<br />

w=5u<br />

s=2u<br />

nt=2.5<br />

vg1_cg<br />

c_tot_m=10.174p<br />

mimcaps_rf<br />

gnd_bln<br />

vdd_bln<br />

M=1<br />

w=100u<br />

l=100u<br />

gnd_bln<br />

vg2_cg<br />

l=74.8u<br />

w=48.5u<br />

M=1<br />

c_tot_m=10.174p<br />

mimcaps_rf<br />

gnd_bln<br />

vdd_bln<br />

mimcaps_rf<br />

c_tot_m=3.752p<br />

gnd_bln<br />

vdd_bln vdd_bln<br />

vdd_bln vdd_bln vdd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

m=3<br />

w=2u<br />

l=5u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=wf2_cg<br />

nf=nf2_cg<br />

M=m2_cg<br />

wt=115.2u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=wf1_cg<br />

nf=nf1_cg<br />

M=m1_cg<br />

wt=115.2u<br />

m=3<br />

w=2u<br />

l=6.9u<br />

gnd_bln<br />

r_zbt_m=0.104k<br />

rnnpo_rf<br />

l=100u<br />

w=100u<br />

vdd_bln M=1<br />

r_zbt_m=0.141k<br />

rnnpo_rf<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

mimcaps_rf<br />

c_tot_m=10.174p out<br />

mimcaps_rf<br />

c_tot_m=10.174p outb<br />

gnd_bln<br />

gnd_bln gnd_bln<br />

vdd_bln<br />

m=3<br />

w=2u<br />

l=5u<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=7.2u<br />

nf=10<br />

M=1<br />

wt=72u<br />

m=3<br />

w=2u<br />

l=7u<br />

gnd_bln<br />

r_zbt_m=0.104k<br />

rnnpo_rf<br />

r_zbt_m=0.143k<br />

rnnpo_rf<br />

l=100u<br />

w=100u<br />

M=1<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

M=2<br />

w=71u<br />

l=79u<br />

gnd_bln<br />

gnd_bln gnd_bln<br />

gnd_bln<br />

c_tot_m=11.49p<br />

mimcaps_rf


� UMC and Ansoft provide<br />

reference flow <strong>for</strong> RFIC<br />

� Cadence RFIC Flow<br />

� Nexxim Circuit Simulation<br />

� HFSS EM Extraction<br />

� Benefits<br />

Design Flow <strong>for</strong> RFIC<br />

� Adds Harmonic Balance +<br />

Transient<br />

� Robust S-parameter model<br />

support<br />

� High Capacity and Advanced<br />

Numerical Algorithms<br />

� Time and Frequency Domain<br />

consistency<br />

� <strong>Full</strong> electromagnetic accuracy of<br />

on chip passives and parasitics<br />

(using HFSS)


Market Trends<br />

� Convergence of 3G cellular, TV, digital<br />

camera, gaming, and mobile music in a<br />

single handheld<br />

� Devices With More Si, Digital +<br />

Analog/RF<br />

� Low power consumption <strong>for</strong> portability<br />

� Multiple <strong>Radio</strong>s in Single Plat<strong>for</strong>m<br />

� Cellular, Bluetooth, <strong>UWB</strong><br />

� Portable Devices With Rich Digital<br />

Content and High-per<strong>for</strong>mance Analog<br />

Processing and I/O<br />

� GHz Frequencies


RFIC Design Challenges<br />

� Time- and Frequency-Domain<br />

� VCO, PLL, mixers, filters, amplifiers, AGC loop, DAC, ADC<br />

� <strong>Verification</strong> Coverage<br />

� <strong>Full</strong> transceiver chain simulation often exceeds limits of traditional EDA<br />

tools<br />

� Forces compromise on the breadth of verification simulations due to long<br />

simulation run time and short design schedules<br />

� Accuracy and capacity required <strong>for</strong> sensitive analog simulation<br />

� Parasitics and Packaging<br />

� Modern signaling methods like OFDM and fast frequency hopping<br />

require circuits that per<strong>for</strong>m at high frequency with high switching speed<br />

� Extremely sensitive to active and passive device models, distributed<br />

layout parasitics, substrate coupling effects, inter-stage impedances, IC<br />

packaging, and power supply noise.


“Best in Class Technology<br />

in<br />

Established Design Flows”


Monolithic ICs are Produced Using Cadence<br />

Best in Class Technology in Established Design Flows<br />

Cadence<br />

Schematic,<br />

Layout, &<br />

Simulation<br />

Nexxim HFSS<br />

Ansoft Customers can gain<br />

dramatic new benefits by adding<br />

Ansoft Technology to the<br />

Cadence design flow.


Nexxim<br />

� Analog and mixed-signal circuit simulator<br />

� Nexxim supports:<br />

� Transient<br />

� Harmonic Balance<br />

� DC and DC noise<br />

� Phase Noise and Noise Figure<br />

� LNA/DC small signal<br />

� Parameter Sweeps<br />

� HSPICE® and Spectre® compatible<br />

� 100% SPICE Simulation accuracy<br />

� Integration with Cadence and EM tools<br />

� Consistency of results across time and<br />

frequency domains<br />

dQ(t,x)<br />

dt<br />

� S-parameters and W-elements + F(t,x) = 0<br />

V<br />

rx_in<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner= tt<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

0<br />

V2819<br />

R2823<br />

0<br />

0<br />

mos_corner= tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twi n, Trippl e W el l RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl _case= typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ S<br />

rnnpo_case=typ error=1<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

1p<br />

C2861<br />

1p<br />

C2862<br />

V2854 V2855 V2852<br />

R2821<br />

L2820<br />

3.5n<br />

0.2<br />

V2836<br />

0.2<br />

0.15n<br />

L2824<br />

100p<br />

C2822<br />

L2847<br />

0.6n<br />

V2831<br />

C2863<br />

V2832<br />

1p<br />

0<br />

0<br />

V2833<br />

R2865<br />

200<br />

0<br />

I2783 I2785<br />

RxTx<br />

LNA_PD<br />

Balun_PD<br />

RxMx_PD<br />

V2835<br />

0<br />

V2837<br />

I2784<br />

V2834<br />

V<br />

V<br />

V V<br />

E2857<br />

R2866<br />

200<br />

R2867<br />

200<br />

E2858<br />

E2859<br />

0<br />

0<br />

0<br />

V2781<br />

V2777 V2779<br />

V2776<br />

0<br />

V2780<br />

V2778<br />

L2825<br />

1.2n<br />

L2826<br />

1.2n<br />

L2827<br />

1.2n<br />

L2828<br />

1.2n<br />

L2829<br />

1.2n<br />

L2830<br />

1.2n<br />

LNA_Ibias Ibias _mx q Ibias _mx i BB_Ibias<br />

TRsw _VD D1 TR sw _VDD 2 LNA_VDD Balun_VDDRxMx_VDD<br />

BB_AVD D LPF_Tun<br />

VoutI<br />

LNA_GC<br />

VoutIn<br />

ANT<br />

Tx LOq LOqb LOi LOib TRsw _GNDTRsw 1 _GN D2TRsw _GND 3LNA_GND<br />

LNA_GND1 Balun_GN DRxMx_GNDBB_AGN<br />

D Vc trl_1p Vc tr l_1 n Vc tr l_2p Vc tr l_2 n<br />

L2786<br />

0.6n<br />

L2787<br />

0.6n<br />

L2788<br />

0.6n<br />

L2789<br />

0.4n<br />

L2790<br />

0.4n<br />

L2791<br />

1.2n<br />

L2792<br />

1.2n<br />

R2793<br />

R2794 0.02<br />

R2795 0.02<br />

R2796 0.02<br />

R2797 0.01<br />

R2798 0.01<br />

R2799 0.2<br />

0.2<br />

E2860<br />

200<br />

R2868<br />

V2869<br />

1p<br />

C2864<br />

U6<br />

RX_TOP<br />

0.2n<br />

L2800<br />

0<br />

V2853<br />

0<br />

0<br />

A<br />

V2782<br />

E2811 E2812<br />

V2809 V2810<br />

V2813<br />

VoutQ<br />

VoutQn<br />

0<br />

V2856<br />

10k<br />

R2801<br />

10k<br />

R2803<br />

V<br />

C2802<br />

1e-012<br />

C2804<br />

1e-012<br />

E2806<br />

E2816 E2817<br />

0<br />

0<br />

0<br />

Q(tn+<br />

1,xn+<br />

1 ) − Q(tn<br />

,xn<br />

)<br />

+ F(tn+<br />

1,xn+<br />

1 ) = 0<br />

hn+<br />

1<br />

Q(t , xˆ<br />

n+<br />

1 ) − Q(tn<br />

,xn<br />

)<br />

G(tn+ , x)<br />

=<br />

+ F(tn<br />

h<br />

V2818<br />

V<br />

V2814 V2815<br />

0<br />

0<br />

V V<br />

V<br />

rx_out_I<br />

-0.145(min gain)


HFSS – 3D Electromagnetics Industry<br />

Standard<br />

� <strong>Full</strong>-wave 3D EM Simulation<br />

Software Based on Finite Elements<br />

� Computes Fields, S-parameters and<br />

<strong>Full</strong>-wave Spice Models<br />

� Applications<br />

� On-chip passives<br />

� Layout Extraction<br />

� Package Analysis<br />

� Features<br />

� Parametric Studies<br />

� Optimization<br />

� Links to Cadence and Nexxim<br />

Spiral Inductor<br />

Modeling<br />

Inductance[nH]<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

-12<br />

IND605 comparison<br />

-16<br />

-12<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Frequency[GHz]<br />

Layout Extraction<br />

Package Analysis<br />

IND605_m_L<br />

IND605_S_L<br />

IND605_m_Q<br />

IND605_5_Q<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

Quality Factor


Nexxim Direct Cadence Link<br />

Cadence ADE Tool Select Launch Nexxim<br />

Spectre-RF<br />

Nexxim


System Design and<br />

Behavioral Modeling<br />

Testbench Development<br />

Circuit<br />

Specifications<br />

Circuit Design w/<br />

Idealized Interconnect<br />

Time and Frequency<br />

Domain Circuit<br />

Simulation<br />

Layout<br />

<strong>Verification</strong> in<br />

System Bench<br />

Tapeout or<br />

<strong>Chip</strong> Integration...<br />

RFIC Design Flow<br />

Foundry<br />

Design Kit<br />

Electromagnetic<br />

Layout<br />

Extraction<br />

Design/Extraction of<br />

Critical On-<strong>Chip</strong> Passives<br />

Design/Extraction of<br />

Package Parasitics


Ansoft Tools in the RFIC Flow<br />

Design Flow<br />

System Design and<br />

Behavioral Modeling<br />

Schematic Entry and<br />

Design Environment<br />

Time and Frequency<br />

Domain Circuit Simulation<br />

Layout<br />

Electromagnetic<br />

Extraction<br />

Parasitic Extraction,<br />

DRC, and LVS<br />

<strong>Verification</strong> in<br />

System Bench<br />

Design Tools<br />

Ansoft Designer<br />

Matlab<br />

HDL<br />

Spreadsheet<br />

Cadence Virtuoso<br />

Schematic<br />

Ansoft Nexxim<br />

Cadence Spectre<br />

Cadence Ultra-sim<br />

Cadence Virtuoso-XL<br />

Cadence Encounter P&R<br />

Ansoft HFSS<br />

Ansoft Q3D<br />

Ansoft TPA<br />

Cadence Assura DRC/LVS<br />

Mentor Calibre DRC/LVS<br />

Ansoft Nexxim + Designer


� Spiral Design Kit Contents:<br />

Ansoft Spiral Design Kit<br />

� Parameterized HFSS Projects<br />

� Circular, stacked rectangular, trans<strong>for</strong>mer, symmetric spiral.<br />

� Software Installer<br />

� Installs custom UDPs and projects<br />

� Documentation<br />

Users can explore new spiral<br />

geometries and can examine higherorder<br />

effects of layout and proximity<br />

� Describes standard models and provides suggestions on how to modify <strong>for</strong><br />

specific needs.<br />

Circular Stacked<br />

Trans<strong>for</strong>mer<br />

Symmetric<br />

Download Design Kit at:<br />

www.onchippassivesdesign.com


Inductance[nH]<br />

Courtesy of<br />

16<br />

13<br />

10<br />

7<br />

4<br />

1<br />

-2<br />

-5<br />

-8<br />

-11<br />

-14<br />

Do = 150um<br />

Ansoft HFSS - Accuracy<br />

IND602 real-comparison<br />

IND602_m_L<br />

IND602_S_L<br />

IND602_m_Q<br />

IND602_S_Q<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Frequency[GHz]<br />

Nt/Width/Spacing = 3.5/15um/2um<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Quality Factor<br />

Inductance[nH]<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

-12<br />

-16<br />

Do = 300um<br />

IND605 comparison<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Frequency[GHz]<br />

IND605_m_L<br />

IND605_S_L<br />

IND605_m_Q<br />

IND605_5_Q<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

-3<br />

-6<br />

-9<br />

-12<br />

Quality Factor


HFSS/Nexxim Dynamic Link


Vertical MOM Capacitor<br />

� Metal-Oxide-Metal Capacitor has<br />

great application <strong>for</strong> RF Circuits<br />

and Data Converters<br />

� EM Design and extraction used to<br />

Support “Sharp VGA/ADC”<br />

design, first silicon success.<br />

� Now working on “Macroni’s 90nm<br />

ADC” design<br />

Cap=117.02 fF<br />

3207 2.4%


UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

0<br />

Frequency Domain<br />

mos_corner=tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

<strong>UWB</strong> Analog Baseband Simulation<br />

0<br />

0<br />

0<br />

V1776<br />

V1777<br />

V1957<br />

V<br />

V<br />

E1781<br />

E1782<br />

E1760 E1761<br />

V1758 V1759<br />

0<br />

0<br />

V1769<br />

0<br />

V1772<br />

U1<br />

BB1<br />

LPF_Vtun AVDD<br />

BBIp<br />

BBIn<br />

BBqp<br />

AGND<br />

0<br />

0<br />

0<br />

R1745<br />

R1747<br />

0<br />

10k<br />

10k<br />

V<br />

C1746<br />

C1748<br />

E1765 E1766<br />

1e-012<br />

1e-012<br />

V1763 V1764<br />

V<br />

E1750<br />

0<br />

V V<br />

-0.145(min gain)


UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

<strong>UWB</strong> Analog Baseband Simulation<br />

Time Domain<br />

0<br />

0<br />

0<br />

V1776<br />

V1777<br />

V1957<br />

V<br />

V<br />

E1781<br />

E1782<br />

E1760 E1761<br />

V1758 V1759<br />

0<br />

V1769<br />

0<br />

V1772<br />

0<br />

U1<br />

BB1<br />

LPF_Vtun AVDD<br />

BBIp<br />

BBIn<br />

BBqp<br />

AGND<br />

0<br />

0<br />

0<br />

Overdriven (Clipped) Output<br />

0<br />

0<br />

R1745<br />

R1747<br />

10k<br />

10k<br />

V<br />

C1746<br />

C1748<br />

E1765 E1766<br />

1e-012<br />

1e-012<br />

V1763 V1764<br />

V<br />

E1750<br />

0<br />

V V<br />

-0.145(min gain)


UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

V<br />

PNUM=1<br />

RZ=50Ohm<br />

IZ=0Ohm<br />

<strong>UWB</strong> Top Level (<strong>Full</strong> RX) Simulation<br />

High Capacity<br />

V1200<br />

0<br />

R1205<br />

0.2<br />

R1211<br />

V1251<br />

0.2<br />

V1231<br />

0.15n<br />

L1214<br />

C1208<br />

L1690<br />

0.6n<br />

V1232<br />

0<br />

L1204<br />

100p<br />

3.5n<br />

V1233<br />

LNA_Ibias Ibias_mxq Ibias_mxi BB_Ibias<br />

TRsw_VDD1 TRsw_VDD2<br />

LNA_VDD Balun_VDD RxMx_VDD<br />

BB_AVDD<br />

LNA_GC<br />

ANT<br />

RxTx<br />

LNA_PD<br />

Balun_PD<br />

RxMx_PD<br />

I1143<br />

I1144<br />

I1145<br />

Tx LOq LOqb LOi LOib TRsw_GND1TRsw_GND2TRsw_GND3 LNA_GND LNA_GND1 Balun_GND RxMx_GND BB_AGND Vctrl_1p Vctrl_1n Vctrl_2p Vctrl_2n<br />

V1234<br />

V<br />

V1236<br />

V<br />

V1587<br />

V<br />

V<br />

0<br />

V1136<br />

V1137<br />

V1138<br />

0<br />

V1139<br />

L1222<br />

1.2n<br />

L1223<br />

1.2n<br />

L1224<br />

1.2n<br />

L1225<br />

1.2n<br />

L1226<br />

1.2n<br />

L1227<br />

1.2n<br />

V1140<br />

V1141<br />

L1147<br />

1.2n<br />

L1148<br />

1.2n<br />

L1149<br />

1.2n<br />

L1150<br />

1.2n<br />

L1151<br />

1.2n<br />

L1152<br />

1.2n<br />

L1153<br />

1.2n<br />

L1154<br />

1.2n<br />

U1<br />

RxTop<br />

R1155<br />

R11560.2<br />

R11570.2<br />

R11580.2<br />

R11590.2<br />

R11600.2<br />

R11610.2<br />

R11620.2<br />

0.2<br />

V1723 V1724 V1717 V1720<br />

0.2n<br />

L1165<br />

BRD_GND<br />

0<br />

A<br />

0<br />

LPF_Tun<br />

V1142<br />

VoutI<br />

VoutIn<br />

VoutQ<br />

VoutQn<br />

E1189 E1190<br />

V1187 V1188<br />

-0.145(min gain)


vdd_vco<br />

p_12_rf<br />

VCO Circuit With Block-level Layout<br />

Extraction<br />

vdd_vco<br />

gnd_vco<br />

vdd_vco<br />

lf=0.12u<br />

wf=2.4u<br />

nf=28<br />

M=1<br />

wt=67.2u<br />

vdd_vco<br />

vdd_vco<br />

1<br />

ref<br />

2<br />

vdd_vco<br />

vdd_vco<br />

lf=0.12u<br />

wf=2.4u<br />

nf=28 gnd_vco<br />

M=1<br />

wt=67.2u vdd_vco<br />

vdd_vco<br />

mimcaps_rf<br />

out_l c_tot_m=5.09p<br />

rnhr_rf<br />

r_zbt_m=20.003k<br />

mimcaps_rf<br />

c_tot_m=0.952p<br />

gnd_vco l_cr20k_rf<br />

p_ls=1.15n<br />

mimcaps_rf<br />

c_tot_m=0.952p<br />

rnhr_rf<br />

r_zbt_m=20.003k<br />

mimcaps_rf<br />

c_tot_m=5.09p out_r<br />

w=70.48u<br />

l=70.48u<br />

M=1<br />

gnd_vco<br />

gnd_vco<br />

l=19.4u<br />

w=1u<br />

m=1<br />

w=30u<br />

l=30u<br />

M=1<br />

gnd_vco<br />

do=150u<br />

w=8u<br />

s=1.8u<br />

nt=2.5<br />

gnd_vco<br />

l=30u<br />

w=30u<br />

M=1<br />

gnd_vco<br />

l=19.4u<br />

w=1u<br />

l=70.48u<br />

w=70.48u<br />

m=1<br />

M=1<br />

gnd_vco<br />

gnd_vco<br />

n_12_rf<br />

lf=0.12u<br />

wf=1.8u<br />

nf=14<br />

M=1<br />

wt=25.2u<br />

gnd_vco<br />

VCO Schematic VCO Layout<br />

l=0.15u<br />

w=5u<br />

nf=8<br />

m=1<br />

l=0.15u<br />

w=5u<br />

nf=8<br />

m=1<br />

gnd_vco gnd_vco<br />

vdd_vco<br />

mimcaps_rf<br />

c_tot_m=0.618p<br />

l=24u<br />

w=24u<br />

M=1<br />

gnd_vco<br />

U16<br />

mos_var_array4<br />

n_12_rf<br />

n_12_rf<br />

1 2<br />

3<br />

gnd_vco lf=0.12u<br />

wf=1.8u<br />

nf=16<br />

M=1<br />

wt=28.8u<br />

ref<br />

lf=0.12u<br />

wf=1.8u gnd_vco<br />

nf=16<br />

M=1<br />

wt=28.8u<br />

0<br />

bias_isrc<br />

vdd_vco<br />

p_12_rf<br />

gnd_vco<br />

gnd_vco<br />

tst_port<br />

vdd_vco<br />

p_12_rf<br />

gnd_vco gnd_vco<br />

vdd_vco<br />

lf=0.12u<br />

lf=0.12u<br />

wf=2.4u<br />

wf=2.4u<br />

gnd_vco nf=32<br />

nf=32<br />

M=1<br />

M=1<br />

gnd_vco gnd_vco<br />

wt=76.8u<br />

wt=76.8u<br />

varmis_12_rf<br />

cox_m=64.1f<br />

n_12_rf<br />

lf=0.35u<br />

wf=2.4u<br />

nf=12<br />

M=1<br />

wt=28.8u<br />

varmis_12_rf<br />

cox_m=64.1f<br />

vminus vplus<br />

vtune_in0<br />

M=1<br />

w=30u<br />

l=30u<br />

vtune_in1<br />

c_tot_m=0.952p<br />

mimcaps_rf<br />

vtune_in2<br />

vtune_in3<br />

vtune_in4<br />

vtune_in5<br />

vtune_in6<br />

M=1<br />

w=99.7u<br />

l=99.7u<br />

vtune_in7<br />

c_tot_m=10.114p<br />

mimcaps_rf<br />

M=1<br />

w=30u<br />

l=30u<br />

c_tot_m=0.952p<br />

mimcaps_rf<br />

vdd_vco<br />

rnnpo_rf<br />

r_zbt_m=1.261k<br />

l=10u<br />

w=1u<br />

m=1<br />

gnd_vco<br />

vdd_vco<br />

p_12_rf<br />

n_12_rf<br />

vdd_vco<br />

lf=0.12u<br />

wf=1.8u<br />

nf=14<br />

M=1<br />

wt=25.2u<br />

gnd_vco<br />

M=1<br />

w=30u<br />

l=30u<br />

c_tot_m=0.952p<br />

mimcaps_rf<br />

gnd_vco<br />

vctrl<br />

bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7


VCO Circuit Using<br />

HFSS Post-Layout Extraction<br />

142 Ports<br />

6 Adaptive Passes<br />

301,556 Tetrahedra<br />

Interpolating Freq. Sweep<br />

2.15 Gbyte RAM<br />

9 Hours 21 Minutes<br />

Dual Processor PC


� Be<strong>for</strong>e Extraction<br />

� Resonates @ 4.4GHz<br />

� Sources energy<br />

� S11 > 0dB<br />

� After Extraction<br />

� No longer resonates<br />

� S11 < 0dB<br />

Small Signal Test <strong>for</strong> VCO<br />

Oscillator negative<br />

resistance generator<br />

S 11 must be greater<br />

than 0dB <strong>for</strong><br />

oscillation—circuit<br />

with full extraction<br />

fails to oscillate!


Enlarge the Size of Negative Generator to Recover Oscillation<br />

n_12_rf<br />

n_12_rf<br />

1 2 M0_G<br />

3<br />

M1_G<br />

gnd_vco lf=0.12u<br />

wf=1.8u<br />

nf=16 ref<br />

lf=0.12u<br />

wf=1.8u<br />

nf=16<br />

gnd_vco<br />

M=1<br />

wt=28.8u<br />

M=1<br />

wt=28.8u<br />

0<br />

bias_isrc<br />

vdd_vco<br />

M0_D M1_D<br />

M0_S<br />

M8_d<br />

M1_S<br />

gnd_vco<br />

Original Circuit<br />

M=1<br />

w=30u<br />

l=30u<br />

2.7um<br />

gnd_vco<br />

c_tot_m=0.952p<br />

mimcaps_rf<br />

n_12_rf<br />

R613<br />

lf=0.35u<br />

wf=2.4u<br />

nf=12<br />

M=1<br />

w t=28.8u<br />

tst_port<br />

0.001<br />

vdd_vco<br />

M=1<br />

w=99.7u<br />

l=99.7u<br />

C25_PLUS<br />

gnd_vco gnd_vco<br />

c_tot_m=10.114p<br />

mimcaps_rf<br />

vdd_vco<br />

mimcaps_rf<br />

_tot_m=0.952p<br />

New Circuit With Larger Active Devices<br />

p_12_rf<br />

vdd_vco<br />

p_12_rf<br />

lf=0.12u<br />

lf=0.12u<br />

wf=2.4u<br />

wf=2.4u<br />

gnd_vco nf=32<br />

nf=32<br />

gnd_vco<br />

M=1<br />

M=1<br />

wt=76.8u<br />

wt=76.8u<br />

R616<br />

M2_S M3_S<br />

M2_B M2_G<br />

M3_G<br />

M3_B<br />

0.001<br />

3.6um<br />

M2_D M3_D<br />

vdd_vco<br />

M=1<br />

w=30u<br />

l=30u<br />

vdd_vco vdd_vco<br />

gnd_vco<br />

l_cr20k_rf<br />

mimcaps_rf<br />

p_ls=1.15n<br />

c_tot_m=0.952p<br />

C3_MINUS C4_MINUS<br />

C4<br />

V582<br />

R619<br />

0.001


Enlarge the Size of Negative Generator to Recover Oscillation<br />

Oscillation is<br />

recovered using<br />

larger active<br />

devices.


Exposed Die<br />

Paddle<br />

Die<br />

Vias<br />

Package Effects on Receiver<br />

Port2<br />

Port4<br />

Ports<br />

Port1<br />

Port3<br />

Gold Wire<br />

Cu Leadframe<br />

Input Return Loss (S11)<br />

Blue: No Ground/Supply Inductance<br />

Red: TRswitch Ground/Supply Inductance<br />

Added<br />

Green: TRswitch & LNA Ground/Supply<br />

Inductance Added<br />

Instability caused mainly by ground<br />

inductance.<br />

ANT<br />

TRsw_VDD1 TRsw_VDD2<br />

U37<br />

TRswitch<br />

AVDD1 AVDD2<br />

Rx<br />

ANT<br />

Tx<br />

RxTx<br />

AGND1 AGND2 AGND3<br />

TRsw_GND1<br />

TRsw_GND2<br />

TRsw_GND3<br />

RxTx<br />

Tx<br />

V<br />

LNA_PD<br />

LNA_GND<br />

LNA_GND1<br />

LNA_Ibias<br />

RFin LNA<br />

PD<br />

AGND<br />

LNA_GC<br />

LNA_VDD<br />

U2<br />

LNA<br />

Ibias AVDD<br />

GC AGND1<br />

RFout<br />

V<br />

RFin<br />

Balun_PD<br />

Balun_VDD<br />

AVDD<br />

U53<br />

ActBal<br />

RFout<br />

RFoutn<br />

PD AGND<br />

Balun_GND<br />

V<br />

V<br />

0 0<br />

Ibias_mxi Ibias_mxq RxMx_VDD<br />

RxMx_PD<br />

U166<br />

RxMx<br />

Ibias_mxi Ibias_mxq AVDD<br />

PD<br />

LOi<br />

E1648<br />

RF<br />

RFN<br />

LOi LOib LOq LOqb<br />

LOib<br />

LOq<br />

LOqb<br />

V<br />

AGND<br />

IFi<br />

IFin<br />

IFq<br />

IFqn<br />

RxMx_GND<br />

LPF_Tun BB_AVDD BB_Ibias<br />

LPF_Vtun AVDD<br />

BBIp<br />

BBIn<br />

BBqp<br />

BBqn<br />

E1657<br />

Vctrl_1p Vctrl_1n<br />

U85<br />

AGND<br />

GNDdump<br />

Vctrl_1p Vctrl_1n Vctrl_2p Vctrl_2n<br />

V<br />

HFSS Model <strong>UWB</strong> T/R Switch + LNA<br />

E1664<br />

BB_AGND<br />

BB<br />

PD<br />

IOutp<br />

Vctrl_2p Vctrl_2n<br />

0<br />

V<br />

IOutn<br />

QOutp<br />

Qoutn<br />

VoutI<br />

VoutIn<br />

VoutQ<br />

VoutQn


<strong>Full</strong>-chip <strong>Verification</strong><br />

System Test Bench<br />

� Initial Concepts & Specifications<br />

� <strong>Verification</strong> of behavioral models<br />

� Co-simulation to include initial circuit impact<br />

� Design modifications early <strong>for</strong> cost savings<br />

BSRC<br />

RANDOM<br />

BERP<br />

PRE802153A<br />

HDR802153A<br />

PHY<br />

MA C SCR<br />

PAY802153A<br />

DATA<br />

3<br />

SCR802153A CCOD802153A PUNCT802153A INT802153A<br />

10<br />

SCR802153A<br />

CCOD802153A PUNCT802153A INT802153A<br />

3<br />

10<br />

BSRC<br />

RANDOM<br />

VDEC<br />

ptn<br />

Baseband Transmitter / Receiver RF Transmitter / Receiver<br />

TX802153A<br />

PRE<br />

HDR COD INT MODIFFT<br />

PAYSCRCOD INT MODIFFT<br />

100 10<br />

100 10<br />

Sx<br />

x<br />

( ) f<br />

MPSKMOD802153a<br />

SPR802153A ADDPILOT802153A<br />

01 11<br />

I x x<br />

Q<br />

x* x*<br />

00 10<br />

MPSKMOD802153a<br />

01 11<br />

I<br />

Q<br />

00 10<br />

SP<br />

SPR802153A ADDPILOT802153A<br />

x x<br />

x* x*<br />

3<br />

10<br />

10 00<br />

Q<br />

I<br />

x* x*<br />

x<br />

x x<br />

100 10<br />

DPUNCT802153A DINT802153A<br />

11 01<br />

MPSKDEM802153a<br />

DSPR802153A REMPILOT802153A<br />

IFFT<br />

IFFT<br />

FFT<br />

SINK<br />

PRE<br />

HDR<br />

PAY<br />

CDMUX<br />

SP<br />

CYCLIC_PREFIX<br />

SINK<br />

CYCLIC_REMOVE<br />

Sx x(<br />

f )<br />

SP<br />

CDMUX<br />

U20<br />

DAC1<br />

DAC<br />

TFCOD802153A<br />

TFCOD802153A<br />

U25<br />

ADC<br />

ADC<br />

( ) f<br />

x<br />

Sx<br />

Sx ( ) f x<br />

AVGPP<br />

AVGPP<br />

FC=1GHz<br />

U22<br />

Synthesizer1<br />

DIV<br />

U24<br />

Synthesizer1<br />

DIV<br />

MIXER3P<br />

IN OUT<br />

LO<br />

FL=1GHz<br />

FU=2GHz<br />

AGC<br />

LO<br />

OUT IN<br />

AMP<br />

MIXER3P<br />

FC=1GHz<br />

0<br />

0<br />

50<br />

50<br />

1<br />

2<br />

1<br />

2<br />

FL=1GHz<br />

FU=2GHz<br />

FL=1GHz<br />

FU=2GHz<br />

U36<br />

Antenna<br />

U37<br />

Antenna<br />

U1<br />

DFF2<br />

D I<br />

Db<br />

phi<br />

phib<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=0deg<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=180deg<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

