15.08.2013 Views

Azathioprine and chlorambucil: mechanism of action and use in ...

Azathioprine and chlorambucil: mechanism of action and use in ...

Azathioprine and chlorambucil: mechanism of action and use in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Azathiopr<strong>in</strong>e</strong> <strong>and</strong> <strong>chlorambucil</strong>: <strong>mechanism</strong> <strong>of</strong> <strong>action</strong> <strong>and</strong> <strong>use</strong> <strong>in</strong><br />

dermatology<br />

Dr. Fiona Bateman BVSc MACVSc<br />

Introduction<br />

Systemic immune moderators have been <strong>use</strong>d <strong>in</strong> both human <strong>and</strong> veter<strong>in</strong>ary dermatology for the treatment <strong>of</strong><br />

a wide variety <strong>of</strong> immune mediated <strong>and</strong> allergic conditions. While their <strong>use</strong> is <strong>of</strong>f label (even with<strong>in</strong> the<br />

human field), a large amount <strong>of</strong> evidence attests to their safety <strong>and</strong> efficacy. Both azathiopr<strong>in</strong>e <strong>and</strong><br />

<strong>chlorambucil</strong> have been <strong>use</strong> as s<strong>in</strong>gle agent or, more commonly, <strong>in</strong> comb<strong>in</strong>ation therapy <strong>of</strong> a wide range <strong>of</strong><br />

dermatological conditions.<br />

<strong>Azathiopr<strong>in</strong>e</strong><br />

History<br />

<strong>Azathiopr<strong>in</strong>e</strong> was first developed as an anti-rejection drug for renal transplantation <strong>and</strong> was first<br />

<strong>use</strong>d <strong>in</strong> comb<strong>in</strong>ation with cortisone for this purpose <strong>in</strong> 1962. The discovery <strong>of</strong> azathiopr<strong>in</strong>e is one <strong>of</strong> the first<br />

examples <strong>of</strong> what is now termed ‘rational drug design’. George Hitch<strong>in</strong>gs <strong>and</strong> Gerturde Elion, researchers at<br />

Burroughs Wellcome Research Laboratories (now GlaxoSmithKl<strong>in</strong>e) were pioneers <strong>in</strong> drug development <strong>and</strong><br />

attempted to identify cellular <strong>and</strong> molecular targets for which they then developed targeted drugs. One such<br />

drug was 6-MP (6-mercaptopur<strong>in</strong>e), the precursor <strong>of</strong> azathiopr<strong>in</strong>e.<br />

Hitch<strong>in</strong>gs <strong>and</strong> Elion hypothesized that the development <strong>of</strong> synthetic pur<strong>in</strong>e analogs may halt the<br />

growth <strong>of</strong> rapidly divid<strong>in</strong>g cells. Thus they synthesized a variety <strong>of</strong> pur<strong>in</strong>e analogs, one <strong>of</strong> which was 6-MP.<br />

However, 6-MP proved to be rapidly metabolized <strong>in</strong> vivo, so <strong>in</strong> an attempt to <strong>in</strong>crease its efficacy with the<br />

addition <strong>of</strong> an imidazole r<strong>in</strong>g to the sulphur atom at position 6 (see Figure 1). The result<strong>in</strong>g compound,<br />

azathiopr<strong>in</strong>e, was more active <strong>and</strong> had a better safety pr<strong>of</strong>ile than 6-MP. 1<br />

Imidazole<br />

r<strong>in</strong>g<br />

6-MP<br />

Figure 1.<br />

Chemical composition <strong>of</strong><br />

azathiopr<strong>in</strong>e, show<strong>in</strong>g<br />

addition <strong>of</strong> imidazole r<strong>in</strong>g to<br />

sulphur at position 6 <strong>of</strong> 6-<br />

MP<br />

The long collaboration <strong>of</strong> Hitch<strong>in</strong>gs <strong>and</strong> Elion led to the development <strong>of</strong> some <strong>of</strong> the most<br />

successful drugs still <strong>use</strong>d today, <strong>in</strong>clud<strong>in</strong>g allupur<strong>in</strong>ol, pyrametham<strong>in</strong>e (<strong>use</strong>d to treat malaria), trimethoprim,<br />

acyclovir, <strong>and</strong> azidothymid<strong>in</strong>e (AZT). Their discoveries were awarded (along with James Whyte Black)<br />

when <strong>in</strong> 1988, they received the Nobel Prize <strong>in</strong> Medic<strong>in</strong>e.<br />

Pharmacology<br />

Thiopur<strong>in</strong>es are prodrugs that exert their cytotoxicity after they have been metabolized<br />

<strong>in</strong>tracellularly. Despite over 50 years <strong>of</strong> <strong>use</strong> <strong>in</strong> human medic<strong>in</strong>e, their exact <strong>mechanism</strong> <strong>of</strong> <strong>action</strong> rema<strong>in</strong>s<br />

<strong>in</strong>completely characterized. The most biologically active end product <strong>of</strong> the thiopur<strong>in</strong>es (<strong>in</strong>clud<strong>in</strong>g<br />

azathiopr<strong>in</strong>e) are 6-thioguan<strong>in</strong>e nucleotides (6-TGNs) . 6-TGNs <strong>in</strong>hibit de novo synthesis <strong>of</strong> pur<strong>in</strong>es <strong>and</strong> are<br />

<strong>in</strong>corporated <strong>in</strong>to DNA as a false base, which triggers cell cycle arrest <strong>and</strong> apoptosis via the DNA mismatch<br />

repair <strong>mechanism</strong>. 2<br />

<strong>Azathiopr<strong>in</strong>e</strong> is rapidly absorbed from the gastro<strong>in</strong>test<strong>in</strong>al tract follow<strong>in</strong>g oral adm<strong>in</strong>istration, with a<br />

half life <strong>of</strong> approximately 3 hours due to the rapid metabolism to 6-mercaptopur<strong>in</strong>e (6-MP). The active<br />

46


metabolites have a much longer half life, which allows for once daily dos<strong>in</strong>g. <strong>Azathiopr<strong>in</strong>e</strong> is extensively<br />

metabolized (Figure 2), with only 2% excreted unchanged <strong>in</strong> the ur<strong>in</strong>e.<br />

<strong>Azathiopr<strong>in</strong>e</strong> is reduced through non-enzymatic degradation to 6-MP <strong>in</strong> vivo. This process occurs<br />

through nucleophillic attack by sulphahydryl compounds present <strong>in</strong> erythrocytes <strong>and</strong> body tissues. 3 6-MP is<br />

then metabolized by one <strong>of</strong> four pathways:<br />

1. Hypoxanth<strong>in</strong>e-guan<strong>in</strong>e phophoribosyl transferase (HGPRT) – conversion to 6-thioimos<strong>in</strong>e-5’monophosphate<br />

(TIMP).<br />

2. Thiopur<strong>in</strong>e methyltransferase (TPMT) – catalyses S-methylation to 6-methyl mercaptopur<strong>in</strong>e<br />

(<strong>in</strong>active compound)<br />

3. Xanth<strong>in</strong>e oxidase (XO) – catalyses oxidation to 6-thiouric acid (<strong>in</strong>active compound)<br />

4. Aldehyde oxidase (AO) – conversion to 6-TGN hydroxylated metabolites (<strong>in</strong>active compound)<br />

The enzymatic competition for the 6-MP substrate is vigorous, with the effects <strong>of</strong> XO <strong>and</strong> AO activity<br />

leav<strong>in</strong>g only 16% <strong>of</strong> the total dose <strong>of</strong> 6-MP for systemic distribution. 4 Note this does not <strong>in</strong>clude TPMT<br />

activity, which will decrease the amount <strong>of</strong> 6-MP converted to TIMP further. The compet<strong>in</strong>g pathways are<br />

important <strong>in</strong> that block<strong>in</strong>g a metabolic pathway <strong>in</strong>volved <strong>in</strong> the degradation <strong>of</strong> 6-MP (for example, through<br />

the <strong>use</strong> <strong>of</strong> a xanthane oxidase <strong>in</strong>hibitor such as allopur<strong>in</strong>ol, or through low endogenous TPMT activity) can<br />

dramatically <strong>in</strong>crease the available amount <strong>of</strong> 6-MP to be converted to active 6-TGNs, thereby drastically<br />

<strong>in</strong>creas<strong>in</strong>g the risk <strong>of</strong> severe adverse effects.<br />

