16.08.2013 Views

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models

Elliptic relaxation for near wall turbulence models

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong><br />

<strong>turbulence</strong> <strong>models</strong><br />

J.C. Uribe<br />

University of Manchester<br />

School of Mechanical, Aerospace & Civil Engineering<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 1/22


Introduction<br />

Outline<br />

The elliptic <strong>relaxation</strong> approach<br />

The v 2 − f model<br />

The ϕ − f model<br />

Test cases and applications<br />

Conclusion<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 2/22


Introduction<br />

Why modelling the <strong>near</strong>-<strong>wall</strong> region?<br />

In the <strong>near</strong>-<strong>wall</strong> region, viscosity and nohomogeneties<br />

are dominant.<br />

High shear and large rates of <strong>turbulence</strong> production<br />

are present.<br />

Here is where the skin friction and heat transfer are<br />

controlled, there<strong>for</strong>e, of vital importance <strong>for</strong><br />

engineering applications that require these quantities.<br />

The <strong>wall</strong> normal fluctuations are reduced there<strong>for</strong>e<br />

reducing mixing.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 3/22


The <strong>wall</strong> effects:<br />

Introduction<br />

No-slip: The boundary condition on the mean<br />

velocities creates large gradients where the turbulent<br />

production originates.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 4/22


The <strong>wall</strong> effects:<br />

Introduction<br />

No-slip: The boundary condition on the mean<br />

velocities creates large gradients where the turbulent<br />

production originates.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

k<br />

-uv<br />

0<br />

0 100 200 300 400<br />

y+<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

P k<br />

0<br />

0 100 200 300 400<br />

y+<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 4/22


The <strong>wall</strong> effects:<br />

Introduction<br />

No-slip: The boundary condition on the mean<br />

velocities creates large gradients where the turbulent<br />

production originates.<br />

5<br />

4<br />

3<br />

2<br />

1<br />

k<br />

-uv<br />

0<br />

0 100 200 300 400<br />

y+<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

P k<br />

0<br />

0 100 200 300 400<br />

y+<br />

Low Reynolds number effects: Interaction between<br />

energetic and dissipative scales.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 4/22


The <strong>wall</strong> effects:<br />

Introduction<br />

Blocking effect: The impermeability condition affects<br />

the flow by adjusting the pressure field to ensure the<br />

incompressibility condition.<br />

Wall echo: Image term in Green’s function at the other<br />

side of the <strong>wall</strong> produces an increase in the pressure.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 5/22


The <strong>wall</strong> effects:<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

Introduction<br />

Blocking effect: The impermeability condition affects<br />

the flow by adjusting the pressure field to ensure the<br />

incompressibility condition.<br />

Wall echo: Image term in Green’s function at the other<br />

side of the <strong>wall</strong> produces an increase in the pressure.<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

x<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

x’<br />

x’’<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 5/22<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢


The <strong>wall</strong> effects:<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

Introduction<br />

Blocking effect: The impermeability condition affects<br />

the flow by adjusting the pressure field to ensure the<br />

incompressibility condition.<br />

Wall echo: Image term in Green’s function at the other<br />

side of the <strong>wall</strong> produces an increase in the pressure.<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

p i (x, t) = − 1<br />

4π<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

∞<br />

−∞<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

∞<br />

0<br />

∞<br />

∞<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

x<br />

S(x ′ , t)<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

x’<br />

x’’<br />

1<br />

|r ′ |<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

1<br />

+<br />

|r ′′ <br />

dx<br />

|<br />

′<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 5/22<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢<br />

£<br />

£<br />

£<br />

£<br />

¢<br />

¢<br />

¢<br />

¢


<strong>Elliptic</strong> <strong>relaxation</strong> approach<br />

Starting from the Reynolds-stress equation:<br />

with<br />

Duiui<br />

Dt<br />

+ εuiuj<br />

k = Pij + ℘ij + ∂<br />

∂xk<br />

℘ij = −<br />

<br />

νTkl<br />

<br />

Πij + εij − uiuj<br />

∂uiuj<br />

∂xl<br />

ε<br />

<br />

k<br />

<br />

+ ν ∂2 uiuj<br />

∂x 2 k<br />

To solve ℘ij a non-homogeneous elliptic equation is<br />

derived. By integrating the pressure equation and assuming<br />

that the two point correlation Ψij can be approximated as<br />

Ψij(x, x ′ ) = Ψij(x ′ , x ′ ) exp(−r/L) (Durbin,1993)<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 6/22


<strong>Elliptic</strong> <strong>relaxation</strong> approach<br />

The solution is the modified Helmotz-type equation:<br />

℘ij − L 2 ∇ 2 ℘ij = ℘ h ij<br />

Where any quasi homogenous model can be used <strong>for</strong> ℘ h ij .<br />

In fact the model solves <strong>for</strong> fij = ℘ij/k in order to en<strong>for</strong>ce<br />

correct behaviour at the <strong>wall</strong>.<br />

The length scale is prescribed as:<br />

L = CL max<br />

<br />

k 3/2<br />

ε<br />

, Cη<br />

ν 3<br />

ε<br />

1/4 <br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 7/22


<strong>Elliptic</strong> <strong>relaxation</strong> approach<br />

The model accurately represents the asymptotic<br />

behaviour of the stresses even in the <strong>near</strong> <strong>wall</strong> layer.<br />