Ib<br />

U154<br />

polyphase_1stage4<br />

in1<br />

in2<br />

in1b<br />

in2b<br />

Channel<br />

CAWGN<br />

N/2 0<br />

Indoor<br />

U114<br />

Sw_Gm9<br />

RF<br />

Rfb<br />

LO<br />

LO<br />

LOb<br />

LOb<br />

IF<br />

U17<br />

DFF2<br />

D I<br />

Db<br />

phi<br />

phib<br />

IFb<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

U124<br />

Sw_Gm10<br />

RF IF<br />

Rfb IFb<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

w_gm=tune_w_gm<br />

f_if_var=f_if<br />

RF<br />

Rfb<br />

U134<br />

Sw_Gm11<br />

RF IF<br />

Rfb IFb<br />

LO<br />

LOb<br />

Iout<br />

Ioutb<br />

Qout<br />

Qoutb<br />

R1=1/2/3.14159/C1/pole<br />

C1=1p<br />

pole=4.224g<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

LOb<br />

LO<br />

IF<br />

IFb<br />

Sw_Gm12<br />

U144<br />

Ib<br />

U33<br />

DFF_iq2<br />

D I<br />

Ib<br />

Q<br />

Db<br />

Qd<br />

phi<br />

phib<br />

Qb_528MHz<br />

SP<br />

Q_528MHz<br />

SP<br />

Ib_528MHz<br />

SP<br />

I_528MHz<br />

SP<br />

PNUM=1<br />

RZ=50Ohm<br />

IZ=0Ohm<br />

SP<br />

I_synthout<br />

SP<br />

Ib_synthout<br />

SP<br />

Q_synthout<br />

SP<br />

Qb_synthout<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

U53<br />

DFF_iq2<br />

D I<br />

Ib<br />

Q<br />

Db<br />

Qd<br />

phi<br />

phib<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

l_cr20k_rf<br />

I_264MHz<br />

SP<br />

LO<br />

LOb<br />

SP<br />

Q_264MHz<br />

SP<br />

SP<br />

U73<br />

Sw_Gm9<br />

RF IF<br />

Rfb IFb<br />

f_if_var=792meg<br />

w_gm=6u<br />

U83<br />

Sw_Gm10<br />

RF IF<br />

Rfb IFb<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

w_gm=6u<br />

f_if_var=792meg<br />

RF<br />

Rfb<br />

U93<br />

Sw_Gm11<br />

RF IF<br />

Rfb IFb<br />

LO<br />

LOb<br />

f_if_var=792meg<br />

w_gm=6u<br />

C346<br />

LOb<br />

LO<br />

IF<br />

IFb<br />

Sw_Gm12<br />

U103<br />

SP<br />

I_swout<br />

SP<br />

Ib_swout<br />

vdd<br />

0<br />

l_cr20k_rf<br />

do=150u<br />

w=2.29u<br />

s=1.8u<br />

nt=2.5<br />

vdd<br />

SP<br />

Q_swout<br />

SP<br />

Qb_swout<br />

dev_m=4<br />

in1_I<br />

in1_Ib<br />

in1_Q<br />

in1_Qb<br />

SP<br />

I_792MHz<br />

out_I<br />

out_Ib<br />

out_Q<br />

out_Qb<br />

SP<br />

Ib_792MHz<br />

SP<br />

Q_792MHz<br />

SP<br />

in2_I<br />

in2_Ib<br />

Qb_792MHz<br />

in2_Q<br />

in2_Qb<br />

U113<br />

switches1<br />

vdd vdd<br />

lf=0.12u<br />

wf=3u<br />

0nf=16<br />

M=1<br />

RCONST<br />

CONSTANT=phi1<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

phi1<br />

phi1b CONSTANT=-phi1+1.2<br />

phi2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

phi2b<br />

RCONST<br />

CONSTANT=phi2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=-phi2+1.2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

U156<br />

diff_amp1<br />

in<br />

out<br />

inb<br />

outb<br />

in<br />

out<br />

inb<br />

outb<br />

U193<br />

diff_amp1<br />

do=150u<br />

do=150u<br />

0<br />

w=5.35u<br />

1.18pF<br />

1.18pF<br />

w=5.35u<br />

s=1.8u 0<br />

s=1.8u 0<br />

nt=2.5 nt=2.5<br />

vdd<br />

vdd<br />

0<br />

l_cr20k_rf<br />

0<br />

V187<br />

C349<br />

0.88pF<br />

R181<br />

400<br />

C347<br />

n_12_rf<br />

R258<br />

0 0<br />

10000<br />

l_cr20k_rf<br />

vdd<br />

vdd<br />

l_cr20k_rf<br />

do=150u<br />

w=1.8u<br />

s=1.8u 0<br />

nt=4.5<br />

vdd<br />

do=75u<br />

w=10u<br />

s=1.8u<br />

nt=2.5<br />

C348<br />

0<br />

10pF<br />

Port2


BSRC<br />

RANDOM<br />

NB=112*2*symbols/2.5<br />

BR=data_rate*2<br />

SEED=1<br />

SP<br />

Circuit / System / EM Co-Simulation<br />

� Block Level<br />

� <strong>Verification</strong> of Circuits in System test benches<br />

� Circuit details analyzed under non-ideal conditions<br />

� Combined System Level<br />

tx_bits<br />

BMEN<br />

0110/6<br />

NB=2<br />

M=4<br />

I<br />

Q<br />

� Integration of multiple circuit blocks<br />

� Incorporation of Extracted Parasitics<br />

R<br />

I<br />

RITOC<br />

U1<br />

DAC2<br />

DAC<br />

papr=9<br />

expand=40<br />

fcutoff=256MHz<br />

flength=1024<br />

fbeta=0.02<br />

CSCALE<br />

GAIN=1/sqrt(2)<br />

� Electromagnetic Simulations<br />

� Die, Package and Board<br />

CTORI<br />

R<br />

I<br />

CDMUX<br />

TYPE=0<br />

NS1=56<br />

NS2=56<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=symbols<br />

SAMPLE_RATE=data_rate<br />

CCONST<br />

CCONST<br />

MIXER3P<br />

IN OUT<br />

LO<br />

MIXER3P<br />

IN OUT<br />

LO<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=15*symbols<br />

SAMPLE_RATE=data_rate<br />

CMUX<br />

CMUX<br />

TYPE=0<br />

NS1=1<br />

NS2=56<br />

TYPE=0<br />

NS1=15<br />

NS2=56<br />

tx_freq<br />

CMUX<br />

TYPE=0<br />

NS1=57<br />

NS2=71<br />

SP<br />

AMP<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=32*symbols<br />

SAMPLE_RATE=data_rate<br />

CCONST<br />

IFFT<br />

FFTL=128<br />

MS21=15<br />

SP<br />

tx_time<br />

CTORI<br />

TYPE=0 TYPE=0<br />

NS1=32 NS1=160<br />

NS2=128 NS2=5<br />

CMUX<br />

CMUX<br />

CCONST<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=5*symbols<br />

SAMPLE_RATE=data_rate<br />

R<br />

I<br />

40<br />

SP<br />

mod_out<br />

Sx x(<br />

f )<br />

final_tx<br />

FFTL=8192*2<br />

TYPE=1<br />

WINDOW_TYPE=1<br />

INITSAMP=0<br />

bbtx<br />

SP<br />

Hata<br />

MNCH<br />

TYPE=0<br />

NS1=32<br />

NS2=133<br />

bbrx<br />

CDMUX<br />

SP<br />

rx_in<br />

SINK<br />

SP<br />

rx_rfin<br />

TYPE=0<br />

NS1=128<br />

NS2=5<br />

CDMUX<br />

U2<br />

<strong>UWB</strong>_Rx<br />

SP<br />

SINK<br />

rx_time<br />

Vsupply=1.2<br />

LNA_PD=0<br />

Balun_PD=0<br />

RxMx_PD=0<br />

LNA_LG=0<br />

flo=4g<br />

rxlo_amp=800m<br />

txrx=0<br />

RxBB_PD=0<br />

Vctrl1=-0.145<br />

Vctrl2=-0.11<br />

VcmOut=0.68<br />

Ibias_lna=0<br />

Ibias_mx=0<br />

FFT<br />

FFTL=128<br />

SP<br />

rx_freq<br />

CDMUX<br />

TYPE=0<br />

NS1=57<br />

NS2=71<br />

rx_out_I<br />

rx_out_Q<br />

TYPE=0<br />

NS1=1<br />

NS2=56<br />

CDMUX<br />

CDMUX<br />

TYPE=0<br />

NS1=15<br />

NS2=56<br />

CTORI<br />

R<br />

I<br />

R<br />

I<br />

SRDC<br />

RITOC<br />

DF=40<br />

SINK<br />

SINK<br />

CMUX<br />

I<br />

Q<br />

EVMP<br />

I ref<br />

Qref<br />

CDMUX<br />

NS1=time_sync_drop<br />

NS2=2^20<br />

EVM<br />

CSCALE<br />

TYPE=0<br />

NS1=56<br />

NS2=56<br />

CSCALE<br />

SINK<br />

GAIN=sqrt(2)<br />

SP<br />

timing_recov_rx<br />

CTORI<br />

R<br />

I<br />

rx_in<br />

I<br />

Q<br />

V<br />

0<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

M=4<br />

V2819<br />

0<br />

0<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ S<br />

rnnpo_case=typ error=1<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

C2861<br />

1p<br />

V2854 V2855<br />

C2862<br />

1p<br />

V2852<br />

R2821<br />

R2823<br />

0<br />

V2836<br />

MBEN<br />

6/0110<br />

NB=2<br />

0.2<br />

0.2<br />

V2831<br />

SP<br />

0.15n<br />

L2824<br />

C2822<br />

0<br />

rx_bits<br />

L2820<br />

L2847<br />

0.6n<br />

C2863<br />

V2832<br />

1p<br />

0<br />

100p<br />

BERP<br />

3.5n<br />

V2833<br />

R2865<br />

200<br />

LNA_GC<br />

ANT<br />

0<br />

I2783<br />

RxTx<br />

LNA_PD<br />

Balun_PD<br />

RxMx_PD<br />

V2835<br />

0<br />

V2837<br />

I2784<br />

0<br />

I2785<br />

V2834<br />

V<br />

V<br />

V V<br />

E2857<br />

R2866<br />

200<br />

E2858<br />

R2867<br />

200<br />

E2859<br />

1.2n<br />

L2825<br />

0.6n<br />

L2786<br />

R2793<br />

R2794 0.02<br />

E2860<br />

V2869<br />

0<br />

0<br />

V2776<br />

0<br />

V2777<br />

V2778<br />

0<br />

V2779<br />

L2826<br />

1.2n<br />

L2827<br />

1.2n<br />

L2828<br />

1.2n<br />

L2829<br />

1.2n<br />

L2830<br />

1.2n<br />

V2780<br />

L2787<br />

0.6n<br />

L2788<br />

0.6n<br />

L2789<br />

0.4n<br />

L2790<br />

0.4n<br />

L2791<br />

1.2n<br />

L2792<br />

1.2n<br />

R2795 0.02<br />

R2868<br />

200<br />

R2796 0.02<br />

C2864<br />

1p<br />

U6<br />

RX_TOP<br />

R2797 0.01<br />

0.2n<br />

L2800<br />

V2853<br />

R2798 0.01<br />

R2799 0.2<br />

V2781<br />

0.2<br />

0<br />

V2809 V2810<br />

0<br />

0<br />

A<br />

LNA_Ibias Ibias_mxq Ibias_mxi BB_Ibias<br />

TRsw_VDD1TRsw_VDD2 LNA_VDD Balun_VDDRxMx_VDD<br />

BB_AVDD LPF_Tun<br />

Tx LOq LOqb LOi LOib TRsw_GND1 TRsw_GND2TRsw_GND3LNA_GND<br />

LNA_GND1 Balun_GND RxMx_GND BB_AGND Vctrl_1p Vctrl_1n Vctrl_2p Vctrl_2n<br />

V2782<br />

E2811 E2812<br />

V2813<br />

VoutI<br />

VoutIn<br />

VoutQ<br />

VoutQn<br />

0<br />

V2856<br />

R2801<br />

10k<br />

R2803<br />

10k<br />

V<br />

C2802<br />

C2804<br />

1e-012<br />

1e-012<br />

E2806<br />

E2816 E2817<br />

V2818<br />

V<br />

V2814 V2815<br />

0<br />

0<br />

0<br />

V V<br />

-0.145(min gain)