Once 6-MP is converted to TIMP, TIMP is then converted to 6-thioguanos<strong>in</strong>e-5’monophopshate<br />

(TGMP) <strong>in</strong> a 2 step process. TGMP is further metabolized through a series <strong>of</strong> reductases <strong>and</strong> k<strong>in</strong>ases to form<br />

the 6-TGN metabolite, deoxy-6-thioguanos<strong>in</strong>e-5’-triphosphate (dGS). dGS is then <strong>in</strong>corporated <strong>in</strong>to DNA as<br />

a false base <strong>and</strong> triggers cell cycle arrest <strong>and</strong> apoptosis.<br />

Figure 2. Metabolism <strong>of</strong> azathiopr<strong>in</strong>e to active 6-TGN metabolites.<br />

Key: 6-thioguan<strong>in</strong>e nucleotides (6-TGN), aldehyde oxidase (AO), xanth<strong>in</strong>e oxidase (XO), azathiopr<strong>in</strong>e<br />

(AZA), 6-methyl mercaptopur<strong>in</strong>e (6-MMP), 6-mercaptopur<strong>in</strong>e (6-MP), hypoxanth<strong>in</strong>e-guan<strong>in</strong>e<br />

phophoribosyl transferase (HGPRT), 6-thioimos<strong>in</strong>e-5’-monophosphate (TIMP), methyl-6thio<strong>in</strong>os<strong>in</strong>e<br />

monophosphate (MeTIMP), Thiopur<strong>in</strong>e methyltransferase (TPMT) , to 6-thioguanos<strong>in</strong>e-<br />

5’monophopshate (TGMP)<br />

Mechanism <strong>of</strong> <strong>action</strong><br />

The 6-TGN active metabolites disrupt the function <strong>of</strong> endogenous pur<strong>in</strong>es. While all cells are<br />

theoretically affected by this unstable base <strong>in</strong>corporated <strong>in</strong>to DNA, RNA <strong>and</strong> prote<strong>in</strong>s, lymphocytes are<br />

preferentially targeted by thiopur<strong>in</strong>es. Lymphocytes rely on de novo synthesis <strong>of</strong> pur<strong>in</strong>es <strong>and</strong> lack a pur<strong>in</strong>e<br />

salvage pathway. Thus they are most affected by the <strong>action</strong> <strong>of</strong> azathiopr<strong>in</strong>e on pur<strong>in</strong>e synthesis <strong>and</strong><br />

metabolism. 5 <strong>Azathiopr<strong>in</strong>e</strong> has a wide range <strong>of</strong> short <strong>and</strong> long term effects on the immune system, <strong>in</strong>clud<strong>in</strong>g:<br />

- reversible reduction <strong>of</strong> monocyte numbers <strong>in</strong> circulation <strong>and</strong> tissues 6<br />

- impaired synthesis <strong>of</strong> gamma globul<strong>in</strong> (IgM, IgG) <strong>in</strong> patients with rheumatoid<br />

disorders 7<br />

- long term immunosuppression decreases the number <strong>of</strong> cutaneous Langerhans cells 8<br />

- impaired responses <strong>of</strong> helper T cell dependent B cells 9<br />

- impaired function <strong>of</strong> T suppressor cells 9<br />

- impaired T cell lymphocyte function <strong>and</strong> IL-2 production 10<br />

47


- <strong>in</strong>ter<strong>action</strong> with Rac1, a triphosphate b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> on T lymphocytes that medicates<br />

a costimulatory signal for T cell activation. <strong>Azathiopr<strong>in</strong>e</strong> <strong>in</strong>hibits Rac1, block<strong>in</strong>g the<br />

costimulatory signal <strong>and</strong> <strong>in</strong>duc<strong>in</strong>g Fas-associated apoptosis 11 , 12<br />

In addition to the effects <strong>of</strong> 6-TGN metabolites, pur<strong>in</strong>e de novo synthesis is also <strong>in</strong>hibited by<br />

methyl-6-thio<strong>in</strong>os<strong>in</strong>e monophosphate (Me-TIMP). Inhibition <strong>of</strong> de novo pur<strong>in</strong>e synthesis contributes to<br />

immunosuppression <strong>and</strong> blocks proliferation <strong>of</strong> various lymphocyte l<strong>in</strong>es, thereby contribut<strong>in</strong>g to the<br />

cytotoxic <strong>action</strong> <strong>of</strong> azathiopr<strong>in</strong>e. 13<br />

<strong>Azathiopr<strong>in</strong>e</strong> <strong>and</strong> TMPT activity<br />

TMPT is the predom<strong>in</strong>ant <strong>in</strong>activation pathway <strong>of</strong> thiopur<strong>in</strong>es <strong>in</strong> haemopoetic cells. 13 The end product<br />

<strong>of</strong> AZA degradation through the TMPT pathway is 6-methyl mercaptopur<strong>in</strong>e (6-MMP), an <strong>in</strong>active <strong>and</strong> nontoxic<br />

molecule. Erythrocyte levels <strong>of</strong> TPMT have been found to correlate well with levels <strong>in</strong> lymphocytes,<br />

platelets, kidney <strong>and</strong> liver cells <strong>in</strong> humans. 1 TMPT activity is genetically controlled, with several<br />

polymorphisms identified <strong>in</strong> humans. In a recent study <strong>of</strong> over 3000 patients, approximately 80% had<br />

normal TPMT activity 9% had above normal enzymatic activity <strong>and</strong> 10% had low TPMT activity.<br />

Additionally, 0.45% <strong>of</strong> patients had no detectable TPMT activity. 14 Low activity is associated with an<br />

<strong>in</strong>creased risk <strong>of</strong> leukopenia, <strong>in</strong>termediate levels are associated with the development <strong>of</strong> late onset<br />

leukopenia <strong>and</strong> high TPMT activity results is less immunosuppression by azathiopr<strong>in</strong>e. Determ<strong>in</strong>ation <strong>of</strong> pretreatment<br />

TPMT level has been advocated <strong>in</strong> human medic<strong>in</strong>e to detect patients at risk for early onset<br />

neutropenia (i.e. those with no or low TPMT activity). However the significance <strong>of</strong> TPMT activity <strong>in</strong> dogs<br />

<strong>and</strong> cats rema<strong>in</strong>s poorly characterized.<br />

Studies <strong>of</strong> TPMT activity <strong>in</strong> the dog <strong>in</strong>dicate that average levels <strong>of</strong> erythrocyte TPMT activity are<br />

similar to that <strong>in</strong> humans, but that marked variation exists <strong>in</strong> the distribution <strong>of</strong> TPMT activity when<br />

compared to the human studies. 15-17 Interest<strong>in</strong>gly, no dog was found with deficient TPMT activity<br />

(comparable to the human ‘low activity’ group) <strong>and</strong> that the 6 <strong>of</strong> 299 dogs <strong>in</strong> one study that experienced<br />

marked leukopenia associated with azathiopr<strong>in</strong>e <strong>use</strong>, all <strong>of</strong> these dogs had <strong>in</strong>termediate to high TPMT<br />

activity. 16 This suggests that there exists a different <strong>mechanism</strong> by which azathiopr<strong>in</strong>e-<strong>in</strong>duced<br />

myelotoxicity is <strong>in</strong>duced <strong>in</strong> the can<strong>in</strong>e population when compared with humans.<br />

In cats, average levels <strong>of</strong> TPMT activity were significantly lower than both humans <strong>and</strong> dogs, <strong>and</strong> cats<br />

also displayed large <strong>in</strong>dividual variations <strong>in</strong> the level <strong>of</strong> TPMT activity. 18 This is consistent with the high<br />

level <strong>of</strong> myelosuppression <strong>and</strong> leukopenia seen when azathiopr<strong>in</strong>e is adm<strong>in</strong>istered to cats, <strong>and</strong> further<br />

supports the recommendation that azathiopr<strong>in</strong>e not be <strong>use</strong>d <strong>in</strong> this species.<br />