There is no need to prescribe the distance from the<br />

<strong>wall</strong>, so no ill defined in complex geometries.<br />

No use of empiricall damping functions.<br />

Good representation of the stresses in channel flows<br />

and boundary layers.<br />

Requires 13 transport equations ( 6 <strong>for</strong> uiuj, 6 <strong>for</strong> fij<br />

and one <strong>for</strong> ε).<br />

Numerical difficulties with <strong>wall</strong> boundary conditions <strong>for</strong><br />

f22, f12, f23.<br />

Equations required to be solved coupled.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 8/22


The v 2 − f model<br />

In order the simplify the RSM, the elliptic <strong>relaxation</strong> is<br />

introduced to the eddy viscosity approximation<br />

(Durbin,1995).<br />

Use of correct velocity scale <strong>near</strong> the <strong>wall</strong>, νt = Cµv 2 T<br />

ν t<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 100 200 300<br />

y+<br />

ν t = -uv/dU/dy<br />

νt = C μ k 2 /ε<br />

νt = C μ k υ 2 /ε<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 9/22


L 2 ∂2 f<br />

∂x 2 j<br />

The v 2 − f model<br />

Solve transport equations <strong>for</strong> k, ε and v2 , and elliptic<br />

equation <strong>for</strong> f22<br />

Dv2 ε ∂<br />

= kf − v2 + ν +<br />

Dt k ∂xj<br />

νt<br />

<br />

∂v2 σk ∂xj<br />

− f = 1<br />

T (C1<br />

<br />

v<br />

− 1)<br />

2<br />

<br />

2 Pk<br />

− − C2<br />

k 3 k<br />

v 2 has no tensorial meaning, is now a scalar. So is f.<br />

Wall boundary condition f = − 20νv2<br />

εy 4<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 10/22


Advantages:<br />

The v 2 − f model<br />

Reproduces the correct behaviour of the turbulent<br />

viscosity <strong>near</strong> the <strong>wall</strong><br />

No need to include the distance from the <strong>wall</strong>. Can be<br />

used in any geometry<br />

Improves predictions on separating flows, as well as<br />

heat transfer and skin friction.<br />

Drawbacks:<br />

One transport and one elliptic equations more than the<br />

standard k − ε<br />

Stiffness of the boundary condition makes it necessary<br />

to solve v 2 − f coupled.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 11/22


The ϕ − f model<br />

Instead of solving v 2 , a transport equation is solved <strong>for</strong> the<br />

ratio ϕ = v 2 /k (Laurence et al., 2004):<br />

D(υ 2 /k)<br />

Dt<br />

= f − (υ2 /k)<br />

k<br />

P + ∂<br />

∂xk<br />

<br />

ν + νt<br />

σ (υ 2 /k)<br />

ν + νt<br />

σ (υ 2 /k)<br />

Where X is the "cross diffusion" term from the<br />

trans<strong>for</strong>mation:<br />

X = 2<br />

<br />

∂(υ<br />

k<br />

2 /k) ∂k<br />

∂xk ∂xk<br />

<br />

∂(υ2 <br />

/k)<br />

+ X<br />

∂xk<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 12/22


The ϕ − f model<br />

Advantages of the substitution are:<br />

The term εv 2 /k is not present, leaving stable viscous<br />

diffusion as a dominant mechanism <strong>near</strong> the <strong>wall</strong>.<br />

The <strong>wall</strong> boundary condition <strong>for</strong> f is reduced to:<br />

fw = lim<br />

y→0<br />

−2ν(υ 2 /k)<br />

y 2<br />

which is more convenient and easier to reproduce<br />

since it has y 2 instead of y 4 of the original model.<br />

The LDM modification (Lien and Durbin,1996)<br />

proposed as a method to uncouple the equations,<br />

does not ensure the correct behaviour in the region far<br />

from the <strong>wall</strong>.<br />

(1)<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 13/22


The ϕ − f model<br />

A changes of variable is applied to the original model:<br />

Leading to:<br />

Dϕ<br />

Dt<br />

= f − P ϕ<br />

k<br />

L 2 ∇ 2 f − f = 1<br />

T (C1 − 1)<br />

f = f + 2ν(∇ϕ∇k)<br />

k<br />

2 νt ∂ϕ ∂k<br />

+<br />

k σk ∂xj ∂xj<br />

<br />

ϕ − 2<br />

<br />

3<br />

− C2<br />

+ ν∇ 2 ϕ (2)<br />

+ ∂<br />

∂xj<br />

P<br />

k<br />

νt<br />

σk<br />

− 2ν<br />

k<br />

∂ϕ<br />

∂xj<br />

∂ϕ<br />

∂xj<br />

<br />

∂k<br />

∂xj<br />

(3)<br />

− ν∇ 2 ϕ<br />

Far from the <strong>wall</strong> the last two terms are negligible, ensuring<br />

the correct behaviour.<br />

(4)<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 14/22


The ϕ − f model<br />

The boundary condition of f is zero at the <strong>wall</strong>, improving robustness.<br />