<strong>UWB</strong> Receiver Co-Simulation Results<br />

� Transient Co-Simulation of <strong>UWB</strong> Receiver<br />

� Baseband and RF wave<strong>for</strong>ms<br />

� <strong>UWB</strong> OFDM Frame<br />

� Transient and Spectral display<br />

� Demodulated symbol Constellation


IFFT<br />

FFTL=128<br />

FFT<br />

FFTL=128<br />

I<br />

Q<br />

M=4<br />

RITOC<br />

R<br />

I<br />

BSRC<br />

RANDOM<br />

NB=112*2*symbols/2.5<br />

BR=data_rate*2<br />

SEED=1<br />

SP<br />

tx_freq<br />

BMEN<br />

0110/6<br />

NB=2<br />

CMUX<br />

TYPE=0<br />

NS1=1<br />

NS2=56<br />

CCONST<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=symbols<br />

SAMPLE_RATE=data_rate<br />

CDMUX<br />

TYPE=0<br />

NS1=56<br />

NS2=56<br />

CMUX<br />

TYPE=0<br />

NS1=15<br />

NS2=56<br />

CCONST<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=15*symbols<br />

SAMPLE_RATE=data_rate<br />

CMUX<br />

TYPE=0<br />

NS1=57<br />

NS2=71<br />

SP<br />

tx_time<br />

SP<br />

rx_freq<br />

SP<br />

tx_bits<br />

CSCALE<br />

GAIN=1/sqrt(2)<br />

CMUX<br />

TYPE=0<br />

NS1=32<br />

NS2=128<br />

CMUX<br />

TYPE=0<br />

NS1=160<br />

NS2=5<br />

CCONST<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=32*symbols<br />

SAMPLE_RATE=data_rate<br />

CCONST<br />

REAL_CONST=0V<br />

IMAG_CONST=0V<br />

NSAMP=5*symbols<br />

SAMPLE_RATE=data_rate<br />

CDMUX<br />

TYPE=0<br />

NS1=32<br />

NS2=133<br />

SP<br />

rx_time<br />

SINK<br />

CDMUX<br />

TYPE=0<br />

NS1=128<br />

NS2=5<br />

SINK<br />

CDMUX<br />

TYPE=0<br />

NS1=57<br />

NS2=71<br />

CDMUX<br />

TYPE=0<br />

NS1=1<br />

NS2=56<br />

CDMUX<br />

TYPE=0<br />

NS1=15<br />

NS2=56<br />

SINK<br />

SINK<br />

CMUX<br />

TYPE=0<br />

NS1=56<br />

NS2=56<br />

I<br />

Q<br />

M=4<br />

CTORI<br />

R<br />

I<br />

MBEN<br />

6/0110<br />

NB=2<br />

CSCALE<br />

GAIN=sqrt(2)<br />

SP<br />

rx_bits<br />

BERP<br />

EVMP<br />

I<br />

Q<br />

I ref<br />

ref<br />

Q<br />

EVM<br />

CTORI<br />

R<br />

I<br />

CTORI<br />

R<br />

I<br />

RITOC<br />

R<br />

I<br />

SINK<br />

SRDC<br />

DF=40<br />

SP<br />

bbrx<br />

CTORI<br />

R<br />

I<br />

SP<br />

bbtx<br />

DAC<br />

U1<br />

DAC2<br />

papr=9<br />

expand=40<br />

fcutoff=256MHz<br />

flength=1024<br />

fbeta=0.02<br />

CDMUX<br />

NS1=time_sync_drop<br />

NS2=2^20<br />

CSCALE<br />

MIXER3P<br />

IN OUT<br />

LO<br />

MIXER3P<br />

IN OUT<br />

LO<br />

SP<br />

timing_recov_rx<br />

rx_in<br />

rx_out_I<br />

rx_out_Q<br />

U2<br />

<strong>UWB</strong>_Rx<br />

Vsupply=1.2<br />

LNA_PD=0<br />

Balun_PD=0<br />

RxMx_PD=0<br />

LNA_LG=0<br />

flo=4g<br />

rxlo_amp=800m<br />

txrx=0<br />

RxBB_PD=0<br />

Vctrl1=-0.145<br />

Vctrl2=-0.11<br />

VcmOut=0.68<br />

Ibias_lna=0<br />

Ibias_mx=0<br />

40<br />

AMP<br />

MS21=15<br />

SP<br />

mod_out<br />

S x ( )<br />

f<br />

x<br />

final_tx<br />

FFTL=8192*2<br />

TYPE=1<br />

WINDOW_TYPE=1<br />

INITSAMP=0<br />

MNCH<br />

Hata<br />

SP<br />

rx_rfin<br />

Vector Signal Generator<br />

Vector Signal Analyzer<br />

Receiver <strong>Chip</strong><br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

rx_in<br />

rx_out_I<br />

rx_out_Q<br />

V2776<br />

V2777<br />

V2778<br />

V2779<br />

V2780<br />

V2781<br />

V2782<br />

I2783<br />

I2784<br />

I2785<br />

0.6n<br />

L2786<br />

0.6n<br />

L2787<br />

0.6n<br />

L2788<br />

0.4n<br />

L2789<br />

0.4n<br />

L2790<br />

1.2n<br />

L2791<br />

1.2n<br />

L2792<br />

0.02<br />

R2793<br />

0.02<br />

R2794<br />

0.02<br />

R2795<br />

0.01<br />

R2796<br />

0.01<br />

R2797<br />

0.2<br />

R2798<br />

0.2<br />

R2799<br />

0.2n<br />

L2800<br />

10k<br />

R2801<br />

1e-012<br />

C2802<br />

10k<br />

R2803<br />

1e-012<br />

C2804<br />

V<br />

E2806<br />

V<br />

E2808<br />

V2809 V2810<br />

E2811 E2812<br />

V2813<br />

V2814 V2815<br />

E2816 E2817<br />

V2818<br />

V2819<br />

3.5n<br />

L2820<br />

0.2<br />

R2821<br />

100p<br />

C2822<br />

0.2<br />

R2823<br />

0.15n<br />

L2824<br />

1.2n<br />

L2825<br />

1.2n<br />

L2826<br />

1.2n<br />

L2827<br />

1.2n<br />

L2828<br />

1.2n<br />

L2829<br />

1.2n<br />

L2830<br />

V2831<br />

V2832<br />

V2833<br />

V2834<br />

V2835<br />

V2836<br />

V2837<br />

A<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

res_case=res_typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

rnhr_case=typ<br />

pnp_vn_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

npn_vs_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

mos_corner=tt<br />

V<br />

V<br />

V<br />

V<br />

V<br />

0.6n<br />

L2847<br />

V<br />

V<br />

V V<br />

V2852<br />

V2853<br />

V2854 V2855<br />

V2856<br />

E2857<br />

E2858<br />

E2859<br />

E2860<br />

1p<br />

C2861<br />

1p<br />

C2862<br />

1p<br />

C2863<br />

1p<br />

C2864<br />

200<br />

R2865<br />

200<br />

R2866<br />

200<br />

R2867<br />

200<br />

R2868<br />

V2869<br />

S<br />

error=1<br />

ANT<br />

LNA_PD<br />

LNA_GND LNA_GND1<br />

LNA_GC<br />

LNA_VDD<br />

LNA_Ibias<br />

Tx<br />

RxTx<br />

TRsw_GND1<br />

TRsw_GND2TRsw_GND3<br />

TRsw_VDD1 TRsw_VDD2<br />

Balun_GND<br />

Balun_VDD<br />

Balun_PD<br />

Ibias_mxi<br />

Ibias_mxq RxMx_VDD<br />

RxMx_PD<br />

LOi LOib<br />

LOq LOqb RxMx_GND<br />

BB_AVDD LPF_Tun<br />

BB_Ibias<br />

VoutI<br />

VoutIn<br />

VoutQ<br />

VoutQn<br />

Vctrl_2n<br />

Vctrl_2p<br />

Vctrl_1n<br />

Vctrl_1p<br />

BB_AGND<br />

U6<br />

RX_TOP<br />

-0.145(min gain)


RFIC Design Flow Whitepaper<br />

� UMC and Ansoft Co-author new Design<br />

Flow <strong>for</strong> RFIC<br />

� Whitepaper Details:<br />

� Design Capture<br />

� Circuit Simulation<br />

� On-chip Passive Simulation<br />

� Layout Extraction<br />

� Packaging<br />

� <strong>Full</strong>-chip <strong>Verification</strong><br />

� Available at UMC and Ansoft Website


Conclusion<br />

� UMC and Ansoft teamed to develop a design solution <strong>for</strong> complex RFICs that<br />

include custom RF, analog, and mixed-signal circuits.<br />

� On-chip passive modeling<br />

� Circuit design and simulation<br />

� <strong>Full</strong>-chip verification<br />

� <strong>UWB</strong> radio project has been trans<strong>for</strong>med from initial circuit designs to<br />

production-ready circuits and layout.<br />

� Expect test chips back from fabrication in October<br />

� RFIC Design flow provides plat<strong>for</strong>m <strong>for</strong> developing advanced RFICs:<br />

� UMC’s advanced RF CMOS semiconductor process<br />

� Electronic design automation (EDA) tools from Ansoft and other established<br />

vendors<br />

� Design Flow leverages UMC’s production-proven 0.13 um RFCMOS process and<br />

advanced circuit simulation and electromagnetic extraction tools from Ansoft.<br />

� Additional fidelity in modeling, simulation, and verification coverage can be<br />

gained by following this advanced design flow.


Appendix – Circuit Block Modification<br />

Summary<br />

� Details on the circuit modifications to make layout- and<br />

production-ready circuits <strong>for</strong>:<br />

� T/R Switch<br />

� LNA<br />

� I/Q Mod/Demod.<br />

� Synthesizer<br />

� Baseband


Previous Work <strong>for</strong><br />

<strong>UWB</strong> T/R Switch


<strong>UWB</strong> T/R Switch from Previous Work<br />

0<br />

0<br />

vdd_sw<br />

0<br />

gnd_sw<br />

Port1<br />

Port2<br />

Port3<br />

ps_filt<br />

rx<br />

tx<br />

ctrl<br />

U1<br />

TRswitch3<br />

V50<br />

DC=if(sw==1, 1.2, 0)<br />

V53<br />

DC=1.2<br />

V58<br />

DC=0<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

NMOS<br />

p-type<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

rnhr_case=typ<br />

pnp_vn_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

npn_vs_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

ps_filt<br />

rx<br />

tx<br />

ctrl<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=3<br />

wt=28.8u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=3<br />

wt=28.8u<br />

l=5u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt=4.816k<br />

l=5u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt=4.816k<br />

n_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=28.8u<br />

p_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=2.4u<br />

M=1<br />

wt=38.4u<br />

l=20u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt=20.636k<br />

l=20u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt=20.636k<br />

l_cr20k_rf<br />

do=136.01u<br />

w=6u<br />

s=1.8u<br />

nt=4.5<br />

p_ls=2.3n<br />

l=21.68u<br />

w=21.68u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.508p<br />

l=20.27u<br />

w=20.27u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.446p<br />

index=8<br />

l=80.8u<br />

w=74.2u<br />

c_pad=38.6f<br />

l_cr20k_rf<br />

do=149.12u<br />

w=1.9u<br />

s=1.8u<br />

nt=6.5<br />

p_ls=7.9n<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw


sw=0, Receiving<br />

<strong>UWB</strong> T/R Switch from Previous Work


sw=1, Transmitting<br />

<strong>UWB</strong> T/R Switch from Previous Work


Modifications<br />

<strong>for</strong><br />

<strong>UWB</strong> T/R Switch


UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

STI<br />

NMOS<br />

PMOS<br />

STI<br />

STI<br />

p-type<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

vdd_sw<br />

0<br />

index=8<br />

l=80.8u<br />

w=74.2u<br />

c_pad=38.6f<br />

V53<br />

DC=1.2<br />

gnd_sw<br />

ps_f ilt<br />

gnd_sw<br />

0<br />

V58<br />

DC=0<br />

vdd_sw<br />

Port3<br />

gnd_sw<br />

l=c1_len<br />

w=c1_len<br />

M=1<br />

ps_filt<br />

gnd_sw<br />

U2<br />

TRswitch2<br />

ctrl<br />

0<br />

V50<br />

rx<br />

tx<br />

Final Circuit <strong>for</strong> <strong>UWB</strong> T/R Switch<br />

Port1<br />

Port2<br />

DC=if(sw==1, 1.2, 0)<br />

do=Ls_do<br />

w=Ls_w<br />

s=Ls_s<br />

nt=Ls_nt<br />

mimcaps_rf<br />

c_tot_m=0.435p<br />

vdd_sw<br />

l_cr20k_rf<br />

p_ls=1.8n<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw<br />

l=c2_len<br />

w=c2_len<br />

M=1<br />

gnd_sw<br />

mimcaps_rf<br />

c_tot_m=0.435p<br />

vdd_sw<br />

gnd_sw<br />

gnd_sw<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf =7.2u<br />

nf =16<br />

M=1<br />

wt=115.2u<br />

rnhr_rf<br />

r_zbt=4.816k<br />

wt=86.4u<br />

M=1<br />

nf=16<br />

wf=5.4u<br />

lf=0.12u<br />

gnd_sw<br />

gnd_sw<br />

l=5u<br />

w=1u<br />

m=1<br />

l=5u<br />

w=1u<br />

m=1<br />

vdd_sw<br />

n_bpw_12_rf<br />

vdd_sw<br />

rnhr_rf<br />

r_zbt=4.816k<br />

gnd_sw<br />

gnd_sw<br />

vdd_sw<br />

ctrl<br />

p_12_rf<br />

lf=0.12u<br />

wf =2.4u<br />

nf =16<br />

M=1<br />

wt=38.4u<br />

n_12_rf<br />

vdd_sw<br />

lf=0.12u<br />

wf =1.8u<br />

nf =16<br />

M=1<br />

wt=28.8u<br />

gnd_sw<br />

gnd_sw<br />

rnhr_rf<br />

r_zbt=20.636k<br />

rnhr_rf<br />

r_zbt=20.636k<br />

l=20u<br />

w=1u<br />

m=1<br />

l=20u<br />

w=1u<br />

m=1<br />

tx<br />

rx<br />

vdd_sw<br />

gnd_sw<br />

vdd_sw<br />

gnd_sw


sw=0, Receiving<br />

Final Result <strong>for</strong> <strong>UWB</strong> T/R Switch


sw=1, Transmitting<br />

Final Result <strong>for</strong> <strong>UWB</strong> T/R Switch


Modification Summary <strong>for</strong> T/R Switch<br />

� Achieved improved input match and insertion loss on receive<br />

channel with slight sacrifice of transmit characteristics.<br />

� Eliminate the one of inductors in the matching circuit, since<br />

this inductor has large size.<br />

� Reducing the size of the T/R switch.<br />

� Improved the receiving characteristics.