Studies <strong>of</strong> azathiopr<strong>in</strong>e <strong>use</strong> <strong>in</strong> the horse are limited, but TPMT activity is reported to be lower than both<br />

dogs <strong>and</strong> cats. 19 Interest<strong>in</strong>gly, marked myelosuppression (which would be expected to be marked given the<br />

low TPMT activity) is <strong>in</strong>frequently seen <strong>in</strong> the horse. 20 This may <strong>in</strong>dicate that erythrocyte TPMT activity<br />

may not correlate to TPMT activity <strong>in</strong> other tissues( particularly the liver) or that other degradation<br />

pathways, such as XO or AO may be more important for the metabolism <strong>of</strong> 6-Mp to <strong>in</strong>active compounds <strong>in</strong><br />

this species.<br />

Indications <strong>in</strong> dermatology<br />

Dermatologic <strong>use</strong> <strong>of</strong> azathiopr<strong>in</strong>e rema<strong>in</strong>s <strong>of</strong>f label <strong>in</strong> both human <strong>and</strong> veter<strong>in</strong>ary literature.<br />

<strong>Azathiopr<strong>in</strong>e</strong> has been <strong>use</strong>d <strong>in</strong> dermatological conditions for over 50 years, <strong>and</strong> its <strong>use</strong> is supported by<br />

numerous studies, case reports <strong>and</strong> expert op<strong>in</strong>ion. However, by the strictest evidence-based medic<strong>in</strong>e<br />

st<strong>and</strong>ards, the support for its <strong>use</strong> is not as strong as for a variety <strong>of</strong> newer medications, such <strong>and</strong><br />

cyclospor<strong>in</strong>e. 1<br />

48


Human<br />

Table 1. Selected dermatologic diseases where azathiopr<strong>in</strong>e has shown to be <strong>of</strong> benefit<br />

Immunobullous disease Eczema<br />

Bullous pemphigoid Contact dermatitis<br />

Pemphigoid Photodermatitis<br />

Cicatricial pemphigoid Act<strong>in</strong>ic reticuloid<br />

Juvenile pemphigus Chronic act<strong>in</strong>ic dermatitis<br />

Pemphigus foliaceous Other<br />

Pemphigus vulgaris Erythema multiforme<br />

Paraneoplastic pemphigus Cutaneous lupus erythematosus<br />

Pemphigus erythematosus Lichen planus<br />

Eczematous diseases Cutaneous vasculitis<br />

Psoriasis Graft-versus-host disease<br />

Atopic dermatitis<br />

Adapted from Patel, et. al. 1<br />

Veter<strong>in</strong>ary<br />

Table 2. Selected dermatologic diseases where azathiopr<strong>in</strong>e may be <strong>of</strong> benefit<br />

Pemphigus foliaceous 21, 22 Lupoid onychitis ** 23<br />

Pemphigus vulgaris 21, 22 Uveodermatologic syndrome<br />

Superficial pemphigus complex 21, 22 Epidermolysis bullosa acquisita 24<br />

Systemic lupus erythematosus 22 Perianal fistula **<br />

Vesicular cutaneous lupus erythematosus 25 Erythema multiforme 26<br />

Cutaneous reactive histiocytosis ** 27<br />

Idiopathic sterile granuloma <strong>and</strong><br />

? Atopic dermatitis** 28<br />

pyogranuloma 22<br />

** <strong>in</strong>dicates that other forms <strong>of</strong> drug therapy are the gold st<strong>and</strong>ard for treatment <strong>of</strong> this condition, but<br />

azathiopr<strong>in</strong>e may be <strong>of</strong> benefit <strong>in</strong> refractory cases<br />

Adverse effects<br />

Haematologic<br />

Cytopenias <strong>and</strong> severe bone marrow suppression have been reported <strong>in</strong> both the human <strong>and</strong><br />

veter<strong>in</strong>ary literature, <strong>and</strong> may occur weeks to months after <strong>in</strong>itiat<strong>in</strong>g treatment. Humans may suffer from<br />

bone marrow suppression years after <strong>in</strong>itiat<strong>in</strong>g therapy, as steady state levels <strong>of</strong> azathiopr<strong>in</strong>e <strong>in</strong> the blood<br />

may take month to years to achieve. 2 While neutropenia is the most common cytopenia noted, anaemia <strong>and</strong><br />

thrombocytopenia may also occur. 29 TPMT genotype test<strong>in</strong>g is advocated <strong>in</strong> human medic<strong>in</strong>e to identify<br />

those <strong>in</strong>dividuals at risk for develop<strong>in</strong>g acute or delayed onset neutropenia. While TPMT activity has been<br />

measured <strong>in</strong> dogs, cats <strong>and</strong> horses, its relevance to the development <strong>of</strong> adverse effects is unknown.<br />

While pretreatment TPMT activity is a <strong>use</strong>ful <strong>in</strong>dicator <strong>of</strong> susceptible <strong>in</strong>dividuals <strong>in</strong> humans,<br />

cont<strong>in</strong>uous hematological monitor<strong>in</strong>g is still m<strong>and</strong>atory <strong>in</strong> humans <strong>and</strong> animals. Leukopenia <strong>in</strong>duced by<br />

azathiopr<strong>in</strong>e, while potentially life threaten<strong>in</strong>g, is usually reversible with discont<strong>in</strong>uation <strong>of</strong> treatment or a<br />

dose reduction.<br />

Gastro<strong>in</strong>test<strong>in</strong>al<br />

Na<strong>use</strong>a <strong>and</strong> vomit<strong>in</strong>g, though widely reported <strong>in</strong> the human literature, are uncommonly encountered<br />

<strong>in</strong> veter<strong>in</strong>ary medic<strong>in</strong>e. Symptoms usually occur <strong>in</strong> the first few weeks <strong>of</strong> therapy <strong>and</strong> may self resolve.<br />

Adm<strong>in</strong>istration <strong>of</strong> azathiopr<strong>in</strong>e with food or <strong>in</strong> a divided dose may help to reduce the <strong>in</strong>cidence <strong>of</strong><br />

gastro<strong>in</strong>test<strong>in</strong>al upset. 2<br />

Hepatotoxicity is the second most common gastro<strong>in</strong>test<strong>in</strong>al side effect <strong>and</strong> is <strong>in</strong>dependent <strong>of</strong> TPMT<br />

activity. 30 In most cases, hepatotoxicity is an unpredictable side effect <strong>and</strong> the <strong>mechanism</strong> <strong>of</strong> hepatocyte<br />

<strong>in</strong>jury is poorly characterized. In dogs, elevation <strong>of</strong> alkal<strong>in</strong>e phosphatase, alan<strong>in</strong>e am<strong>in</strong>otransferase <strong>and</strong><br />

bilirub<strong>in</strong> may be transient, <strong>in</strong> other cases they may be persistent <strong>and</strong> progressive lead<strong>in</strong>g to hepatic failure<br />

<strong>and</strong> death. In a small pilot study us<strong>in</strong>g azathiopr<strong>in</strong>e for the treatment <strong>of</strong> can<strong>in</strong>e atopic dermatitis, serum levels<br />

<strong>of</strong> alan<strong>in</strong>e am<strong>in</strong>otransferase <strong>and</strong> alkal<strong>in</strong>e phosphatase rose <strong>in</strong> 83% <strong>of</strong> dogs by the second week <strong>of</strong> daily<br />

treatment, <strong>and</strong> cl<strong>in</strong>ical signs <strong>of</strong> hepatitis were reported <strong>in</strong> 3 <strong>of</strong> 12 dogs (25%) necessitat<strong>in</strong>g the need for<br />

removal from the study. 28<br />

49


Pancreatitis has been associated with azathiopr<strong>in</strong>e <strong>use</strong> <strong>in</strong> both the human 1 <strong>and</strong> veter<strong>in</strong>ary<br />

literature. 31 In humans, pancreatitis mostly occurs <strong>in</strong> patients with concurrent gastro<strong>in</strong>test<strong>in</strong>al disorders. In<br />

dogs, azathiopr<strong>in</strong>e is commonly <strong>use</strong>d <strong>in</strong> comb<strong>in</strong>ation therapy (usually with corticosteroids) so a direct causal<br />

relationship may be difficult to determ<strong>in</strong>e.<br />

Opportunistic <strong>in</strong>fections<br />

Long term immunosuppression has been associated with an <strong>in</strong>creased risk <strong>of</strong> the development <strong>of</strong><br />

opportunistic <strong>in</strong>fections. This may occur even <strong>in</strong> the absence <strong>of</strong> leukopenia <strong>and</strong> herpes simplex, herpes zoster<br />

