16.08.2013 Views

The Level Set Interface-Tracking Model Coupled to SPH Method

The Level Set Interface-Tracking Model Coupled to SPH Method

The Level Set Interface-Tracking Model Coupled to SPH Method

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

<strong>The</strong> <strong>Level</strong> <strong>Set</strong><br />

<strong>Interface</strong>-<strong>Tracking</strong> <strong>Interface</strong> <strong>Tracking</strong> <strong>Model</strong><br />

<strong>Coupled</strong> <strong>to</strong><br />

<strong>SPH</strong> <strong>Method</strong><br />

Dr. Ing. Ing.<br />

Pierre Maruzewski-Gaud<br />

Maruzewski Gaud<br />

pierre.maruzewski@epfl.ch<br />

Dr. Sergey Shepel<br />

sergey.shepel@epfl.ch<br />

1/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

Cavitation Physics<br />

• Onset, Development & Collapse<br />

• <strong>Model</strong>ing & Control<br />

• Materials Erosion, Bio Effects<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

Unique Research Facility: High Speed Cavitation Tunnel<br />

Max Flow Velocity : 50 m/s<br />

Max Pressure : 20 bar<br />

Optical Instrumentation<br />

p-transducers<br />

2/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

Cavitation <strong>Model</strong>ing by <strong>SPH</strong><br />

<strong>Method</strong>ology:<br />

Rayleigh-Plesset<br />

Rayleigh Plesset equation<br />

<strong>Level</strong> <strong>Set</strong> equations for multiphase flows<br />

Collaboration with Prof. Koumoutsakos, Koumoutsakos,<br />

ETH Zürich Z rich<br />

Adaptation of sph2000<br />

Collaboration with University of Tübingen bingen, , Germany<br />

Test cases using High Performance Computing:<br />

Bubble implosion<br />

Oscillating drop<br />

Bubble collapse<br />

Instability of a liquid jet<br />

Post-processing: Post processing: thanks <strong>to</strong> Paraview<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

3/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

<strong>The</strong> <strong>Level</strong> <strong>Set</strong> <strong>Method</strong><br />

<strong>The</strong> two-phase two phase mixture is as a single fluid<br />

Density, viscosity are smoothed across the interface<br />

<strong>The</strong> LS marker function is continuous<br />

and it is set <strong>to</strong> the signed minimum<br />

distance <strong>to</strong> the interface<br />

Reasons for using the LS function:<br />

Minimal numerical diffusion since the function is continuous across across<br />

the interface, with<br />

∇φ = 1<br />

Easy <strong>to</strong> interpolate phase properties across the interface in the<br />

two-fluids two fluids formulation<br />

-d<br />

Phase 2<br />

Phase 1<br />

+d<br />

d=0<br />

4/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

<strong>The</strong> <strong>Level</strong> <strong>Set</strong> <strong>Method</strong><br />

Non-conservative Non conservative form of <strong>Level</strong> <strong>Set</strong> equations:<br />

∂ φ<br />

+ u ⋅∇ φ = 0,<br />

∂t<br />

∂ φ<br />

+ sign( φ ( )<br />

0)<br />

∇φ − 1 = λ ∇φ<br />

δε ( φ)<br />

∂τ<br />

Interpolation of phase properties across the numerical interface: interface<br />

ρ(<br />

x,<br />

t)<br />

= ρ + ( ρ − ρ ) H<br />

1<br />

μ(<br />

x,<br />

t)<br />

= μ + ( μ − μ ) H<br />

1<br />

1<br />

1<br />

2<br />

2<br />

ε<br />

ε<br />

( φ(<br />

x,<br />

t)<br />

)<br />

( φ(<br />

x,<br />

t)<br />

)<br />

ρ μ 1, 1<br />

n<br />

ρ μ 2, 2<br />

φ = 0<br />

• Straightforward <strong>to</strong> couple <strong>Level</strong> <strong>Set</strong> and <strong>SPH</strong><br />

