16.08.2013 Views

A compressible fluid particle model based on the Voronoi ...

A compressible fluid particle model based on the Voronoi ...

A compressible fluid particle model based on the Voronoi ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <str<strong>on</strong>g>compressible</str<strong>on</strong>g> <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>model</str<strong>on</strong>g><br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Vor<strong>on</strong>oi tessellati<strong>on</strong>:<br />

Comparis<strong>on</strong> with Smoo<strong>the</strong>d<br />

Dissipative Particle Dynamics<br />

Mar Serrano<br />

Pep Español<br />

Departamento de Física Fundamental, UNED, Spain


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


Motivati<strong>on</strong><br />

Complex <str<strong>on</strong>g>fluid</str<strong>on</strong>g>s<br />

Coupling between <strong>the</strong> microstructure<br />

and <strong>the</strong> hydrodynamic variables of <strong>the</strong><br />

<str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

The <strong>the</strong>rmal fluctuati<strong>on</strong>s are<br />

<strong>the</strong> resp<strong>on</strong>sible of <strong>the</strong> diffusive<br />

processes<br />

Lagrangian methods are adaptative to <strong>the</strong> complex boundary c<strong>on</strong>diti<strong>on</strong>s<br />

involved in complex <str<strong>on</strong>g>fluid</str<strong>on</strong>g>s dynamics<br />

The main objective of this work is <strong>the</strong> formulati<strong>on</strong> of Lagrangian<br />

simulati<strong>on</strong> techniques and hydrodynamic <str<strong>on</strong>g>model</str<strong>on</strong>g>s that are able to<br />

represent simple and complex <str<strong>on</strong>g>fluid</str<strong>on</strong>g>s in <strong>the</strong> mesoscopic scale c<strong>on</strong>sistent<br />

with Thermodynamics


SPH Discretizati<strong>on</strong> of c<strong>on</strong>tinuum hydrodynamics in<br />

Lucy, Astr<strong>on</strong>. J. 1977<br />

M<strong>on</strong>aghan ,An. Rev. terms of <str<strong>on</strong>g>particle</str<strong>on</strong>g>s transforming PDE into ODE<br />

Astr<strong>on</strong>. Astrophys. 1992<br />

DPD Mesoscopic <str<strong>on</strong>g>model</str<strong>on</strong>g> of interacting <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

via c<strong>on</strong>servative, dissipative, random forces<br />

Hoogerbrugge Koelman,<br />

Europhys. Lett. 1992<br />

Español, B<strong>on</strong>et<br />

Europhys.Lett.<br />

1997<br />

SDPD<br />

SDPD<br />

VORONOI With <strong>the</strong> help of <strong>the</strong> GENERIC formalism we<br />

Serrano, Español,<br />

Phys. Rev. E 2001<br />

Lagrangian techniques<br />

How to include <strong>the</strong>rmal fluctuati<strong>on</strong>s?<br />

What is <strong>the</strong> volume? Different implementati<strong>on</strong>s?<br />

C<strong>on</strong>servative forces? Thermodynamic behaviour?<br />

Relati<strong>on</strong> between transport coeff. and <str<strong>on</strong>g>model</str<strong>on</strong>g> parameters?<br />

SDPD technique c<strong>on</strong>sidered as <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>model</str<strong>on</strong>g>s with “soft”volumes<br />

Español, Revenga<br />

Phys Rev E 2003<br />

We extract <strong>the</strong> best: -fluctuati<strong>on</strong>s from DPD<br />

-c<strong>on</strong>necti<strong>on</strong> to NS from SPH<br />

build a new mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>model</str<strong>on</strong>g><br />

with “sharp” volumes. This <str<strong>on</strong>g>model</str<strong>on</strong>g> represents<br />

<strong>the</strong> discrete Lagrangian fluctuating<br />

hydrodynamics


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


Mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

Microscopic Level<br />

N<br />

atoms MD<br />

{ r } , { p } , { }<br />

k k 0 m<br />

Point <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

dri() t pi()<br />

t<br />

=<br />

dt m0<br />

d () V(<br />

{} i )<br />

i t ∂<br />

=−∑<br />

dt ∂<br />

r<br />

p<br />

r<br />

j<br />

j<br />

Representing <strong>the</strong><br />

same physics<br />

Course Graining<br />

Representati<strong>on</strong> M ≤ N<br />

Mesoscopic Level<br />

M Fluid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s DPD<br />

m, ε , v<br />

{ }<br />

{ } , { } V R<br />

m<br />

i<br />

i i<br />

Extensive <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

i i i<br />

Internal Energy<br />

Volumen<br />

A <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> is a small<br />

<strong>the</strong>rmodynamic subsystem<br />

in local equilibrium<br />

dRi( t)<br />

dt<br />

dVi( t)<br />

dt<br />

d ε i ( t)<br />

dt<br />

=<br />

=<br />

=<br />

?<br />

?<br />

?