<strong>and</strong> verrucae have been reported at a higher <strong>in</strong>cidence <strong>in</strong> humans receiv<strong>in</strong>g comb<strong>in</strong>ation azathiopr<strong>in</strong>e <strong>and</strong><br />

cortisone therapy. 3<br />

Opportunistic <strong>in</strong>fections have been reported <strong>in</strong> dogs, 32, 33 but the overall prevalence <strong>of</strong> opportunistic<br />

<strong>in</strong>fections is animals on immunosuppressive doses is low.<br />

Carc<strong>in</strong>ogenesis<br />

Controversy exists as to the potential l<strong>in</strong>k between long term immunosuppressive therapy with<br />

azathiopr<strong>in</strong>e <strong>and</strong> <strong>in</strong>creased risk <strong>of</strong> malignancy. While some authors suggest that there is currently no<br />

evidence that thiopur<strong>in</strong>e therapy is associated with an <strong>in</strong>creased risk <strong>of</strong> malignancy, 13 other studies <strong>in</strong>dicate<br />

that dermatology patients on long-term azathiopr<strong>in</strong>e therapy may be at risk <strong>of</strong> develop<strong>in</strong>g aggressive<br />

squamous cell carc<strong>in</strong>oma, particular where the patient has had excessive exposure to UV light. 34 F<strong>in</strong>ally, yet<br />

further studies have <strong>in</strong>dicated that while an <strong>in</strong>crease risk <strong>of</strong> squamous cell carc<strong>in</strong>oma is present <strong>in</strong> renal<br />

transplant patients, it appears to be <strong>in</strong>dependent <strong>of</strong> the drug <strong>use</strong>d. 35 In this study, either long term<br />

cyclospor<strong>in</strong>e <strong>and</strong> azathiopr<strong>in</strong>e with or without corticosteroids showed no difference s<strong>in</strong> cancer risk between<br />

the groups.<br />

The method by which carc<strong>in</strong>ogenesis is proposed to occur (if at all) is due to the <strong>in</strong>corporation <strong>of</strong> 6-<br />

TGN metabolites <strong>in</strong>to DNA. Once this process occurs, the DNA becomes prone to oxidation due to the high<br />

reactivity <strong>of</strong> the thiobase. Exposure to UVA light destabilises the double helix <strong>and</strong> sensitises the cell to the<br />

mutagenic effect <strong>of</strong> UV light, which is believed to be one <strong>of</strong> the ca<strong>use</strong>s <strong>of</strong> azathiopr<strong>in</strong>e-related malignancies,<br />

<strong>in</strong> particular squamous cell carc<strong>in</strong>oma. 4 Additionally, azathiopr<strong>in</strong>e ca<strong>use</strong>s <strong>in</strong>activation <strong>of</strong> the mismatch repair<br />

system <strong>in</strong> myeloid precursor cells which can lead to development <strong>of</strong> drug-resistant cells. 4<br />

Hypersensitivity re<strong>action</strong>s<br />

Rare reports exist <strong>of</strong> azathiopr<strong>in</strong>e hypersensitivity syndrome <strong>in</strong> humans. 36 Cl<strong>in</strong>ical signs may<br />

<strong>in</strong>clude hypotension, shock, urticarial or vasculitic eruption, fever <strong>and</strong> rhabdomyolysis. To the authors<br />

knowledge, similar re<strong>action</strong>s have not been reported <strong>in</strong> the veter<strong>in</strong>ary literature.<br />

Miscellaneous<br />

When adm<strong>in</strong>istered with isotret<strong>in</strong>o<strong>in</strong>, azathiopr<strong>in</strong>e has been reported to <strong>in</strong>duce curl<strong>in</strong>g <strong>of</strong> the hair <strong>in</strong><br />

humans. 3<br />

Contra<strong>in</strong>dications <strong>and</strong> drug <strong>in</strong>ter<strong>action</strong>s<br />

<strong>Azathiopr<strong>in</strong>e</strong> should not be <strong>use</strong>d <strong>in</strong> patients with a known hypersensitivity to the drug. In addition<br />

dosage adjustments may need to be made <strong>in</strong> cases <strong>of</strong> renal or hepatic <strong>in</strong>sufficiency. As the safety marg<strong>in</strong> for<br />

<strong>use</strong> <strong>in</strong> cats is extremely low, it is not recommended for <strong>use</strong> <strong>in</strong> this species. Use <strong>in</strong> pregnant animals should be<br />

with care as azathiopr<strong>in</strong>e is both mutagenic <strong>and</strong> teratogenic <strong>in</strong> lab animals, though no clear-cut relationship<br />

between the drug <strong>and</strong> sporadic reports <strong>of</strong> human congenital anomalies has been accepted. 1 Use should only<br />

be considered where the benefits clearly outweigh the risk <strong>and</strong> clients should be adequately counselled.<br />

There is no evidence that azathiopr<strong>in</strong>e produces gonadotoxicity or <strong>in</strong>fertility <strong>in</strong> humans. 3<br />

Xanth<strong>in</strong>e oxidase <strong>in</strong>hibitors such as allopur<strong>in</strong>ol, should not be <strong>use</strong>d <strong>in</strong> comb<strong>in</strong>ation with<br />

azathiopr<strong>in</strong>e where possible. Allopur<strong>in</strong>ol <strong>in</strong>hibits the metabolism <strong>of</strong> azathiopr<strong>in</strong>e to <strong>in</strong>active metabolites,<br />

thereby <strong>in</strong>crease the amount <strong>of</strong> azathiopr<strong>in</strong>e available for metabolism to 6-TGNs. If allopur<strong>in</strong>ol must be <strong>use</strong>d,<br />

the dose <strong>of</strong> azathiopr<strong>in</strong>e should be reduced by at least 2/3rds, however the risk <strong>of</strong> myelotoxicity rema<strong>in</strong>s. 1<br />

Angiotens<strong>in</strong>-convert<strong>in</strong>g enzyme <strong>in</strong>hibitors (ACEIs) have been shown to potentiate the effects <strong>of</strong><br />

azathiopr<strong>in</strong>e <strong>in</strong> humans. Additionally, trimethoprim-sulfamethoxazole is an antimetabolite that has a<br />

synergistic effect <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g bone marrow proliferation. However, the cl<strong>in</strong>ical significance <strong>of</strong> the<br />

<strong>in</strong>ter<strong>action</strong> <strong>of</strong> these drugs with azathiopr<strong>in</strong>e has not been seen <strong>in</strong> the non-renal transplant sett<strong>in</strong>g.<br />

Sulfasalaz<strong>in</strong>e is an <strong>in</strong>hibitor <strong>of</strong> TPMT activity <strong>and</strong> may potentiate azathiopr<strong>in</strong>e toxicity. 3 Current therapeutic<br />

guidel<strong>in</strong>es advise aga<strong>in</strong>st concurrent <strong>use</strong> <strong>of</strong> these medications with azathiopr<strong>in</strong>e where possible.<br />

Warfar<strong>in</strong> resistance has been reported <strong>in</strong> the humans, however azathiopr<strong>in</strong>e toxicity is not enhanced<br />

by warfar<strong>in</strong>, rather the effects <strong>of</strong> warfar<strong>in</strong> are reduced. While this is a notable drug <strong>in</strong>ter<strong>action</strong> <strong>in</strong> the human<br />

50


literature, warfar<strong>in</strong> is rarely <strong>use</strong>d therapeutically <strong>in</strong> animals <strong>and</strong> may be less <strong>of</strong> a concern <strong>in</strong> veter<strong>in</strong>ary<br />

medic<strong>in</strong>e.<br />

Dosage <strong>and</strong> monitor<strong>in</strong>g<br />

<strong>Azathiopr<strong>in</strong>e</strong> (Imuran®, GlaxoSmithKl<strong>in</strong>e) is available <strong>in</strong> 25mg <strong>and</strong> 50mg tablets <strong>and</strong> as a sodium<br />

salt for <strong>in</strong>jection (50mg vial). The recommended dose for azathiopr<strong>in</strong>e <strong>in</strong> dermatology <strong>in</strong> humans <strong>and</strong> dogs is<br />

reported to be 1-2.2 mg/kg orally daily, reduc<strong>in</strong>g to every other day adm<strong>in</strong>istration after 1-2 weeks <strong>of</strong> daily<br />

therapy. However, many cl<strong>in</strong>icians advocate the <strong>use</strong> <strong>of</strong> a body surface area derived dose rate (50mg/m 2 ) <strong>in</strong><br />

animals over 20kg.<br />

In humans, a new dos<strong>in</strong>g system (Table 3) has been proposed base on pretreatment TPMT activity.<br />