Layout <strong>for</strong> <strong>UWB</strong> T/R Switch


Previous Work<br />

<strong>for</strong><br />

<strong>UWB</strong> LNA


UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

STI<br />

NMOS<br />

STI<br />

PMOS<br />

STI<br />

p-type<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

U2<br />

LNA6<br />

Port1 Port2<br />

in out<br />

vdd_lna<br />

mimcaps_rf<br />

c_tot=10.349p<br />

in<br />

gnd_lna<br />

<strong>UWB</strong> LNA from Previous Work<br />

l=50u<br />

w=50u<br />

M=4<br />

vdd_lna<br />

do=93.34u<br />

w=2.7u<br />

s=1.8u<br />

nt=3.5<br />

vdd_lna<br />

V56<br />

DC=1.2<br />

gnd_lna<br />

0 0<br />

gnd_lna<br />

vdd_lna<br />

l_cr20k_rf<br />

p_ls=1.43n<br />

gnd_lna<br />

C136<br />

vdd_lna<br />

V59<br />

DC=0<br />

1.5pF<br />

nt=3.5<br />

s=1.8u<br />

w=2.7u<br />

do=111.08u<br />

gnd_lna<br />

vdd_lna<br />

vdd_lna<br />

gnd_lna<br />

p_ls=1.9n<br />

l_cr20k_rf<br />

R35<br />

n_bpw_12_rf<br />

gnd_lna<br />

400<br />

lf=0.12u<br />

wf =3u<br />

nf =16<br />

M=1<br />

C139<br />

C142<br />

1.5pF<br />

0.88pF<br />

R145<br />

10k<br />

vdd_lna<br />

do=93.34u<br />

w=2.7u<br />

s=1.8u<br />

nt=3.5<br />

l_cr20k_rf<br />

p_ls=1.43n<br />

gnd_lna<br />

vdd_lna<br />

gnd_lna<br />

vdd_lna<br />

nt=3.5<br />

s=1.8u<br />

w=2.7u<br />

do=149.1u<br />

n_bpw_12_rf<br />

lf =0.12u<br />

wf =3u<br />

nf =16<br />

M=4<br />

n_bpw_12_rf<br />

lf =0.12u<br />

wf =3u<br />

nf =16<br />

M=4<br />

L143<br />

0.35n<br />

p_ls=3n<br />

l_cr20k_rf<br />

gnd_lna<br />

gnd_lna<br />

vdd_lna<br />

vdd_lna<br />

C52<br />

10p<br />

out


<strong>UWB</strong> LNA from Previous Work


<strong>UWB</strong> LNA from Previous Work


Modifications<br />

<strong>for</strong><br />

<strong>UWB</strong> LNA_v1


Final <strong>UWB</strong> LNA_v1<br />

0 0<br />

0<br />

0<br />

0<br />

Port1 Port2<br />

LNA<br />

RFin<br />

RFout<br />

GC<br />

AVDD<br />

AGND AGND1<br />

PD<br />

Ibias<br />

U1<br />

LNA1<br />

V2691<br />

DC=LNA_LG*Vsupply<br />

V2695<br />

DC=Vsupply<br />

V2700<br />

DC=LNA_PD*Vsupply<br />

I2705<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

NMOS<br />

p-type<br />

mos_corner=ss<br />

res_case=res_max<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

NMOS<br />

p-type<br />

coremos_corner=ss<br />

iomos_corner=ss<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

rnhr_case=min<br />

pnp_vn_case=typ<br />

rnnpo_case=min<br />

rnppo_case=min<br />

npn_vs_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well Mixed_Mode<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

NMOS<br />

p-type<br />

mos_corner=ss<br />

RFin<br />

RFout<br />

GC<br />

AVDD<br />

AGND<br />

AGND1<br />

PD<br />

Ibias<br />

AGND1<br />

Ibias<br />

PD<br />

AVDD<br />

AGND1<br />

U18<br />

Nexxim6<br />

l=25.6u<br />

w=25.6u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.7p<br />

l_cr20k_rf<br />

do=150u<br />

w=6.2u<br />

s=2.5u<br />

nt=6.5<br />

p_ls=3.29n<br />

l=34.8u<br />

w=34.8u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=1.272p<br />

l=20u<br />

w=2u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

l_cr20k_rf<br />

do=150u<br />

w=3.2u<br />

s=2.5u<br />

nt=7.5<br />

p_ls=6.44n<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3u<br />

M=4<br />

wt=48u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3u<br />

M=4<br />

wt=48u<br />

l_cr20k_rf<br />

do=75u<br />

w=6.3u<br />

s=1.79u<br />

nt=2.5<br />

p_ls=0.37n<br />

l_cr20k_rf<br />

do=149u<br />

w=5.2u<br />

s=1.8u<br />

nt=4.5<br />

p_ls=3.06n<br />

l=26.6u<br />

w=26.6u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.754p<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3u<br />

M=4<br />

wt=48u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3u<br />

M=4<br />

wt=48u<br />

l_cr20k_rf<br />

do=75u<br />

w=5.6u<br />

s=2.5u<br />

nt=2.5<br />

p_ls=0.38n<br />

l_cr20k_rf<br />

do=150u<br />

w=2.7u<br />

s=2.5u<br />

nt=7.5<br />

p_ls=7.13n<br />

l_cr20k_rf<br />

do=149u<br />

w=5.2u<br />

s=1.8u<br />

nt=6.5<br />

p_ls=4.34n<br />

l=20u<br />

w=2u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

l=26.6u<br />

w=26.6u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.754p<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=28.8u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=28.8u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=28.8u<br />

l=20u<br />

w=2u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

l=99.77u<br />

w=99.77u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.128p<br />

varmis_12_rf<br />

w=10u<br />

nf=8<br />

l=2u<br />

m=1<br />

cox_m=1710.5f<br />

12mA 12mA<br />

2mA


Final Result <strong>for</strong> <strong>UWB</strong> LNA_v1<br />

FF, 1.3v, 0cel, max_res<br />

TT, 1.2v, 27cel, typ_res<br />

SS, 1.1v, 125cel, min_res


Final Result <strong>for</strong> <strong>UWB</strong> LNA_v1<br />

FF, 1.3v, 0cel, max_res<br />

TT, 1.2v, 27cel, typ_res<br />

SS, 1.1v, 125cel, min_res


Modification Summary <strong>for</strong> LNA_v1<br />

� Used non-ideal components, such as capacitors and resistor.<br />

� Q-optimization <strong>for</strong> all of spiral inductors used in LNA_v1<br />

� Bias circuit added<br />

� Gain controlled circuit added<br />

� Source follower added at the output<br />

� Output matching improved<br />

� Change the input matching/filter from BPF type to HPB<br />

� Gain improved<br />

� Input matching improved<br />

� Noise figure improved (compared with original one with real<br />

component replaced)<br />

� Cascading the one stage to boost gain


Layout <strong>for</strong> <strong>UWB</strong> LNA_v1


Addition <strong>for</strong> <strong>UWB</strong> Active Balun<br />

(no previous work )


Broadband Active Balun Added<br />

Conventional Active Balun<br />

Proposed Active Balun<br />

vdd_bln<br />

gnd_bln<br />

gnd_bln gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln vdd_bln<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln gnd_bln<br />

vdd_bln vdd_bln<br />

gnd_bln<br />

vdd_bln vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

vdd_bln<br />

gnd_bln<br />

gnd_bln<br />

vdd_bln<br />

vdd_bln<br />

gnd_bln<br />

vdd_bln<br />

gnd_bln<br />

vg_cs<br />

out outb<br />

n_bpw_12_rf<br />

nf=10<br />

lf=0.12u<br />

wf=7.2u<br />

M=1<br />

wt=72u<br />

n_bpw_12_rf<br />

nf=nf1_cg<br />

lf=0.12u<br />

wf=wf1_cg<br />

M=m1_cg<br />

wt=115.2u<br />

n_12_rf<br />

nf=8<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=14.4u<br />

n_12_rf<br />

nf=4<br />

lf=0.12u<br />

wf=1.8u<br />

M=1<br />

wt=7.2u<br />

n_bpw_12_rf<br />

nf=nf2_cg<br />

lf=0.12u<br />

wf=wf2_cg<br />

M=m2_cg<br />

wt=115.2u<br />

l=5u<br />

w=2u<br />

m=3<br />

rnnpo_rf<br />

r_zbt_m=0.104k<br />

l_cr20k_rf<br />

do=100u<br />

w=1.5u<br />

s=2u<br />

nt=5.5<br />

p_ls=3.43n<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

l=74.8u<br />

w=48.5u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=3.752p<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

l=5u<br />

w=2u<br />

m=3<br />

rnnpo_rf<br />

r_zbt_m=0.104k<br />

l=6.9u<br />

w=2u<br />

m=3<br />

rnnpo_rf<br />

r_zbt_m=0.141k<br />

l=7u<br />

w=2u<br />

m=3<br />

rnnpo_rf<br />

r_zbt_m=0.143k<br />

l=79u<br />

w=71u<br />

mimcaps_rf<br />

M=2<br />

c_tot_m=11.49p<br />

l_cr20k_rf<br />

do=120u<br />

w=5u<br />

s=2u<br />

nt=2.5<br />

p_ls=1.02n<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

vg_cs<br />

v_div1<br />

v_div2<br />

vg2_cg<br />

vg1_cg<br />

vdd_bln<br />

gnd_bln<br />

0 0<br />

Port1<br />

Port2<br />

Port3<br />

vg_cs<br />

out<br />

outb<br />

U1<br />

Act_Balun1<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

PMOS<br />

STI<br />

STI<br />

STI<br />

NMOS<br />

p-type<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

rnhr_case=typ<br />

pnp_vn_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

npn_vs_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

V68<br />

DC=1.2<br />

V72<br />

DC=0<br />

l=100u<br />

w=100u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=10.174p<br />

gnd_bln<br />

vdd_bln


Broadband Active Balun Added<br />

Phase<br />

Imbalance<br />

Amplitude<br />

Imbalance


Layout <strong>for</strong> <strong>UWB</strong> Active Balun


Previous work & Modifications<br />

<strong>for</strong><br />

<strong>UWB</strong> IQ Modulator<br />

Please use the slide show to see the animation of previous vs<br />

modification work and corresponding improving per<strong>for</strong>mance.


gnd_mix<br />

DC=0<br />

Design w/ Parasitic <strong>for</strong> I-V BPF:<br />

Bias<br />

only!<br />

V464<br />

DC=0.75<br />

0 0<br />

V302<br />

0<br />

DC=1.2<br />

vdd_mix<br />

Bias<br />

only!<br />

V497<br />

DC=0.75<br />

0<br />

0 0<br />

V467<br />

DC=0.75<br />

V303<br />

RF<br />

Rfb<br />

V498<br />

DC=0.75<br />

ctrl1<br />

ctrl2<br />

LO<br />

LOb<br />

ctrl1<br />

ctrl2<br />

RF<br />

Rfb<br />

LO<br />

U1<br />

Sw_Gm_trk2<br />

IF<br />

IFb<br />

U2<br />

Sw_Gm_trk2<br />

IF<br />

IFb<br />

V470<br />

DC=0.5<br />

0 0<br />

V473<br />

DC=0.5<br />

Capacitance in Capacitor<br />

Array should be changed<br />

(reduced) to fit desired<br />

pass-band!<br />

LOb<br />

IQ Modulator Refinement<br />

0<br />

V438<br />

DC=if (sw>=2, 1.2, 0)<br />

I474<br />

0 0<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

out<br />

ACMAG=1<br />

ACPHASE=0<br />

V<br />

0<br />

I477<br />

V439<br />

DC=if (sw>=1, 1.2, 0)<br />

V<br />

ACMAG=1<br />

ACPHASE=180<br />

ctrl2 ctrl1<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=0.9u<br />

nf=8<br />

M=1<br />

mimcaps_rf<br />

Differential<br />

AC current<br />

excitation!<br />

vdd_mix<br />

gnd_mix<br />

l=20u<br />

w=20u<br />

M=1<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=0.9u<br />

nf=8<br />

M=1<br />

mimcaps_rf<br />

l=20u<br />

w=20u<br />

M=1<br />

to_bias<br />

vdd_mix<br />

gnd_mix<br />

RF<br />

R65<br />

R_if<br />

vdd_mix<br />

gnd_mix<br />

gnd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

IF IFb<br />

ctrl1 ctrl2<br />

vdd_mix<br />

V V<br />

to_drain<br />

mimcaps_rf<br />

l=22u<br />

w=30u<br />

M=1<br />

vdd_mix<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=w_gm<br />

nf=16<br />

M=1<br />

gnd_mix<br />

do=97u<br />

w=5u<br />

s=2u<br />

nt=4.5<br />

l_cr20k_rf<br />

U13<br />

swC_tank2<br />

to_bias<br />

to_drain<br />

ctrl1<br />

ctrl2<br />

n_bpw_12_rf<br />

p_12_rf<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=w_gm<br />

nf=16<br />

M=1<br />

lf=0.12u<br />

wf=2.5u<br />

nf=14<br />

M=1<br />

lf=0.12u<br />

wf=1.25u<br />

nf=14<br />

M=1<br />

vdd_mix<br />

LO LOb<br />

gnd_mix gnd_mix<br />

Rfb<br />

U12<br />

swC_tank2<br />

to_drain to_bias<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=w_gm<br />

nf=16<br />

M=1<br />

p_12_rf<br />

lf=0.12u<br />

wf=2.5u<br />

nf=14<br />

M=1<br />

ctrl2<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=1.25u<br />

nf=14<br />

M=1<br />

ctrl1<br />

do=97u<br />

w=5u<br />

s=2u<br />

nt=4.5<br />

vdd_mix<br />

gnd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

l_cr20k_rf<br />

vdd_mix<br />

gnd_mix<br />

R70<br />

R_if<br />

n_bpw_12_rf<br />

lf=0.12u<br />

wf=w_gm<br />

nf=16<br />

M=1


IQ Modulator Refinement<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

to_drain<br />

to_bias<br />

ctrl2 ctrl1<br />

l=22u<br />

w=30u<br />

mimcaps_rf<br />

M=1<br />

l=20u<br />

w=20u<br />

mimcaps_rf<br />

M=1<br />

l=20u<br />

w=20u<br />

mimcaps_rf<br />

M=1<br />

n_bpw_12_rf<br />

nf=8<br />

lf=0.12u<br />

wf=0.9u<br />

M=1<br />

n_bpw_12_rf<br />

nf=8<br />

lf=0.12u<br />

wf=0.9u<br />

M=1<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

vdd_mix<br />

gnd_mix<br />

to_drain<br />

to_bias<br />

ctrl2 ctrl1<br />

l=23u<br />

w=30u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.732p<br />

l=20u<br />

w=20u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.43p<br />

l=21u<br />

w=21u<br />

mimcaps_rf<br />

M=1<br />

c_tot_m=0.478p<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3.6u<br />

M=1<br />

wt=57.6u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.12u<br />

wf=3.6u<br />

M=1<br />

wt=57.6u


Conversion<br />

Conversion<br />

Gain<br />

Gain<br />

=-1.53<br />

=-0.93<br />

dB<br />

dB<br />

IQ Modulator Refinement<br />

Conversion<br />

Conversion<br />

Gain<br />

Gain<br />

Conversion<br />

Conversion<br />

Gain<br />

Gain<br />

=-2.44<br />

=-5.03<br />

dB<br />

dB<br />

=-2.92<br />

=-6.72<br />

dB<br />

dB


Modification Summary <strong>for</strong> IQ<br />

Modulator<br />

� Enlarged the size of transistors in the tracking filter<br />

� Flatten the frequency response<br />

� Improve the impedance level of tracking filter<br />

� Reduce the conversion loss.<br />

� Improve frequency selectivity of the tracking filter thus improving<br />

the spurious response of the IQ modulator.


