14.08.2013 Views

Frobenius monads and pseudomonoids Introduction - ResearchGate

Frobenius monads and pseudomonoids Introduction - ResearchGate

Frobenius monads and pseudomonoids Introduction - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

adjoint, is <strong>Frobenius</strong> with<br />

l = *<br />

j .<br />

Proof In an autonomous monoidal bicategory, the composite<br />

a biexact pairing if <strong>and</strong> only if the corresponding morphism<br />

is an equivalence. So, with<br />

an equivalence. QED<br />

o<br />

Ÿ nƒA o A ƒ s o<br />

s<br />

: A æææÆA ƒA ƒA æææÆA l = *<br />

j , we have<br />

( ) ( ƒ ) ƒ<br />

( ) @<br />

sŸ o * o<br />

*<br />

= A ƒj<br />

o A p o n A d ,<br />

p<br />

s :A ƒA æ æÆA æ æÆI l<br />

A pseudocomonoidal structure on A in Proposition 3.1 is provided by j * <strong>and</strong> p * ;<br />

compare Theorem 1.6 (c). We also note that there are isomorphisms<br />

*<br />

p @ d ƒA<br />

o A<br />

o<br />

p o( n A) A p o r A p A o A r<br />

where<br />

( ) ƒ<br />

Ê j p*<br />

ˆ<br />

r= ÁI<br />

æÆ æ A ææÆA ƒA˜.<br />

Ë<br />

¯<br />

Example Quasi-Hopf algebras<br />

( ) ƒ @ ƒ<br />

( ) ( ƒ ) @ ( ƒ ) ( ƒ )<br />

A quasibialgebra (over a field k) is a k-algebra H equipped with algebra morphisms<br />

D :H H H<br />

æÆ æ ƒ <strong>and</strong> E: H æÆ æ k ,<br />

<strong>and</strong> with an invertible element fŒH ƒH ƒH,<br />

such that<br />

( E ƒ 1H)( D( a) ) = a = ( 1H<br />

ƒE)(<br />

D(<br />

a)<br />

) <strong>and</strong> f( D ƒ 1H)( D( a) ) = ( 1H<br />

ƒ D)( D(<br />

a)<br />

) f<br />

for all a ΠH;<br />

furthermore, f satisfies the pentagon condition<br />

( 1ƒ1ƒ D) ( f) ◊ ( D ƒ1ƒ1) ( f) = ( 1ƒ f) ◊ ( 1ƒ D ƒ1)<br />

( f) ◊( f ƒ 1)<br />

.<br />

(A quasibialgebra reduces to an ordinary bialgebra when f is the identity element<br />

1 1 1<br />

ƒ ƒ .) We can make H ƒ H<br />

actions<br />

into a left H ƒ H-,<br />

right H-bimodule by means of the<br />

( a ƒ b)◊( x ƒ y)◊ c =<br />

1 2<br />

axc ƒbyc<br />

where<br />

Â<br />

i i<br />

Â<br />

i<br />

i<br />

i<br />

i<br />

1 2 ; for the time being, let us call this bimodule M. Given an algebra<br />

D( c) = c ƒc<br />

anti-morphism S: H æÆ æ H,<br />

there is another left H ƒ H-,<br />

right H-bimodule structure<br />

defined on H ƒ H by the actions<br />

( a ƒ b)◊( x ƒ y)◊ c =<br />

1 2<br />

 axS( bj) ƒbj<br />

yc<br />

where<br />

D( b) = b ƒb<br />

j<br />

Â<br />

j<br />

j j<br />

1 2 ; for the time being, let us call this bimodule N. A quasi-Hopf<br />

18<br />

is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!