While TPMT is a <strong>use</strong>ful <strong>in</strong>dicator <strong>of</strong> potential risk groups for adverse haematologic effects, the role <strong>of</strong> TPMT<br />

activity <strong>in</strong> dogs, cats <strong>and</strong> horses rema<strong>in</strong>s unclear so dos<strong>in</strong>g based on TPMT activity <strong>in</strong> these species is not<br />

recommended.<br />

Table 3. Proposed new dos<strong>in</strong>g schedule (human) – adapted from Patel, et al. 1<br />

Patient group TPMT activity (U/ml rbcs) Suggested max. dose (mg/kg)<br />

No activity (homozygous<br />

mutation)<br />

< 5 Recommend not us<strong>in</strong>g<br />

Low activity (heterozygous) 5-13.7 1<br />

Normal activity (homozygous<br />

wild type)<br />

13.8-19.5 2.5<br />

High activity (high homozygous) > 19.5 3<br />

Therapeutic response to azathiopr<strong>in</strong>e occurs <strong>in</strong> 6-8 weeks. If a response is not seen, then the<br />

azathiopr<strong>in</strong>e dose may be <strong>in</strong>creased by 0.5 mg/kg at 4 week <strong>in</strong>tervals with reference to white cell counts <strong>and</strong><br />

cl<strong>in</strong>ical response, but a total dose <strong>of</strong> 3mg/kg should not be exceeded. 3 If there is no response to treatment<br />

after 12-16 weeks, azathiopr<strong>in</strong>e should be discont<strong>in</strong>ued.<br />

No formal guidel<strong>in</strong>es exist for hematological or biochemical monitor<strong>in</strong>g <strong>of</strong> azathiopr<strong>in</strong>e <strong>in</strong><br />

dermatology patients <strong>in</strong> the human or veter<strong>in</strong>ary fields. Basel<strong>in</strong>e complete blood count (CBC) <strong>and</strong> serum<br />

biochemistry panels should be run prior to the <strong>in</strong>itiation <strong>of</strong> therapy. The author then repeats the CBC at<br />

weekly <strong>in</strong>tervals for the first 4 weeks <strong>of</strong> therapy, then fortnightly to 8 weeks <strong>of</strong> therapy, monthly to 16 weeks<br />

then every 3 months thereafter. Biochemical analysis (with particular reference to liver function test<strong>in</strong>g) is<br />

repeated 2 weeks after <strong>in</strong>itiation <strong>of</strong> therapy, <strong>and</strong> then if any evidence <strong>of</strong> gastro<strong>in</strong>test<strong>in</strong>al upset, <strong>in</strong>appetence,<br />

fever, malaise or icterus is present. Ideally, ur<strong>in</strong>e culture <strong>and</strong> sensitivity should be performed prior to the<br />

<strong>in</strong>itiation <strong>of</strong> therapy <strong>and</strong> then every 3 months, due to long term immunosuppression <strong>and</strong> the risk <strong>of</strong> occult<br />

ur<strong>in</strong>ary tract <strong>in</strong>fections (note that this risk is not specific to azathiopr<strong>in</strong>e).<br />

Chlorambucil<br />

History<br />

Chlorambucil is a potent alkylat<strong>in</strong>g agent <strong>use</strong>d <strong>in</strong> a range <strong>of</strong> neoplastic <strong>and</strong> non-neoplastic<br />

dermatological conditions. The development <strong>of</strong> the alkylat<strong>in</strong>g agents, <strong>in</strong>clud<strong>in</strong>g <strong>chlorambucil</strong>, have<br />

revolutionised cancer chemotherapy. Alkylat<strong>in</strong>g agents are derivatives <strong>of</strong> mustard gas (nitrogen mustards),<br />

which were extensively <strong>use</strong>d as chemical warfare agents <strong>in</strong> both World War I <strong>and</strong> II. Top secret studies<br />

carried out <strong>in</strong> the early to mid 1940s revealed that when these agents were adm<strong>in</strong>istered systemically they<br />

were highly cytotoxic, with the degree <strong>of</strong> cytotoxicity positively correlated with the proliferative capacity <strong>of</strong><br />

the cells – thus nitrogen mustards <strong>and</strong> their derivatives preferentially killed highly proliferative organs such<br />

as the gastro<strong>in</strong>test<strong>in</strong>al tract, bone marrow <strong>and</strong> lymphoid tissues. 37<br />

The first cl<strong>in</strong>ical report <strong>of</strong> nitrogen mustards us<strong>in</strong>g <strong>in</strong> cancer chemotherapy was published by<br />

Goodman et. al <strong>in</strong> 1946, 38 when 67 patients with Hodgk<strong>in</strong>’s lymphoma, leukaemia <strong>and</strong> lymphosarcoma were<br />

treated with a nitrogen mustard derivative. Significant improvement was seen <strong>in</strong> a number <strong>of</strong> patients, but the<br />

marg<strong>in</strong> <strong>of</strong> safety <strong>of</strong> the drug <strong>in</strong> these <strong>in</strong>dividuals was narrow.<br />

Chlorambucil was developed <strong>in</strong> 1953 by Everett et. al, 39 with the addition <strong>of</strong> an aryl group to the<br />

nitrogen mustard molecule known as bis-(2-chloroethyl)am<strong>in</strong>e, Addition <strong>of</strong> other active moieties onto this<br />

base molecule led to the development <strong>of</strong> a number <strong>of</strong> more targeted drugs such as melphalan <strong>and</strong><br />

cyclosphosphamide. 40<br />

Pharmacology <strong>and</strong> <strong>mechanism</strong> <strong>of</strong> <strong>action</strong><br />

Alkylation agents exert their effect directly on DNA, RNA <strong>and</strong> prote<strong>in</strong>s, usually by non specific<br />

means. The chlor<strong>in</strong>e groups on the nitrogen mustard facilitate nucleophilic attack <strong>of</strong> nitrogen to form an<br />

imm<strong>in</strong>ium ion (R3N). This highly reactive ion undergoes alkylation at N7 <strong>of</strong> guan<strong>in</strong>e to form a<br />

51


monoalkylated product on the DNA str<strong>and</strong>. Repetition <strong>of</strong> this cycle ca<strong>use</strong>s cross-l<strong>in</strong>k<strong>in</strong>g <strong>of</strong> DNA. In the case<br />

<strong>of</strong> <strong>chlorambucil</strong>, two complementary str<strong>and</strong>s <strong>of</strong> DNA are cross-l<strong>in</strong>ked. 41 Cross-l<strong>in</strong>k<strong>in</strong>g <strong>of</strong> DNA prevents<br />

separation <strong>of</strong> DNA str<strong>and</strong>s for transcription <strong>and</strong> subsequent failure <strong>of</strong> transcription leads to apoptosis.<br />

Chlorambucil can also covalently bond to RNA <strong>and</strong> prote<strong>in</strong>s through a similar <strong>mechanism</strong>. 42<br />

Figure 4. Chemical composition <strong>of</strong> <strong>chlorambucil</strong><br />

Chlorambucil is considered cell cycle non-specific. Follow<strong>in</strong>g oral adm<strong>in</strong>istration, <strong>chlorambucil</strong> is<br />

rapidly <strong>and</strong> nearly completely absorbed from the gastro<strong>in</strong>test<strong>in</strong>al tract. It is highly prote<strong>in</strong> bound <strong>in</strong> plasma.<br />

The major route <strong>of</strong> metabolism is spontaneous hydrolysis, though <strong>chlorambucil</strong> is also metabolized <strong>in</strong> the<br />

liver to form phenylacetic acid mustard (active compound). Phenylacetic acid mustard is further metabolized<br />

to <strong>in</strong>active products which are excreted <strong>in</strong> the ur<strong>in</strong>e <strong>and</strong> faeces. 43<br />

Indications <strong>in</strong> Dermatology<br />

Human<br />

Table 1. Selected dermatologic diseases where <strong>chlorambucil</strong> has shown to be <strong>of</strong> benefit<br />