Layout <strong>for</strong> IQ Modulator


Original work<br />

of<br />

<strong>UWB</strong> Synthesizer


phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

U1<br />

DFF2<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

U17<br />

DFF2<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

Q<br />

Qd<br />

U33<br />

DFF_iq2<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

Q<br />

Qd<br />

U53<br />

DFF_iq2<br />

NSAMP=s ample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=0deg<br />

NSAMP=s ample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=180deg<br />

SP<br />

I_528MHz<br />

SP<br />

I_264MHz<br />

SP<br />

Ib_528MHz<br />

SP<br />

Q_528MHz<br />

SP<br />

Qb_528MHz<br />

SP<br />

SP<br />

Q_264MHz<br />

SP<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U73<br />

Sw_Gm9<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U83<br />

Sw_Gm10<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U93<br />

Sw_Gm11<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U103<br />

Sw_Gm12<br />

f_if_var=792meg<br />

w_gm=6u<br />

SP<br />

I_792MHz<br />

SP<br />

Ib_792MHz<br />

SP<br />

Qb_792MHz<br />

SP<br />

Q_792MHz<br />

out_I<br />

out_Ib<br />

out_Q<br />

out_Qb<br />

phi1<br />

phi1b<br />

in1_I<br />

in1_Ib<br />

in1_Q<br />

in1_Qb<br />

phi2<br />

phi2b<br />

in2_I<br />

in2_Ib<br />

in2_Q<br />

in2_Qb<br />

U113<br />

switches1<br />

dev_m=4<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U114<br />

Sw_Gm9<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U124<br />

Sw_Gm10<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U134<br />

Sw_Gm11<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U144<br />

Sw_Gm12<br />

f_if_var=f_if<br />

w_gm=tune_w_gm<br />

Qout<br />

Iout<br />

Qoutb<br />

Ioutb<br />

in2<br />

in1<br />

in1b<br />

in2b<br />

U154<br />

polyphase_1stage4<br />

R1=1/2/3.14159/C1/pole<br />

C1=1p<br />

pole=4.224g<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

SP<br />

I_synthout<br />

SP<br />

Ib_synthout<br />

SP<br />

Q_synthout<br />

SP<br />

Qb_synthout<br />

RCONST<br />

CONSTANT=phi1<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=-phi1+1.2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=phi2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=-phi2+1.2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

SP<br />

I_swout<br />

SP<br />

Ib_swout<br />

SP<br />

Q_swout<br />

SP<br />

Qb_swout<br />

in<br />

inb<br />

out<br />

outb<br />

U156<br />

diff_amp1<br />

in<br />

inb<br />

out<br />

outb<br />

U193<br />

diff_amp1<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

U15<br />

DFF3<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

U16<br />

DFF3<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

Q<br />

Qd<br />

U1<br />

DFF_iq3<br />

phib<br />

phi<br />

Db<br />

D I<br />

Ib<br />

Q<br />

Qd<br />

U2<br />

DFF_iq3<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=0deg<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

F=4.224g<br />

Amplitude=0.4V<br />

OFFSET=0.5V<br />

Phase=180deg<br />

SP<br />

I_528MHz<br />

SP<br />

I_264MHz<br />

SP<br />

Ib_528MHz<br />

SP<br />

Q_528MHz<br />

SP<br />

Qb_528MHz<br />

SP<br />

Ib_264MHz<br />

SP<br />

Q_264MHz<br />

SP<br />

Qb_264MHz<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U3<br />

Sw_Gm13<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U4<br />

Sw_Gm14<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U5<br />

Sw_Gm15<br />

f_if_var=792meg<br />

w_gm=6u<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

U6<br />

Sw_Gm16<br />

f_if_var=792meg<br />

w_gm=6u<br />

SP<br />

I_792MHz<br />

SP<br />

Ib_792MHz<br />

SP<br />

Qb_792MHz<br />

SP<br />

Q_792MHz<br />

out_I<br />

out_Ib<br />

out_Q<br />

out_Qb<br />

phi1<br />

phi1b<br />

in1_I<br />

in1_Ib<br />

in1_Q<br />

in1_Qb<br />

phi2<br />

phi2b<br />

in2_I<br />

in2_Ib<br />

in2_Q<br />

in2_Qb<br />

U7<br />

switches3<br />

dev_m=4<br />

Qout<br />

Iout<br />

Qoutb<br />

Ioutb<br />

in2<br />

in1<br />

in1b<br />

in2b<br />

U12<br />

polyphase_1stage5<br />

R1=1/2/3.14159/C1/pole<br />

C1=1p<br />

pole=4.224g<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=0.5V<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

SP<br />

I_synthout<br />

SP<br />

Ib_synthout<br />

SP<br />

Q_synthout<br />

SP<br />

Qb_synthout<br />

RCONST<br />

CONSTANT=phi1<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=-phi1+1.2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=phi2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

RCONST<br />

CONSTANT=-phi2+1.2<br />

NSAMP=sample_num<br />

SAMPLE_RATE=20g<br />

SP<br />

I_swout<br />

SP<br />

Ib_swout<br />

SP<br />

Q_swout<br />

SP<br />

Qb_swout<br />

in<br />

inb<br />

out<br />

outb<br />

U13<br />

diff_amp2<br />

in<br />

inb<br />

out<br />

outb<br />

U14<br />

diff_amp2<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

ctrl1<br />

ctrl2<br />

U8<br />

Sw_Gm_trk3<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

ctrl1<br />

ctrl2<br />

U201<br />

Sw_Gm_trk4<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

ctrl1<br />

ctrl2<br />

U224<br />

Sw_Gm_trk4<br />

LO<br />

LOb<br />

RF<br />

Rfb<br />

IF<br />

IFb<br />

ctrl1<br />

ctrl2<br />

U247<br />

Sw_Gm_trk4<br />

Synthesizer Refinement


Complex Signal Spectrum <strong>for</strong> Synthesizer output (dB)<br />

( φφ<br />

) = ( 0 , 0 )<br />

1 , 2<br />

Synthesizer Refinement<br />

φφ Band1: 4224-792=3424


Complex Signal Spectrum <strong>for</strong> Synthesizer output (dB)<br />

( φφ<br />

φφ<br />

) = ( 1 , 0 )<br />

1 , 2<br />

Synthesizer Refinement<br />

Band2: 4224-264=3960


Complex Signal Spectrum <strong>for</strong> Synthesizer output (dB)<br />

( φφ<br />

φφ<br />

) = ( 1 , 1 )<br />

1 , 2<br />

Synthesizer Refinement<br />

Band3: 4224+264=4488


gnd_mix<br />

V397<br />

VO=0.5<br />

VA=0.4<br />

FREQ=4.224g<br />

THETA=180<br />

0<br />

V1005<br />

DC=0<br />

0<br />

0<br />

vdd_mix<br />

0 0<br />

V927<br />

DC=0.5<br />

U1<br />

DFF4<br />

D I<br />

Db<br />

phi<br />

V398<br />

VO=0.5<br />

VA=0.4<br />

FREQ=4.224g<br />

THETA=0<br />

V1006<br />

DC=1.2<br />

LOinb<br />

0<br />

phib<br />

V928<br />

DC=0.5<br />

Ib<br />

LOin<br />

in1<br />

in2<br />

in1b<br />

in2b<br />

V<br />

U8<br />

polyphase_1stage2<br />

U2<br />

DFF4<br />

D I<br />

Db<br />

phi<br />

phib<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple Well RFCMOS<br />

coremos_corner=tt<br />

iomos_corner=tt<br />

cirspl_case=typ<br />

sqskspl_case=typ<br />

mimcap_case=typ<br />

varmis12_case=typ<br />

varmis33_case=typ<br />

vardio_case=typ<br />

npn_vn_case=typ<br />

npn_vs_case=typ<br />

pnp_vn_case=typ<br />

rnhr_case=typ<br />

rnnpo_case=typ<br />

rnppo_case=typ<br />

diodn_esd_case=typ<br />

diop_esd_case=typ<br />

pad_rf_case=typ<br />

Iout<br />

Ioutb<br />

Qout<br />

Qoutb<br />

R1=1/2/3.14159/C1/pole<br />

C1=1p<br />

pole=4.224g<br />

V<br />

V<br />

V<br />

Ib<br />

I_4224M<br />

Ib_4224M<br />

Q_4224M<br />

Qb_4224M<br />

V<br />

Synthesizer Settling<br />

V<br />

U3<br />

DFF_iq4<br />

D I<br />

Ib<br />

Q<br />

Db<br />

phi<br />

V<br />

V<br />

V<br />

V<br />

RF_I<br />

RF_Ib<br />

RF_Q<br />

RF_Qb<br />

Qb_528MHz<br />

phib<br />

Q_528MHz<br />

LO_I<br />

Qd<br />

Ib_528MHz<br />

LO_Ib<br />

LO_Q<br />

I_528MHz<br />

ctrl1 ctrl2<br />

LO_Qb<br />

IF_I<br />

IF_Ib<br />

IF_Q<br />

IF_Qb<br />

I_synthout<br />

Ib_synthout<br />

Q_synthout<br />

Qb_synthout<br />

U147<br />

Complex_Mixer_bpfout<br />

f_if=285meg<br />

tune_w_gm=2.5u<br />

U4<br />

DFF_iq4<br />

D I<br />

Ib<br />

Q<br />

Db<br />

phi<br />

phib<br />

Qd<br />

RF_Qb<br />

RF_Q<br />

RF_Ib<br />

RF_I<br />

I_264MHz<br />

LO_Ib<br />

LO_I<br />

V V V V<br />

Ib_264MHz<br />

LO_Qb<br />

LO_Q<br />

V V V V<br />

IF_Qb<br />

IF_Q<br />

IF_Ib<br />

IF_I<br />

in1_I<br />

in1_Ib<br />

in1_Q<br />

in1_Qb<br />

in2_I<br />

in2_Ib<br />

U6<br />

Complex_Mixer1 I_792MHz Q_792MHz<br />

tune_w_gm=2.5u out_I<br />

Ib_792MHz Qb_792MHz<br />

f_if=792meg<br />

I_swout<br />

Q_264MHz<br />

V<br />

V V V<br />

V V V V<br />

Ib_swout<br />

Qb_264MHz<br />

Q_swout<br />

Qb_swout<br />

out_Ib<br />

in2_Q<br />

in2_Qb<br />

out_Q<br />

out_Qb<br />

UMC 0.13um 1.2V/3.3V<br />

Twin, Tripple W ell Mixed_Mode<br />

U7<br />

switches4<br />

phi1<br />

phi1b<br />

phi2<br />

phi2b<br />

mos_corner=tt<br />

res_case=res_typ<br />

gnd_fs<br />

V429<br />

DC=0<br />

vdd_fs<br />

0 0<br />

V430<br />

DC=1.2<br />

V V V V<br />

phi2<br />

phi1<br />

R1143<br />

V971<br />

V970<br />

V969<br />

V968<br />

V1=1.2<br />

V1=0<br />

V1=1.2<br />

V1=0<br />

V2=0<br />

V2=1.2<br />

V2=0<br />

V2=1.2<br />

TD=50n<br />

TD=50n<br />

TD=0<br />

TD=0<br />

TR=1n<br />

TR=1n<br />

TR=1n<br />

TR=1n<br />

TF=1n<br />

TF=1n<br />

TF=1n<br />

TF=1n<br />

PW=100n PW=100n PW=100n PW=100n<br />

PER=200n PER=200n PER=200n PER=200n<br />

0 0 0 0<br />

0.05<br />

R1148<br />

0.05<br />

R1147<br />

0.05<br />

R1149<br />

0.05<br />

gnd_mix<br />

vdd_mix


Synthesizer Settling


Spectrum Directly from Nexxim<br />

Ch1


Spectrum Directly from Nexxim<br />

Ch2


Spectrum Directly from Nexxim<br />

Ch3


Modifications<br />

<strong>for</strong><br />

<strong>UWB</strong> Synthesizer


Synthesizer Schematic


Synthesizer Schematic


UMC<br />

TT<br />

Ch1 Spectrum


UMC<br />

TT<br />

Ch2 Spectrum


UMC<br />

TT<br />

Ch3 Spectrum


Simulation Results<br />

TT: MOS=tt, res=res_typ, cap=typ, ind=typ, temp=25 deg, Vdd=1.2<br />

SS: MOS=ss, res=res_min, cap=max, ind=min, temp=125 deg, Vdd=1.1<br />

FF: MOS=ff, res=res_max, cap=min, ind=max, temp=-25 deg, Vdd=1.3<br />

After removing the inclkbuff<br />

TT SS FF<br />

Ch1 carrier amp (dBv) -26.45 -36.847 -23.645<br />

Ch2 carrier amp (dBv) -25.99 -32.98 -26.55<br />

Ch3 carrier amp (dBv) -25.18 -31.66 -24.88<br />

Current Consumption (mA) 120 106 140<br />

TT SS FF<br />

Ch1 largest spur (dBc) -30.45 at fc + 2*df -15.5451 at fc + 2*df -28.52 at fc - 2*df<br />

Ch2 largest spur (dBc) -28.33 at fc + 2*df -24.58 at fc + 2*df -26.73 at fc - df<br />

Ch3 largest spur (dBc) -22.83 at fc - 2*df -26.36 at fc - 2*df -17.1 at fc - 2*df<br />

TT SS FF<br />

Ch1 largest adj spur (dBc) -35.85 at fc - df -30.14 at fc + df -40.13 at fc - df<br />

Ch2 largest adj spur (dBc) -31.85 at fc - df -39.04 at fc - df -30.3 at fc - df<br />

Ch3 largest adj spur (dBc) -34.31 at fc - df -40.57 at fc + df -35.23 at fc - df


Modification Summary <strong>for</strong><br />

Synthesizer<br />

� A fixed frequency filter and tracking filter were added at<br />

output of the 1st and 2nd complex mixer <strong>for</strong> better spur<br />

rejection.<br />

� CML frequency divider has been changed to one that is<br />

silicon validated.<br />

� Input source of the synthesizer has been changed to real<br />

striped-band switching VCO.<br />

� Some of I/Q imbalance issues have been addressed.<br />

� The divider output into complex mixers has been de-coupled<br />

with buffers and RC filters.