• LLSM = best mass conservation of the existing LS<br />

5/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

<strong>SPH</strong>2000<br />

A parallel object-oriented object oriented <strong>SPH</strong>-framework<br />

<strong>SPH</strong> framework<br />

Dr. Roland Speith’s Speith PhD. Work, University of<br />

Tübingen bingen, , 1998<br />

C++ code by Sven Ganzenmüller<br />

Ganzenm ller, , University of<br />

Tübingen bingen, , 2000-2006,..<br />

2000 2006,..<br />

6/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

Classic <strong>SPH</strong> modeling method<br />

Summation density or continuity equation<br />

Artificial viscosity (α=1, ( =1, β=2, =2, ε=0.01) =0.01)<br />

Viscous stress tensor (Flebbe ( Flebbe et al, 1994)<br />

Total Energy balance<br />

Surface tension (end of 2006)<br />

Kernel functions: a cubic spline (Monaghan, 1992)<br />

Boundary: Reflecting<br />

Ghost particles<br />

Integra<strong>to</strong>r: RK1 (Euler) <strong>to</strong> RK5CashKarp (RK5 + error<br />

detection + step adjustment)<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

7/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

Finding interactions<br />

Uniform spatial grid with a cell size = hh cst<br />

To calculate rhs of <strong>SPH</strong> equations = 3 sums (one<br />

for the density, 2 for first and second order<br />

derivatives) Interaction list<br />

This algorithm reduces the <strong>to</strong>tal memory<br />

requirement <strong>to</strong> about one tenth without<br />

increasing the overall computing time<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

rhs 1 Dens Un<strong>to</strong>uched<br />

8/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

<strong>SPH</strong>2000: Parallelization<br />

A cuboids region of the simulation domain <strong>to</strong> every<br />

processor<br />

Cuboids with different sizes which vary in time<br />

<strong>The</strong> interface <strong>to</strong> the other regions = real, physical<br />

boundary (like periodic boundary with communication <strong>to</strong><br />

neighbour processors)<br />

<strong>The</strong> size of interaction list = a tuning parameter for a size<br />

versus speed tradeoff<br />

Communication between processors thanks <strong>to</strong> the<br />

Tübingen bingen Parallel Objects (TPO++), an object-oriented<br />

object oriented<br />

message passing library for C++ with a load balancing<br />

function<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

9/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

IBM Blue Gene/L<br />

Processors: 8192 IBM 440, 700 MHz, 512 MB<br />

Memory: 2 TB<br />

LINUX (Suse Linux Enterprise Server 9)<br />

frontend nodes for compilation job submission and<br />

debugging<br />

Space sharing:<br />

one parallel job per partition<br />

one process per processor<br />

SPMD model<br />

XL Fortran90, XL C/C++<br />

IBM MPI library<br />

10/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

Our experiences with sph2000<br />

Successful compilation:<br />

release 5<br />

on bipro dual core PC under Linux Suse10<br />

On High Performance Machine : IBM Blue Gene/L<br />

under Linux Suse Pro<br />

Benchmark case on BG/L: 3D-simulation, 3D simulation, 2 fluids:<br />

1 million air particles,<br />

18,876 diesel particles on BG/L<br />

Smoothing length: 1.2 E-5 E 5 m<br />

Neighbor / particle: 30<br />

774 time steps, Vdiesel=20 diesel=20<br />

m/s<br />

Iteration/sec/processor: 0.6 s<br />

11/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

3D simulations on Blue Gene/L<br />

Post-processing Post processing with PARAVIEW<br />

P and V frames thanks <strong>to</strong> a Delaunay<br />

triangulation realized by Dr. Jean Favre from<br />

CSCS (Manno ( Manno, , Swizterland)<br />

Swizterland<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

12/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

A glyph animation<br />

Diesel particles<br />

Air particles<br />

13/14


LMH Labora<strong>to</strong>ry for Hydraulic Machines<br />

1st <strong>SPH</strong>ERIC Workshop - Rome - May 10-12, 2006<br />

Speed-up: Speed up:<br />

1 million particles, particles,<br />

10 time steps<br />

4<br />

8 16 24 32 64 128512<br />

512<br />

448<br />

384<br />

320<br />

256<br />

192<br />

128<br />

64<br />

0<br />

U<strong>to</strong>pic<br />

Tübingen<br />

BG/L<br />

14/14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!