Neoplastic disease Pyoderma gangrenosum 44<br />

Cutaneous T cell lymphoma 45, 46 Behçet’s disease<br />

Sézary syndrome 46 Necrobiotic xanthogranuloma 49<br />

Cutaneous B cell lymphoma 50 Cutaneous sarcoidosis 51<br />

Non-neoplastic disease Sweet’s syndrome 52<br />

Pemphigus vulgaris 53 Bullous pemphigoid 54<br />

Pemphigus foliaceous 53 Dermatomyositis 55<br />

Veter<strong>in</strong>ary<br />

Table 2. Selected dermatologic diseases where <strong>chlorambucil</strong> may be <strong>of</strong> benefit<br />

Mast cell tumour 56, 57 Discoid lupus erythematosus 22<br />

Fel<strong>in</strong>e eos<strong>in</strong>ophilic granuloma complex 58 Systemic lupus erythematosus 22<br />

Pemphigus foliaceous 21, 22 Immune-mediated vasculitis 22<br />

Pemphigus vulgaris 21, 22 Cold agglut<strong>in</strong><strong>in</strong> disease 22<br />

Superficial pemphigus complex 21, 22 Urticaria pigmentosa 56<br />

Bullous pemphigoid 22 ? Cutaneous T cell lymphoma 59<br />

Adverse effects<br />

Haematologic<br />

Bone marrow toxicity is the most common side effect <strong>of</strong> <strong>chlorambucil</strong> therapy. It may be mild <strong>and</strong><br />

transient, or severe <strong>and</strong> progressive. Myelosuppression is manifested by anaemia, leukopenia <strong>and</strong><br />

thrombocytopenia. Leukocyte nadir may take 7-14 days, with recovery from 7-28 days. Severe pancytopenia<br />

may take months to years to achieve full recovery. 43<br />

Gastro<strong>in</strong>test<strong>in</strong>al<br />

Na<strong>use</strong>a <strong>and</strong> vomit<strong>in</strong>g are frequent side effects <strong>of</strong> alkylat<strong>in</strong>g agent adm<strong>in</strong>istration, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>chlorambucil</strong>. Na<strong>use</strong>a has been reported with<strong>in</strong> m<strong>in</strong>utes <strong>of</strong> adm<strong>in</strong>istration <strong>of</strong> the drug <strong>in</strong> humans, but may<br />

takes hours or days to become cl<strong>in</strong>ically apparent. 42 In general, traditional antiemetics are poorly effective <strong>in</strong><br />

controll<strong>in</strong>g vomit<strong>in</strong>g with these agents. Intractable na<strong>use</strong>a <strong>and</strong>/or vomit<strong>in</strong>g may require hospitalization <strong>and</strong><br />

symptomatic therapy. A dose reduction should be considered <strong>in</strong> severe cases.<br />

Hepatotoxicity has been documented <strong>in</strong> humans <strong>and</strong> animals with alkylat<strong>in</strong>g agents, 42, 43, 60 however<br />

<strong>chlorambucil</strong> has a higher safety marg<strong>in</strong> than other alkylat<strong>in</strong>g agents (e.g. lomust<strong>in</strong>e) thus fatal hepatoxicity<br />

with this drug is rarely reported <strong>in</strong> the human literature <strong>and</strong>, to the authors’ knowledge, has not been reported<br />

<strong>in</strong> the veter<strong>in</strong>ary literature.<br />

47, 48<br />

52


Carc<strong>in</strong>ogenesis<br />

Due to their mutagenic properties, patients receiv<strong>in</strong>g alkylation therapy have been shown to have an<br />

<strong>in</strong>creased risk <strong>in</strong> develop<strong>in</strong>g a second malignancy. Acute leukaemia is most frequently described as a second<br />

malignancy <strong>in</strong> humans, <strong>and</strong> usually develops with<strong>in</strong> 1-4 years after drug exposure. 42 The phenomenon has<br />

not yet been documented <strong>in</strong> veter<strong>in</strong>ary literature, possible due to the short treatment lengths <strong>in</strong> these species.<br />

Hypersensitivity re<strong>action</strong>s<br />

Anaphylaxis, urticaria <strong>and</strong> drug eruptions have been reported with <strong>chlorambucil</strong> <strong>use</strong> <strong>in</strong> humans.<br />

Re<strong>action</strong>s to topically applies alkylat<strong>in</strong>g agents may also sensitise to systemically adm<strong>in</strong>istered compounds. 42<br />

Miscellaneous<br />

Interstitial pneumonitis <strong>and</strong> pulmonary fibrosis have been reported <strong>in</strong> the human literature but not<br />

identified <strong>in</strong> veter<strong>in</strong>ary medic<strong>in</strong>e. Interest<strong>in</strong>gly, a cumulative effect seems to be required as pulmonary<br />

fibrosis secondary to <strong>chlorambucil</strong> therapy has been noted after the discont<strong>in</strong>uation <strong>of</strong> therapy.<br />

Alkylat<strong>in</strong>g agents have a significant toxic effect on reproductive tissue lead<strong>in</strong>g to ovarian atrophy<br />

<strong>and</strong> aspermia. 42 As <strong>chlorambucil</strong> damages DNA at a fundamental level, it is also considered teratogenic.<br />

Alopecia a delayed regrowth <strong>of</strong> the hair coat has been reported <strong>in</strong> dogs, with Poodles <strong>and</strong> Kerry<br />

Blue Terrier more likely to be affected than other breeds. 22 As with azathiopr<strong>in</strong>e, the theoretical risk <strong>of</strong><br />

opportunistic <strong>in</strong>fections may be <strong>in</strong>creased with long term immunosuppression, but little data exists <strong>in</strong> the<br />

human or veter<strong>in</strong>ary literature on the prevalence <strong>of</strong> opportunistic <strong>in</strong>fections associated with <strong>chlorambucil</strong> <strong>use</strong>.<br />

Contra<strong>in</strong>dications <strong>and</strong> drug <strong>in</strong>ter<strong>action</strong>s<br />

Chlorambucil should not be <strong>use</strong>d <strong>in</strong> patients with a known hypersensitivity to the drug. In addition<br />

dosage adjustments may need to be made <strong>in</strong> cases <strong>of</strong> renal or hepatic <strong>in</strong>sufficiency. Use <strong>in</strong> pregnancy should<br />

be avoided unless the benefits clearly outweigh the risk.<br />

The pr<strong>in</strong>ciple concern for development <strong>of</strong> myelosuppression is concurrent <strong>use</strong> <strong>of</strong> ant<strong>in</strong>eoplasics,<br />

immunosuppressants (e.g. azathiopr<strong>in</strong>e, corticosterioids, cyclophophamide) <strong>and</strong> other bone marrow<br />

suppressive agents (e.g. chloramphenicol, flucytos<strong>in</strong>e, amphoteric<strong>in</strong> B, grise<strong>of</strong>ulv<strong>in</strong>, colchic<strong>in</strong>e). 43<br />

Dosage <strong>and</strong> monitor<strong>in</strong>g<br />

Chlorambucil (Leukeran®, GlaxoSmithKl<strong>in</strong>e) is available <strong>in</strong> a 2mg tablet. Doses range from 0.1-<br />

0.2 mg/kg (dog <strong>and</strong> cat) adm<strong>in</strong>istered orally every24-48 hours. Concurrent <strong>use</strong> <strong>of</strong> corticosteroids may be<br />

required <strong>in</strong> the <strong>in</strong>duction phase, once cl<strong>in</strong>ical response is seen then ma<strong>in</strong>tenance on every other day dos<strong>in</strong>g <strong>of</strong><br />

<strong>chlorambucil</strong> has been reported.<br />

As with azathiopr<strong>in</strong>e, no formal guidel<strong>in</strong>es exist for hematological or biochemical monitor<strong>in</strong>g <strong>of</strong><br />

<strong>chlorambucil</strong> <strong>in</strong> dermatology patients <strong>in</strong> exist. Basel<strong>in</strong>e complete blood count (CBC) <strong>and</strong> serum biochemistry<br />

panels should be run prior to the <strong>in</strong>itiation <strong>of</strong> therapy. The author then repeats the CBC at weekly <strong>in</strong>tervals<br />

for the first 4 weeks <strong>of</strong> therapy, then fortnightly to 8 weeks <strong>of</strong> therapy, monthly to 16 weeks then every 3<br />

months thereafter. Biochemical analysis is then only repeated if there is any evidence <strong>of</strong> gastro<strong>in</strong>test<strong>in</strong>al<br />

upset, <strong>in</strong>appetence, fever, malaise or icterus present. Ideally, ur<strong>in</strong>e culture <strong>and</strong> sensitivity should be<br />

performed prior to the <strong>in</strong>itiation <strong>of</strong> therapy <strong>and</strong> then every 3 months.<br />