Layout <strong>for</strong> Synthesizer


Original work<br />

<strong>for</strong><br />

<strong>UWB</strong> Analog Basband Filter and<br />

Gain Controlled Stage


0<br />

V240<br />

0 0 0 0 0<br />

0<br />

in<br />

inb<br />

U MC 0.13um 1.2V /3.3V<br />

Tw in, Tripple W ell Mixed_Mode<br />

mos_corner=tt<br />

res_case=res_typ<br />

0<br />

R216<br />

C1 C2 C3 C4 C5<br />

R217<br />

1k<br />

1k<br />

0<br />

0 0<br />

M215<br />

N_12_MML130E<br />

L= 0.12u<br />

W= 10u<br />

M=5<br />

M=5<br />

W= 10u<br />

L= 0.12u<br />

N_12_MML130E<br />

M218<br />

0<br />

in<br />

inb<br />

gnd_bbrx<br />

gnd_bbrx<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

DC=if(ctrl==1, 1.2, 0) DC=if(ctrl==2, 1.2, 0) DC=if(ctrl==3, 1.2, 0) D C =if(c trl==4, 1.2, 0) DC=if(ctrl==5, 1.2, 0)<br />

V706<br />

DC=if(av1_ctrl== 1, 1.2, 0)<br />

V707<br />

V243<br />

DC=if(av1_ctrl== 2, 1.2, 0)<br />

V708<br />

V247<br />

DC=if(av2_ctrl== 1, 1.2, 0)<br />

V255<br />

V258<br />

DC=0.6<br />

DC=0.6<br />

ACMAG=0.5 ACMAG=0.5<br />

ACPHASE=1 ACPHASE=180<br />

V709<br />

V248<br />

DC=if(av2_ctrl== 2, 1.2, 0)<br />

V710<br />

V251<br />

DC=if(av2_ctrl== 3, 1.2, 0)<br />

CMOS Analog Baseband Filter & AGC<br />

<strong>Full</strong> Circuit <strong>Verification</strong><br />

0<br />

V711<br />

DC=if(av2_ctrl== 4, 1.2, 0)<br />

0<br />

R207<br />

R208<br />

Av1_c1<br />

Av1_c2<br />

V712<br />

DC= if(av3_ctrl= =1, 1.2, 0)<br />

1k<br />

1k<br />

Av2_c1<br />

Av2_c2<br />

Av2_c3<br />

Av2_c4<br />

0<br />

V713<br />

DC= if(av3_ctrl= =2, 1.2, 0)<br />

M206<br />

N_12_MML130E<br />

L= 0.12u<br />

W= 10u<br />

M=5<br />

M=5<br />

W= 10u<br />

L= 0.12u<br />

CT_AnaFilt_DC_cut2<br />

N_12_MML130E<br />

M209<br />

Av3_c1<br />

Av3_c2<br />

Av3_c3<br />

Av3_c4<br />

0<br />

V714<br />

DC=if(av3_ctrl== 3, 1.2, 0)<br />

gnd_bbrx<br />

gnd_bbrx<br />

Av4_c1<br />

Av4_c2<br />

Av4_c3<br />

0<br />

V715<br />

Av4_c4<br />

DC= if(av3_ctrl= =4, 1.2, 0)<br />

R203<br />

R204<br />

Av5_c1<br />

Av5_c2<br />

Av5_c3<br />

Av5_c4<br />

1k<br />

1k<br />

0<br />

V716<br />

DC=if(av4_ctrl== 1, 1.2, 0)<br />

out<br />

outb<br />

M202<br />

N_12_MML130E<br />

L= 0.12u<br />

W= 10u<br />

M=5<br />

M=5<br />

W= 10u<br />

L= 0.12u<br />

N_12_MML130E<br />

M205<br />

0<br />

V717<br />

out<br />

outb<br />

DC=if(av4_ctrl= = 2, 1.2, 0)<br />

0<br />

gnd_bbrx<br />

gnd_bbrx<br />

V V<br />

Control<br />

Voltage<br />

V718<br />

DC=if(av4_ctrl== 3, 1.2, 0)<br />

R190<br />

R191<br />

0<br />

V719<br />

DC= if(av4_ctrl= =4, 1.2, 0)<br />

1k<br />

1k<br />

gnd_bbrx V263<br />

M189<br />

N_12_MML130E<br />

L= 0.12u<br />

W= 10u<br />

M=5<br />

M=5<br />

W= 10u<br />

L= 0.12u<br />

N_12_MML130E<br />

M192<br />

0<br />

0<br />

DC=0<br />

V720<br />

DC= if(av5_ctrl= =1, 1.2, 0)<br />

vdd_bbrx<br />

0<br />

V583<br />

DC=1.2<br />

0<br />

V721<br />

DC=if(av5_ctrl== 2, 1.2, 0)<br />

gnd_bbrx<br />

gnd_bbrx<br />

0<br />

V722<br />

DC= if(av5_ctrl= =3, 1.2, 0)<br />

R178<br />

R179<br />

1k<br />

1k<br />

0<br />

V723<br />

DC=if(av5_ctrl== 4, 1.2, 0)<br />

M177<br />

N_12_MML130E<br />

L= 0.12u<br />

W=10u<br />

M=5<br />

M=5<br />

W= 10u<br />

L= 0.12u<br />

N_12_MML130E<br />

M182<br />

gnd_bbrx<br />

gnd_bbrx<br />

in<br />

inb<br />

R158<br />

C156<br />

C157<br />

R159<br />

1k<br />

0.1p<br />

0.1p<br />

1k<br />

R235<br />

R236<br />

U4<br />

Diif_Amp3<br />

outb<br />

out<br />

1k<br />

1k<br />

in<br />

inb<br />

Av1_c1<br />

Av1_c2<br />

Av1_c1<br />

Av1_c2<br />

C222<br />

outb<br />

out<br />

C223<br />

10p<br />

U5<br />

Diif_Amp3<br />

10p<br />

Av2_c1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c2<br />

in<br />

inb<br />

Av2_c3<br />

Av2_c4<br />

Av2_c3<br />

Av2_c4<br />

R226<br />

R231<br />

Av3_c1<br />

Av3_c2<br />

Av3_c1<br />

500k<br />

500k<br />

Av3_c2<br />

U3<br />

CT_AnalogFilter4<br />

Av3_c3<br />

Av3_c4<br />

Av3_c3<br />

Av3_c4<br />

Av4_c1<br />

Av4_c2<br />

Av4_c3<br />

Av4_c1<br />

Av4_c2<br />

Av4_c4<br />

Av4_c3<br />

Av4_c4<br />

Av5_c1<br />

Av5_c2<br />

Av5_c3<br />

Av5_c1<br />

Av5_c2<br />

Av5_c3<br />

Av5_c4<br />

Av5_c4<br />

out<br />

outb<br />

out<br />

outb


inb<br />

in<br />

Av1_c1<br />

Av1_c2<br />

i<br />

VCR_1stage1<br />

U21<br />

Av1_C1<br />

Av1_ C1<br />

Av1_c2<br />

Av1_ c2<br />

o<br />

i o<br />

U22<br />

VCR_1stage1<br />

R6<br />

C7<br />

in<br />

inb<br />

R_filt<br />

C_filt<br />

U6<br />

Diif_Amp4<br />

C13<br />

R10<br />

C_filt<br />

R_filt<br />

outb<br />

out<br />

CMOS Analog Baseband Filter & AGC<br />

<strong>Full</strong> Circuit <strong>Verification</strong><br />

i<br />

i<br />

U29 VCR_2stage_b1<br />

Av2_c1<br />

Av2_c2<br />

i o<br />

Av2_c1 Av2_c2 Av2_c3 Av2_c4<br />

Av2_ c1<br />

Av2 _c2<br />

Av2 _c1<br />

U12 VCR_2stage_a1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c3<br />

Av2_c4<br />

U11 VCR_2stage_a1<br />

Av2_ c2<br />

Av2 _c4<br />

Av2 _c3<br />

Av2_c4<br />

Av2_c3<br />

Av2_ c3<br />

Av2_ c4<br />

o<br />

i o<br />

U28 VCR_2stage_b1<br />

o<br />

Av2_c1<br />

L=0.12u<br />

W=10u<br />

M=5<br />

Av2_c2<br />

L=0.12u<br />

W=10u<br />

M=5<br />

gnd_bbrx<br />

gnd_bbrx<br />

C29<br />

C_filt<br />

U7<br />

Diif_Amp4<br />

in<br />

outb<br />

inb<br />

out<br />

i o<br />

Av2_c3<br />

L=0.12u<br />

W=10u<br />

M=5<br />

Av2_c4<br />

L=0.12u<br />

W=10u<br />

M=5<br />

gnd_bbrx<br />

gnd_bbrx<br />

M313<br />

N_12_MML130E<br />

M314<br />

N_12_MML130E<br />

M319<br />

N_12_MML130E<br />

M324<br />

N_12_MML130E<br />

C30<br />

R312<br />

R315<br />

C_filt<br />

R_0dB<br />

R_0dB/(10^(step_db/20))<br />

R320<br />

R_0dB/(10^(2*step_db/20))<br />

R325<br />

R_0dB/(10^(3*step_db/20))<br />

i<br />

i<br />

U30 VCR_2stage_b1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c4<br />

Av2_c3<br />

U13 VCR_2stage_a1<br />

Av2_c1<br />

Av2_c2<br />

Av2_c4<br />

Av2_c3<br />

Av2_c3<br />

Av2_c4<br />

Av3_c1 Av3_c2 Av3_c3 Av3_c4<br />

o<br />

o<br />

i o<br />

U14 VCR_2stage_a1<br />

Av2_ c1<br />

Av2_ c2<br />

Av2_ c3<br />

Av2_ c4<br />

i o<br />

U15 VCR_2stage_b1<br />

R446<br />

v dd_bbrx<br />

30k<br />

M444<br />

N_12_MML130E<br />

gnd_bbrx<br />

L=0.24u<br />

W=2u<br />

M=1<br />

C46<br />

in<br />

inb<br />

C_filt<br />

U8<br />

Diif_Amp4<br />

C47<br />

C_filt<br />

outb<br />

out<br />

i<br />

i<br />

U16 VCR_2stage_b1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c4<br />

Av2_c3<br />

U26 VCR_2stage_a1<br />

Av2_c1<br />

Av2_c2<br />

Av2_c4<br />

Av2_c3<br />

Av2_c3<br />

Av2_c4<br />

o<br />

o<br />

i o<br />

U27 VCR_2stage_a1<br />

C_filt<br />

U9<br />

Diif_Amp4<br />

Av4_c1 Av4_c2<br />

Av4_c3 Av4_c4 Av5_c1 Av5_c2<br />

Av5_c3 Av5_c4<br />

Av2_ c1<br />

Av2_ c2<br />

Av2_ c3<br />

Av2_ c4<br />

i o<br />

U18 VCR_2stage_b1<br />

v dd_bbrx v dd_bbrx<br />

M428<br />

M431<br />

in<br />

N_12_MML130E<br />

N_12_MML130E<br />

inb<br />

L=0.12u<br />

W=2.4u<br />

M=5<br />

M495<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=1<br />

gnd_bbrx gnd_bbrx<br />

M437<br />

N_12_MML130E<br />

L=0.24u<br />

W=5u<br />

M=5<br />

gnd_bbrx<br />

M492<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=1<br />

L=0.12u<br />

W=2.4u<br />

M=5<br />

C64<br />

in<br />

inb<br />

C65<br />

C_filt<br />

outb<br />

out<br />

M502<br />

N_12_MML130E<br />

L=0.12u<br />

W=2.4u<br />

M=5<br />

i<br />

i<br />

U19 VCR_2stage_b1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c2<br />

Av2_c1<br />

Av2_c4<br />

Av2_c3<br />

U32 VCR_2stage_a1<br />

Av2_c1<br />

Av2_c2<br />

Av2_c4<br />

Av2_c3<br />

Av2_c3<br />

Av2_c4<br />

o<br />

o<br />

i o<br />

U33 VCR_2stage_a1<br />

Av2_ c1<br />

Av2_ c2<br />

Av2_ c3<br />

Av2_ c4<br />

i o<br />

U31 VCR_2stage_b1<br />

gnd_bbrx gnd_bbrx<br />

gnd_bbrx<br />

R83<br />

C84<br />

R_filt<br />

C_filt<br />

U10<br />

Diif_Amp4<br />

in<br />

inb<br />

v dd_bbrx v dd_bbrx<br />

M506<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=1<br />

M504<br />

N_12_MML130E<br />

L=0.24u<br />

W=5u<br />

M=5<br />

M505<br />

P_12_MML130E<br />

L=0.12u<br />

W=4u<br />

M=1<br />

C85<br />

R86<br />

C_filt<br />

R_filt<br />

M503<br />

N_12_MML130E<br />

L=0.12u<br />

W=2.4u<br />

M=5<br />

outb<br />

out<br />

outb out<br />

outb<br />

out


CMOS Analog Baseband Filter & AGC<br />

<strong>Full</strong> Circuit <strong>Verification</strong>


Modifications<br />

<strong>for</strong><br />

<strong>UWB</strong> Analog BB filter<br />

& Gain Control Stage


HPF, LPF and<br />

VGA I & Q<br />

Stages<br />

<strong>UWB</strong> Analog BB filter & Gain Control Stage<br />

LPF_Vtun<br />

AGND<br />

AVDD<br />

BBIp<br />

BBIn<br />

BBqn<br />

BBqp<br />

AVDD<br />

LPF_Vtun<br />

U8<br />

HPF7<br />

VDD I250u<br />

Inp<br />

Outp<br />

Inn<br />

Inp<br />

PD<br />

VDD<br />

Outn<br />

GND<br />

PD GND<br />

Inn Outn<br />

HPF7<br />

V1560 V1563 V1564 V1565 V1566 V1567<br />

Outp<br />

I250u<br />

U15<br />

PD<br />

U9<br />

LPF3<br />

Vtun VDD<br />

Inp Outp<br />

Inn<br />

Vctrl_1p<br />

Vctrl_1n<br />

Inn<br />

Inp<br />

Vtun<br />

LPF3<br />

U5<br />

Outn<br />

GND<br />

GND<br />

Outn<br />

Outp<br />

VDD<br />

I350u<br />

Vin<br />

Vctrlp<br />

Vinn<br />

Vctrlp<br />

Stg8<br />

Vctrln<br />

Vctrln<br />

VDD<br />

Vout<br />

Voutn<br />

GND<br />

GND<br />

VDD<br />

U10<br />

Vinn Voutn<br />

GNDdump<br />

I50u_cm1 I350u_stg2i<br />

AVDD<br />

I250u_EFI I350u_Stg1II50u_CMamp1<br />

I350u_Stg2I I500u_tia1 I300u_TRAI<br />

PD U12<br />

BB_Bias2<br />

I250u_EFQ I350u_Stg1QI50u_CMamp3I350u_Stg2Q<br />

I500u_tia2I350u_TRAQ<br />

AGND<br />

Vin<br />

Stg8<br />

Vout<br />

I350u<br />

I50u_cm3<br />

I350u_stg2q<br />

GNDdump<br />

U6<br />

Vbias<br />

Vcm_ref<br />

V<br />

U13<br />

VDD<br />

Inp Outp<br />

HPF6<br />

Inn Outn<br />

Bias<br />

Bias<br />

Inn Outn<br />

Inp<br />

HPF6 Outp<br />

VDD<br />

V<br />

U7<br />

E1921<br />

Vctrl_2p<br />

0<br />

Vctrl_2n<br />

I50u_cm1<br />

I350u_stg2i<br />

U14<br />

I50u_cm I350u VDD<br />

Vin Ioutp<br />

Stg9<br />

Vinn Ioutn<br />

Vctrlp<br />

Vctrln<br />

CMref<br />

V<br />

GND<br />

GND<br />

CMref<br />

Vctrln<br />

Vctrlp<br />

Vinn Ioutn<br />

GNDdump<br />

Stg9<br />

Vin Ioutp<br />

I50u_cm I350u VDD<br />

I50u_cm3<br />

I350u_stg2q<br />

V<br />

GNDdump<br />

U11<br />

V<br />

E1897<br />

V<br />

0<br />

I500u_tia I300u VDD<br />

Iinp<br />

OpStg8<br />

Voutp<br />

Iinn Voutn<br />

PD GND<br />

PD<br />

Iinn<br />

OpStg8 Iinp<br />

V<br />

U16<br />

GND<br />

Voutn<br />

Voutp<br />

I500u_tia I300u VDD<br />

U17<br />

E1910<br />

0<br />

V<br />

IOutp IOutn GNDdump<br />

Qoutn QOutp<br />

V


In p<br />

In n<br />

Ioutn<br />

Ioutp<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Vtune<br />

GND<br />

U55<br />

Gm_Nauta5<br />

Vdd<br />

U54<br />

Gm_Nauta5<br />

Vdd<br />

Vinp<br />

Vinn<br />

Ioutn<br />

Ioutp<br />

<strong>UWB</strong> Analog BB filter (LPF portion)<br />

mimcaps_rf<br />

c_tot_m=2.388p<br />

250MHz Cutoff 5 th Order Chebychev<br />

Low Pass Gm-C Filter<br />

M=1<br />

w=48u<br />

l=48u<br />

c_tot_m=2.388p<br />

mimcaps_rf<br />

l=48u<br />

w=48u<br />

M=1<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Ioutn<br />

Ioutp<br />

U42<br />

Gm_Nauta5<br />

Vdd<br />

Vdd<br />

Vtune<br />

GND<br />

Ioutn<br />

Ioutp<br />

U41<br />

Gm_Nauta5<br />

Vinp<br />

Vinn<br />

mimcaps_rf<br />

c_tot_m=1.602p<br />

M=2<br />

w=25u<br />

l=30u<br />

c_tot_m=1.602p<br />

mimcaps_rf<br />

l=30u<br />

w=25u<br />

M=2<br />

Cinductor Cpole<br />

Ioutn<br />

Ioutp<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Vdd<br />