The equations can be solved totally uncouple.<br />

Useful <strong>for</strong> unstructured codes (Implemented in the industrial<br />

Code_Saturne of EDF)<br />

Modification ensures correct behaviour far from the <strong>wall</strong> (see<br />

Laurence et al., 2004)<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

ƒ<br />

ƒ hom<br />

L 2 Δƒ<br />

term neglected in LDM<br />

term neglected in ϕ model<br />

0.004<br />

0.002<br />

0<br />

-0.002<br />

20 40 60 80<br />

150 200 250 300 350 400<br />

y+<br />

y+<br />

a) b) <strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 15/22


Cf<br />

0.005<br />

0.0045<br />

0.004<br />

0.0035<br />

0.003<br />

0.0025<br />

Test cases<br />

Flat plate: Channel Flow:<br />

(Exp: Weighardt and Tillman) (Kim et al., 1987)<br />

Exp<br />

LDM<br />

ϕ - f<br />

2e+06 4e+06 6e+06 8e+06<br />

Re x<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 16/22


Test cases<br />

Natural convection: Tall cavity (Exp: Betts and Bokhari,<br />

1995).<br />

V(m/s)<br />

V (m/s)<br />

V(m/s)<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2 0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2 0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

Exp y/H = 0.50<br />

ϕ - f<br />

LDM<br />

k-ε L-S<br />

Exp y/H = 0.70<br />

Exp y/H = 0.95<br />

a)<br />

0 0.02 0.04 0.06 0.08<br />

x (m)<br />

V (m/s)<br />

V (m/s)<br />

V (m/s)<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

Exp y/H = 0.50<br />

ϕ - f<br />

LDM<br />

k-ε L-S<br />

Exp y/H = 0.70<br />

Exp y/H = 0.95<br />

-0.2<br />

0 0.02 0.04 0.06 0.08<br />

x(m)<br />

a) Ra = 0.86x10 6 b) Ra = 1.43x10 6<br />

b)<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 17/22


Cp<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Test cases<br />

Separated flows: Asymmetric plane diffuser (Exp: Buice<br />

and Eaton, 1997)<br />

Exp<br />

k-ε<br />

k - ω<br />

ϕ model<br />

-20 0 20 40 60<br />

x/h<br />

y/H<br />

y/H<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

Profiles at x/H = 16.14<br />

0 0.1 0.2 0.3 0.4 0.5<br />

U/Ub<br />

0<br />

0 0.005 0.01<br />

vv/Ub<br />

0.015 0.02<br />

y/H<br />

y/H<br />

4<br />

3<br />

2<br />

1<br />

ϕ model<br />

k-ε<br />

k-ω<br />

0<br />

0 0.005 0.01<br />

uu/Ub<br />

0.015 0.02<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-0.004 -0.002 0 0.002 0.004<br />

uv/Ub<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 18/22


Test cases<br />

Flow over periodic hills (Fine LES, Temmerman and<br />

Leschziner, 2001)<br />

Streamlines: LES, k − ε, ϕ<br />

Y/h<br />

Y/h<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

LES<br />

ϕ model<br />

k - ε<br />

1 2 3 4<br />

4 5 6 7 8<br />

U+x/h<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 19/22<br />

a)<br />

b)


Test cases<br />

Three dimensional symmetric bump: Work in progress.<br />

(Simpson, 2002)<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 20/22


Test cases<br />

Multiple impinging jets. Work in progress.<br />

(Geers et. al, 2003)<br />

Top: Exp, Middle: k − ε, Bottom: ϕ − f<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 21/22


Conclusions<br />

The elliptic <strong>relaxation</strong> approach reproduces the<br />

<strong>near</strong>-<strong>wall</strong> effects.<br />

No need <strong>for</strong> damping functions or distance from the<br />

<strong>wall</strong>.<br />

With full Reynolds stress model too expensive (13<br />

equations)<br />

v 2 − f with EVM, cheaper but stiff due to boundary<br />

conditions.<br />

ϕ − f better. Same effects but allows <strong>for</strong> uncoupling of<br />

equations, can be used in industrial codes.<br />

Tested in separated, impinging and buoyant flows.<br />

It is still more expensive than two-equation <strong>models</strong>.<br />

<strong>Elliptic</strong> <strong>relaxation</strong> <strong>for</strong> <strong>near</strong> <strong>wall</strong> <strong>turbulence</strong> <strong>models</strong> – p. 22/22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!