53


References<br />

1. Patel A, Swerlick R, McCall C. <strong>Azathiopr<strong>in</strong>e</strong> <strong>in</strong> dermatology: the past, the present, <strong>and</strong> the future. J Am Acad<br />

Dermatol 2006;55:369-389.<br />

2. Wise M, Callen J. <strong>Azathiopr<strong>in</strong>e</strong>: a guide for the management <strong>of</strong> dermatology patients. Dermatolic Therapy<br />

2007;20:206-215.<br />

3. Stern D, Tripp J, Ho V, Lebwohl M. The <strong>use</strong> <strong>of</strong> systemic immune moderators <strong>in</strong> dermatology: an update.<br />

Dermatol Cl<strong>in</strong> 2005;23:259-300.<br />

4. Fotoohi A, Coulthard S, Albertoni F. Thiopur<strong>in</strong>es: factors <strong>in</strong>fluenc<strong>in</strong>g toxicity <strong>and</strong> response. Biochem Pharm<br />

2010;In Press.<br />

5. Maltzman J, Koretzky G. <strong>Azathiopr<strong>in</strong>e</strong>: old drug, new <strong>action</strong>s. J Cl<strong>in</strong> Invest 2003;111:1122-1124.<br />

6. Gassmann A, van Furth R. The effect <strong>of</strong> azathiopr<strong>in</strong>e (Imuran) on the k<strong>in</strong>etics <strong>of</strong> monocytes <strong>and</strong> macrophages<br />

dur<strong>in</strong>g the normal steady state <strong>and</strong> an acute <strong>in</strong>flammatory re<strong>action</strong>. Blood 1975;46:51-64.<br />

7. Levy J, Barnett E, MacDonald N, Kl<strong>in</strong>enberg J, Pearson C. The effect <strong>of</strong> azathiopr<strong>in</strong>e on gammaglobul<strong>in</strong><br />

synthesis <strong>in</strong> man. J Cl<strong>in</strong> Invest 1972;51:2233-2238.<br />

8. Liu H, Wong C. In vitro immunosuppressive effects <strong>of</strong> methotrexate <strong>and</strong> azathiopr<strong>in</strong>e on Langerhans cells.<br />

Arch Dermatol Res 1997;289:94-97.<br />

9. Gorski A, Korczak-Kowalska G, Nowaczyk M, Paczek L, Gaciong Z. The effect <strong>of</strong> azathiopr<strong>in</strong>e on term<strong>in</strong>al<br />

differentiation <strong>of</strong> human B lymphocytes. Immunopharmacology 1983;6:259-266.<br />

10. Elion G. The George Hitch<strong>in</strong>gs <strong>and</strong> Gertrude Elion Lecture. The pharmacology <strong>of</strong> azathiopr<strong>in</strong>e. Ann N Y Acad<br />

Sci 1993;685:400-407.<br />

11. Teide I, Fritz G, Str<strong>and</strong> S, et al. CD28-dependent Rac1 activation is the molecular target <strong>of</strong> azathiopr<strong>in</strong>e <strong>in</strong><br />

primary human CD4+ T lymphocytes. J Cl<strong>in</strong> Invest 2003;111:1133-1145.<br />

12. Ramaswamy M, Dumont C, Cruz A, et al. Cutt<strong>in</strong>g edge: Rac GTPases sensitize activated T cells to die via Fas.<br />

J Immunol 2007;179:6384-6388.<br />

13. Sahasranaman S, Howard D, Roy S. Cl<strong>in</strong>ical pharmacology <strong>and</strong> pharmacogenetics <strong>of</strong> thiopur<strong>in</strong>es. Eur J Cl<strong>in</strong><br />

Pharmacol 2008;64:753-767.<br />

14. Holme S, Duley J, S<strong>and</strong>erson J, Routledge P, Anstey A. Erythrocyte thiopur<strong>in</strong>e methyl transferase assessment<br />

prior to azathiopr<strong>in</strong>e <strong>use</strong> <strong>in</strong> the UK. QJM 2002;95:439-444.<br />

15. Salavaggione O, Kidd L, Prondz<strong>in</strong>ski J, et al. Can<strong>in</strong>e red blood cell thiopur<strong>in</strong>e S-methyltransferase: companion<br />

animal pharmacogenetics. Pharmacogenetics 2002;12:713-724.<br />

16. Rodriguez D, Mack<strong>in</strong> A, Easley R, et al. Relationship between red blood cell thiopur<strong>in</strong>e methyltransferase<br />

actovoty <strong>and</strong> myelotoxicity <strong>in</strong> dogs receiv<strong>in</strong>g azathiopr<strong>in</strong>e. J Vet Intern Med 2004;18:339-345.<br />

17. Kidd L, Salavaggione O, Szumlanski C, et al. Thiopur<strong>in</strong>e methyltransferase activity <strong>in</strong> red blood cells <strong>of</strong> dogs.<br />

J Vet Intern Med 2004;18:214-218.<br />

18. Salavaggione O, Yang C, Kidd L, et al. Cat red blood cell thiopur<strong>in</strong>e S-methyltransferase: companion animal<br />

pharmacogenetics. J Pharmacol Exp Therap 2004;308:617-626.<br />

19. White S, Rosychuk R, Outerbridge C, et al. Thiopur<strong>in</strong>e methyltransferase <strong>in</strong> red blood cells <strong>of</strong> dogs, cats <strong>and</strong><br />

horses. J Vet Intern Med 2000;14:499-502.<br />

20. White S, Maxwell L, Szabo N, Hawk<strong>in</strong>s J, Kollias-Baker C. Pharmacok<strong>in</strong>etics <strong>of</strong> azathiopr<strong>in</strong>e follow<strong>in</strong>g<br />

s<strong>in</strong>gle-dose <strong>in</strong>travenous <strong>and</strong> oral adm<strong>in</strong>istration <strong>and</strong> effects <strong>of</strong> azathiopr<strong>in</strong>e follow<strong>in</strong>g chronic oral adm<strong>in</strong>istration <strong>in</strong><br />

horses. Am J Vet Res 2005;66:1578-1583.<br />

21. Rosenkrantz W. Pemphigus: current therapy. Vet Dermatol 2004;15:90-98.<br />

22. Scott DW, Miller WH, Griff<strong>in</strong> CE. Immune-mediated disorders. In: Scott DW, Miller WH, Griff<strong>in</strong> CE, editors.<br />

Small Animal Dermatology. 6th edn. Saunders, Philadelphia, 2001.<br />

23. Mueller R, Rosychuk R, Jonas L. A retrospective study regard<strong>in</strong>g the treatment <strong>of</strong> lupoid onychodystrophy <strong>in</strong><br />

30 dogs <strong>and</strong> literature review. J Am Anim Hosp Assoc 2003;39:139-150.<br />

24. Hill P, Lau P, Rybnicek J, Hargreaves J, Olivry T. Epidermolysis bullosa acquisita <strong>in</strong> a Great Dane. J Small<br />

Anim Pract 2008;49:89-94.<br />

25. Jackson H. Eleven cases <strong>of</strong> vesicular cutaneous lupus erythematosus <strong>in</strong> Shetl<strong>and</strong> sheepdogs <strong>and</strong> rough collies:<br />

cl<strong>in</strong>ical management <strong>and</strong> prognosis. Vet Dermatol 2004;15:37-41.<br />

26. Itoh T, Nibe K, Kojimoto A, et al. Erythema multiforme possibly triggered by food substances <strong>in</strong> a dog. J Vet<br />

Med Sci 2006;68:869-871.<br />

27. Palmeiro B, Morris D, Goldschmidt M, Maudl<strong>in</strong> E. Cutaneous reactive histiocytosis <strong>in</strong> dogs: a retrospective<br />

evaluation <strong>of</strong> 32 cases. Vet Dermatol 2007;18:332-340.<br />

28. Favrot C, Reichmuth P, Olivry T. Treatment <strong>of</strong> can<strong>in</strong>e atopic dermatitis with azathiopr<strong>in</strong>e: a pilot study. Vet<br />