Vtune<br />

GND<br />

U38<br />

Gm_Nauta5<br />

U53<br />

Gm_Nauta5<br />

Vdd<br />

Vinp<br />

Vinn<br />

Ioutn<br />

Ioutp<br />

VDD<br />

mimcaps_rf<br />

c_tot_m=5.174p<br />

GND<br />

M=2<br />

w=50u<br />

l=50u<br />

c_tot_m=5.174p<br />

mimcaps_rf<br />

l=50u<br />

w=50u<br />

M=2<br />

Cinductor2<br />

Vtun<br />

Final Design<br />

Cpole = 1.7pF<br />

Cinductor = 1.2pF<br />

Cinductor2 = 3pF<br />

Vtun=1.18V<br />

gml=0.25um<br />

gmw=5um<br />

count=1<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Ioutn<br />

Ioutp<br />

U57<br />

Gm_Nauta5<br />

Vdd<br />

Vdd<br />

Vtune<br />

GND<br />

Ioutn<br />

Ioutp<br />

U56<br />

Gm_Nauta5<br />

Vinp<br />

Vinn<br />

mimcaps_rf<br />

c_ to t_ m=1.6 0 2 p<br />

M=2<br />

w=2 5 u<br />

l=3 0u<br />

c_tot_m=1.602p<br />

mimcaps_rf<br />

l=3 0u<br />

w=2 5 u<br />

M=2<br />

Ioutn<br />

Ioutp<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Vtune<br />

GND<br />

U44<br />

Gm_Nauta5<br />

Vdd<br />

U47<br />

Gm_Nauta5<br />

Vdd<br />

Vinp<br />

Vinn<br />

Ioutn<br />

Ioutp<br />

mimcaps_rf<br />

c_tot_m=2.388p<br />

M=1<br />

w=48u<br />

l=48u<br />

c_tot_m=2.388p<br />

mimcaps_rf<br />

l=48u<br />

w=48u<br />

M=1<br />

Cpole Cinductor<br />

Vinp<br />

Vinn<br />

GND<br />

Vtune<br />

Ioutn<br />

Ioutp<br />

U43<br />

Gm_Nauta5<br />

Vdd<br />

Vdd<br />

Vtune<br />

GND<br />

Ioutn<br />

Ioutp<br />

U45<br />

Gm_Nauta5<br />

Vinp<br />

Vinn<br />

rnhr_rf<br />

r_zbt_m=1.256k<br />

rnhr_rf<br />

r_zbt_m=1.256k<br />

l=10.3u<br />

w=2u<br />

m=4<br />

l=10.3u<br />

w=2 u<br />

m=4<br />

Outp Outn


Gm Cell used in <strong>UWB</strong> Analog BB LPF filter<br />

Vinp<br />

Vtune Vdd<br />

Vinn<br />

GND<br />

M328<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M327<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

M330<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M329<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

Vdd<br />

GND<br />

Vdd<br />

GND<br />

Gm Unit Cell<br />

M332<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M331<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

Vdd Vtune Vtune Vdd<br />

M334<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M333<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

M338<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M337<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

GND GND GND GND<br />

M336<br />

P_12_MML130E<br />

L=0.25u<br />

W=10u<br />

M=1<br />

M335<br />

N_12_MML130E<br />

L=0.25u<br />

W=5u<br />

M=1<br />

Ioutn<br />

Ioutp


1 st Stage of Gain Control<br />

VDD<br />

Vctrlp<br />

Vctrln<br />

Vin Vinn<br />

Voutn<br />

Vout<br />

GNDdump GNDdump<br />

GND<br />

I350u<br />

n_12_rf<br />

nf=16<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=115.2u<br />

n_12_rf<br />

nf=16<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=1<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=1<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=2<br />

wt=115.2u<br />

n_12_rf<br />

nf=8<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=57.6u<br />

n_12_rf<br />

nf=8<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=57.6u<br />

n_12_rf<br />

nf=8<br />

lf=0.2u<br />

wf=7.2u<br />

M=1<br />

wt=57.6u<br />

n_12_rf<br />

nf=8<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=57.6u<br />

rnhr_rf<br />

r_zbt_m=0.645k<br />

rnhr_rf<br />

r_zbt_m=0.645k<br />

rnhr_rf<br />

r_zbt_m=0.161k<br />

Bias<br />

Bias<br />

1 st VGA Stage


<strong>UWB</strong> Analog BB filter (HPF portion)<br />

Passive 2 nd High Pass Filter<br />

Inp<br />

Inn<br />

l=100u<br />

w=60u<br />

M=2<br />

M=2<br />

w=60u<br />

l=100u<br />

mimcaps_rf<br />

c_tot_m=12.33p<br />

c_tot_m=12.33p<br />

mimcaps_rf<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

l=20u<br />

w=2u<br />

m=1<br />

l=20u<br />

w=2u<br />

m=1<br />

Bias<br />

m=1<br />

w=2u<br />

l=20u<br />

m=1<br />

w=2u<br />

l=20u<br />

r_zbt_m=9.96k<br />

rnhr_rf<br />

r_zbt_m=9.96k<br />

rnhr_rf<br />

Outp<br />

VDD Outn


2 nd Stage of Gain Control<br />

VDD<br />

Vctrlp<br />

Vctrln<br />

Vin Vinn<br />

Ioutn<br />

GNDdump GNDdump<br />

GND<br />

Ioutp<br />

CMref<br />

I350u<br />

I50u_cm<br />

n_12_rf<br />

nf=16<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=115.2u<br />

n_12_rf<br />

nf=16<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.15u<br />

wf=9.6u<br />

M=1<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.15u<br />

wf=9.6u<br />

M=1<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.15u<br />

wf=9.6u<br />

M=7<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.15u<br />

wf=9.6u<br />

M=7<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.3u<br />

wf=9.6u<br />

M=14<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.3u<br />

wf=9.6u<br />

M=14<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=10<br />

wt=115.2u<br />

p_12_rf<br />

nf=12<br />

lf=0.2u<br />

wf=9.6u<br />

M=10<br />

wt=115.2u<br />

n_12_rf<br />

nf=10<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=72u<br />

n_12_rf<br />

nf=10<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=72u<br />

n_12_rf<br />

nf=10<br />

lf=0.2u<br />

wf=7.2u<br />

M=1<br />

wt=72u<br />

n_12_rf<br />

nf=8<br />

lf=0.2u<br />

wf=7.2u<br />

M=2<br />

wt=57.6u<br />

n_12_rf<br />

nf=16<br />

lf=0.3u<br />

wf=7.2u<br />

M=4<br />

wt=115.2u<br />

n_12_rf<br />

nf=16<br />

lf=0.3u<br />

wf=7.2u<br />

M=4<br />

wt=115.2u<br />

l=5.3u<br />

w=2u<br />

m=20<br />

rnhr_rf<br />

r_zbt_m=0.124k<br />

Vsense<br />

Vref<br />

GND<br />

Vout<br />

VDD<br />

I50u_s<br />

U91<br />

CMamp5<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

l=10u<br />

w=1u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=10.089k<br />

V<br />

Bias<br />

Bias<br />

Vfb Vfb<br />

net_cm<br />

net_cm<br />

2 nd VGA Stage


PD<br />

GND<br />

VDD<br />

INV<br />

VSS<br />

U276<br />

INV8<br />

A Y<br />

VDD<br />

I500u_tia<br />

Iinp<br />

Output stage of VGA<br />

Output Transimpedance Stage<br />

p_12_rf<br />

lf=0.2u<br />

wf=3.84u<br />

nf=16<br />

M=1<br />

wt=61.44u<br />

VDD<br />

INV<br />

VSS<br />

U275<br />

INV8<br />

A Y<br />

2.75mA<br />

p_12_rf<br />

lf=0.2u<br />

wf=9.6u<br />

nf=16<br />

M=2<br />

wt=153.6u<br />

n_12_rf<br />

lf=0.2u<br />

wf=4u<br />

nf=16<br />

M=4<br />

wt=64u<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=1<br />

wt=80u<br />

n_12_rf<br />

r_zbt_m=0.759k<br />

rnhr_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=1<br />

wt=80u<br />

w=2u<br />

l=6.4u<br />

m=4<br />

n_12_rf<br />

lf=0.2u<br />

wf=2u<br />

nf=8<br />

M=2<br />

wt=16u<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=2<br />

wt=80u<br />

Voutn<br />

Rin = 73 Ohms<br />

Rt = 63dB<br />

I300u<br />

Voutp<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=2<br />

wt=80u<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=1<br />

wt=80u<br />

m=4<br />

w=2u<br />

l=6.4u<br />

r_zbt_m=0.759k<br />

rnhr_rf<br />

n_12_rf<br />

lf=0.2u<br />

wf=2u<br />

nf=8<br />

M=2<br />

wt=16u<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=1<br />

wt=80u<br />

p_12_rf<br />

lf=0.2u<br />

wf=9.6u<br />

nf=16<br />

M=2<br />

wt=153.6u<br />

n_12_rf<br />

lf=0.2u<br />

wf=4u<br />

nf=16<br />

M=4<br />

wt=64u<br />

I500u_tia<br />

Iinn<br />

n_12_rf<br />

lf=0.2u<br />

wf=5u<br />

nf=16<br />

M=1<br />

wt=80u<br />

I1dB = 330uApk<br />

I1dB limited by input stage<br />

I300u


Bias Circuitry<br />

Baseband Bias Block<br />

AVDD<br />

AGND<br />

I50u_CMamp1 I500u_tia1 I50u_CMamp3 I500u_tia2<br />

Vbias<br />

Vcm_ref<br />

I250u_EFI I250u_EFQ I350u_Stg1I I350u_Stg1Q I350u_Stg2I I350u_Stg2Q I300u_TRAI I350u_TRAQ<br />

PD<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

n_bpw_12_rf<br />

nf=16<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=32u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

l=7.7u<br />

w=2u<br />

m=2<br />

rnhr_rf<br />

r_zbt_m=1.849k<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

l=7.7u<br />

w=2u<br />

m=2<br />

rnhr_rf<br />

r_zbt_m=1.849k<br />

Vsense<br />

Vref<br />

Vout<br />

U213<br />

BuffAmp2<br />

Vsense<br />

Vref<br />

Vout<br />

U214<br />

BuffAmp2<br />

l=6.1u<br />

w=2u<br />

m=2<br />

rnhr_rf<br />

r_zbt_m=1.442k<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=5<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=7<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=7<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=6<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=5<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=7<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=7<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=6<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=1u<br />

M=1<br />

wt=4u<br />

n_bpw_12_rf<br />

lf=0.2u<br />

wf=1u<br />

n_bpw_12_rf<br />

lf=0.2u<br />

wf=1u<br />

n_bpw_12_rf<br />

lf=0.2u<br />

wf=1u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

INV<br />

VD D<br />

VSS<br />

U223<br />

INV4<br />

INV<br />

VD D<br />

VSS<br />

U224<br />

INV4<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

p_12_rf<br />

nf=4<br />

lf=0.3u<br />

wf=1.6u<br />

M=2<br />

wt=6.4u<br />

PDbb<br />

PDb<br />

100u +/-30%<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u<br />

n_bpw_12_rf<br />

nf=4<br />

lf=0.2u<br />

wf=2u<br />

M=1<br />

wt=8u


Common Mode Aux. Amplifier<br />

GND<br />

VDD<br />

Common Mode Aux. Amplifier<br />

Vref<br />

Vsense<br />

I50u_src<br />

n_12_rf<br />

lf=0.3u<br />

wf=7.2u<br />

nf=16<br />

M=1<br />

wt=115.2u<br />

n_12_rf<br />

lf=0.3u<br />

wf=7.2u<br />

nf=8<br />

M=1<br />

wt=57.6u<br />

p_12_rf<br />

lf=0.3u<br />

wf=9.6u<br />

nf=16<br />

M=1<br />

wt=153.6u<br />

n_12_rf<br />

lf=0.3u<br />

wf=7.2u<br />

nf=16<br />

M=2<br />

wt=115.2u<br />

p_12_rf<br />

lf=0.3u<br />

wf=9.6u<br />

nf=16<br />

M=1<br />

wt=153.6u<br />

Gv=40dB<br />

3dB BW=1.8MHz<br />

GM=15dB<br />

PM=79deg<br />

m=3<br />

w=1.5u<br />

l=5u<br />

r_zbt_m=1.045k<br />

rnhr_rf<br />

n_12_rf<br />

lf=0.3u<br />

wf=7.2u<br />

nf=8<br />

M=1<br />

wt=57.6u<br />

M=1<br />

w=30u<br />

l=30u<br />

p_12_rf<br />

lf=0.25u<br />

wf=9.6u<br />

nf=16<br />

M=1<br />

wt=153.6u<br />

c_tot_m=0.952p<br />

mimcaps_rf<br />

l=10u<br />

w=2u<br />

m=1<br />

rnhr_rf<br />

r_zbt_m=4.87k<br />

Vout


Section 3: Results<br />

Analog Baseband


Section 3: Results<br />

Analog Baseband<br />

Nominal Signal Level = 707uVrms <strong>for</strong> this gain setting<br />

This means that a peak-to-average of 16dB can be tolerated.


Section 3: Results<br />

Analog Baseband<br />

Nominal Signal Level = 22mVrms <strong>for</strong> this gain setting (assuming 20dB LNA gain step)<br />

This means that a peak-to-average of 12dB can be tolerated.


Section 3: Results<br />

Analog Baseband<br />

This plot corresponds to the case where the LNA is in low gain and the RF<br />

Input power is -30dBm


Section 3: Results<br />

Analog Baseband<br />

This plot corresponds to the case where the LNA is in high gain and the RF<br />

Input power is -74dBm


Section 3: Results<br />

Analog Baseband<br />

NOTE: Rise in Group Delay at Low Frequencies is due to High Pass Filtering


Modification Summary <strong>for</strong> Analog BB<br />

Filter<br />

� Divide previous one stage arrangement into multiple stages<br />

in cascade<br />

� Filter topology has been changed to ladder type with Gm-C<br />

implementation<br />

� Change the digital control scheme into analog voltage<br />

controlled one<br />

� Change the low frequency rejection from servo-loop to RC<br />

high-pass filter.


Layout <strong>for</strong> Analog Gm-C Filter

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!