Record 2007;160:520-521.<br />

29. R<strong>in</strong>kardt N, Kruth S. <strong>Azathiopr<strong>in</strong>e</strong>-<strong>in</strong>duced bone marrow toxicity <strong>in</strong> four dogs. Can Vet J 1996;37:612-613.<br />

30. Petit E, Langouet S, Akhdar H, et al. Differentoal toxic effects <strong>of</strong> azathiopr<strong>in</strong>e, 6-mercaptopur<strong>in</strong>e <strong>and</strong> 6thioguan<strong>in</strong>e<br />

on human hepatocytes. Toxicology <strong>in</strong> vitro 2008;22:632-642.<br />

31. Moriello K, Bowen D, Meyer D. Acute pancreatitis <strong>in</strong> two dogs given azathiopr<strong>in</strong>e <strong>and</strong> prednisone. J Am Vet<br />

Med Assoc 1987 191:695-696.<br />

32. Yager J, Best S, Maggi R, et al. Bacillary angiomatosis <strong>in</strong> an immunosuppressed dog. Vet Dermatol<br />

2010;[Epub ahead <strong>of</strong> pr<strong>in</strong>t].<br />

33. Gregory C, Kyles A, Bernsteen L, Mehl M. Results <strong>of</strong> cl<strong>in</strong>ical renal transplantation <strong>in</strong> 15 dogs us<strong>in</strong>g triple drug<br />

immunosuppressive therapy. Vet Surg 2006 35:105-112.<br />

34. Bottomly W, Ford G, Cunliffe W, Cotterill J. Aggressive squamous cell carc<strong>in</strong>omas develop<strong>in</strong>g <strong>in</strong> patients<br />

receiv<strong>in</strong>g long-term azathiopr<strong>in</strong>e. Br J Dermatol 1995 133 460-462.<br />

54


35. Bouwes Bavnick J, Hardie D, Green A. The risk <strong>of</strong> sk<strong>in</strong> cancer <strong>in</strong> renal transplant recipients <strong>in</strong> Queensl<strong>and</strong>,<br />

Australia. A follow-up study. Transplantation 1996;61:715-721.<br />

36. Saway P, Heck L, Bonner J, Kirl<strong>in</strong> J. <strong>Azathiopr<strong>in</strong>e</strong> hypersensitivity. Am J Med 1988 84 960-964.<br />

37. Gilman A, Phillips F. The biological <strong>action</strong>s <strong>and</strong> therapeutic applications <strong>of</strong> β-chloroethyl am<strong>in</strong>es <strong>and</strong> sulfides.<br />

Science 1946;103:409-415.<br />

38. Goodman L, W<strong>in</strong>trobe M, Dameshek W, Goodman J, Gilman A. Nitrogen mustard therapy. Use <strong>of</strong> methylbis(β-chloroethylam<strong>in</strong>e<br />

hydrochloride) <strong>and</strong> tris(β-chloroethyl)am<strong>in</strong>e hydrochloride for Hodgk<strong>in</strong>'s disease,<br />

lymphosarcoma, leukemia <strong>and</strong> certa<strong>in</strong> allied <strong>and</strong> miscellaneous disorders. JAMA 1946;132:126-132.<br />

39. Everett J, Roberts J, Ross W. Aryl-2-halogenoalkylam<strong>in</strong>es. XII: Some carboxylic derivatives <strong>of</strong> N,N-di-2chloroaethylanil<strong>in</strong>e.<br />

J Chem Soc 1953:2386-2392.<br />

40. Maxwell R, Eckhardt S. Drug discovery: a casebook <strong>and</strong> analysis. Humana Press, 1990.<br />

41. Hurley L. DNA <strong>and</strong> its associated processes as targets for cancer therapy. Nature Reviews Cancer 2002;2:188-<br />

200.<br />

42. Tew K. Alkylat<strong>in</strong>g Agents. In: DeVita V, Lawrence T, Rosenberg S, editors. Cancer: pr<strong>in</strong>ciples <strong>and</strong> practice<br />

<strong>of</strong> oncology. 8th edn. Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s, Philadelphia, 2008:407-419.<br />

43. Plumb D. Plumb's Veter<strong>in</strong>ary Drug H<strong>and</strong>book. Blackwell Publish<strong>in</strong>g, Stockholm, WI, 2005.<br />

44. Woll<strong>in</strong>a U. Cl<strong>in</strong>ical management <strong>of</strong> pyoderma gangrenosum. Am J Cl<strong>in</strong> Dermatol 2002;3:149-158.<br />

45. Sche<strong>in</strong>feld N. A brief primer on treatments <strong>of</strong> cutaneous T cell lymphoma newly approved or late <strong>in</strong><br />

development. J Drugs Dermatol 2007;6:757-760.<br />

46. Holmes R, McGibbon D, Black M. Mycosis fungoides: progression towards Sézary syndrome reversed with<br />

<strong>chlorambucil</strong>. Cl<strong>in</strong> Exp Derm 1983;8:429-435.<br />

47. Zouboulis C. Extended venous thrombosis <strong>in</strong> Adamantiades-Behçet’s disease. Eur J Dermatol 2004;14:268-<br />

271.<br />

48. Elbirt D, Asher I, Sthoeger Z. Behçet’s disease - cl<strong>in</strong>ical presentation, diagnostic <strong>and</strong> therapeutic approach.<br />

Harefuah 2002;141:462-467, 497.<br />

49. Torabian S, Fazel N, Knuttle R. Necrobiotic xanthogranuloma treated with <strong>chlorambucil</strong>. Dermatol Onl<strong>in</strong>e J<br />

2006;12:11.<br />

50. Hoefnagel J, Vermeer M, Jansen P, Heule F. Primary cutaneous marg<strong>in</strong>al zone B-cell lymphoma. Arch<br />

Dermatol 2005;141:1139-1145.<br />

51. Doherty C, Rosen T. Evidence-based therapy for cutaneous sarcoidosis. Drugs 2008;68:1361-1383.<br />

52. Case J, Smith S, Callen J. The <strong>use</strong> <strong>of</strong> pulse methylprednisolone <strong>and</strong> <strong>chlorambucil</strong> <strong>in</strong> the treatment <strong>of</strong> Sweet's<br />

syndrome. Cutis 1989;44:125-129.<br />

53. Shah N, Green A, Elgart G, Kerdel F. The <strong>use</strong> <strong>of</strong> <strong>chlorambucil</strong> with prednisolone <strong>in</strong> the treatment <strong>of</strong><br />

pemphigus. J Am Acad Dermatol 2000;42:85-88.<br />

54. Milligan A, Hutch<strong>in</strong>son P. The <strong>use</strong> <strong>of</strong> <strong>chlorambucil</strong> <strong>in</strong> the treament <strong>of</strong> bullous pemphigoid. J Am Acad<br />

Dermatol 1990;22:796-801.<br />

55. S<strong>in</strong>oway P, Callen J. Chlorambucil. An effective corticosteroid-spra<strong>in</strong>g agent for patients with recalcitrant<br />

dermatomyositis. Arthritis Rheum 1993;36:319-324.<br />

56. Thamm D, Vail D. Mast cell tumours. In: Withrow S, Vail D, editors. Small Animal Cl<strong>in</strong>ical Oncology. 4th<br />

edn. Saunders Elsevier, St. Louis, 2007:402-424.<br />

57. Taylor F, Gear R, Hoather T, Dobson J. Chlorambucil <strong>and</strong> prednisolone chemotherapy for dogs with<br />

<strong>in</strong>operable mast cell tumours: 21 cases. J Small Anim Pract 2009;50:284-289.<br />

58. White S. Nonsteroidal immunosuppressive therapy. In: Bonagura J, editor. Kirk's Current Veter<strong>in</strong>ary Therapy:<br />

XIII Small Animal Practice. Saunders, Philadelphia, 2000:536-538.<br />

59. Guaguere E, Muller A, Degorce-Rubiales F. Epithelitropic mucocutaneous T cell lymphoma. In: Guaguere E,<br />

Prelaud P, Craig M, editors. A Practical Guide to Can<strong>in</strong>e Dermatology. Kalianxis Publish<strong>in</strong>g, Italy, 2008:493–500.<br />

60. Kristal O, Rassnick K, Gliatto J, et al. Hepatotoxicity associated with CCNU (lomust<strong>in</strong>e) chemotherapy <strong>in</strong><br />

dogs. J Vet Intern Med 2004;18:75-80.<br />

55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!