Different volume definiti<strong>on</strong>s<br />

“Soft” volume DPD, SPH, SDPD<br />

h<br />

vi<br />

i<br />

V<br />

e ij<br />

j<br />

v j<br />

Mass Density<br />

Volume of <strong>the</strong><br />

<str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

Wrh (, )<br />

0 ≠ ∑ v i<br />

i<br />

( )<br />

ρ = ∑mW R −R<br />

i j i j<br />

j<br />

v<br />

( { R } )<br />

i k<br />

=<br />

Kernel<br />

ρ<br />

h<br />

r<br />

i<br />

m<br />

i<br />

( { Rk}<br />

)<br />

“Sharp” volume<br />

Volume of <strong>the</strong><br />

<str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

Ri<br />

( { } ) v0<br />

V<br />

VORONOI<br />

Vor<strong>on</strong>oi<br />

characteristic<br />

functi<strong>on</strong><br />

∆( r−Ri) χ i(<br />

r)<br />

=<br />

∆ r−R ∑<br />

v R =∫ χ ( r) dr<br />

i i<br />

0 = ∑ v i<br />

i<br />

i<br />

j<br />

( ) j<br />

r<br />

−<br />

2<br />

σ<br />

∆ ( r) =<br />

e<br />

2<br />

2


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


Energy<br />

Total internal energy<br />

Postulate:<br />

Reversible dynamics<br />

ε = =<br />

i<br />

i i<br />

In order to preserve<br />

<strong>the</strong> energy...<br />

2<br />

m i<br />

E( x) = + ε<br />

2<br />

ε ε<br />

∑ V<br />

Lagrangian movement<br />

of <strong>the</strong> <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

of c<strong>on</strong>stant<br />

mass and entropy<br />

m<br />

( { k}<br />

)<br />

∑ ∑ R<br />

i<br />

( mS , , v )<br />

i<br />

i<br />

dV<br />

dt<br />

i<br />

Definiti<strong>on</strong> of <strong>the</strong> equati<strong>on</strong><br />

of state of <strong>the</strong> <str<strong>on</strong>g>fluid</str<strong>on</strong>g>, ideal<br />

gas, van der Waals...<br />

dRi<br />

= Vi<br />

dt<br />

dmi<br />

= 0<br />

dt<br />

dSi<br />

= 0<br />

dt<br />

∂ε<br />

∂ε<br />

j<br />

=− =−<br />

∂ ∂ ∑ R R<br />

i j i


m<br />

i<br />

dVi<br />

dt<br />

This dynamics can be understood as a Molecular Dynamics,<br />

where <strong>the</strong> internal energy of <strong>the</strong> system plays <strong>the</strong> role of a<br />

i<br />

=<br />

∑<br />

j<br />

many body interacti<strong>on</strong> effective potential.<br />

U<br />

∂v<br />

j<br />

( { Rk}<br />

)<br />

∂R<br />

( { k} ) ε ε i { k}<br />

ε R = = =<br />

R<br />

ef i<br />

i i<br />

i<br />

{ }<br />

p<br />

j<br />

∑ ∑<br />

mS ,<br />

v<br />

( )<br />

( )<br />

ε ( ( ) ) ( { } ) ( { } )<br />

j v j Rk vj Rk<br />

v<br />

∑<br />

j Rk<br />

=−∑<br />

∂ε<br />

∂ ∂ ∂<br />

j<br />

=<br />

∂R ∂v<br />

∂R∂R Thevolumeisa<br />

functi<strong>on</strong> of <strong>the</strong><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>’s positi<strong>on</strong>s...<br />

j j<br />

i<br />

j<br />

m , S<br />

i i<br />

i<br />

Thermodynamic pressure<br />

of <strong>the</strong> <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

dvi ∂vdR i j ∂vi<br />

= i. = i.<br />

dt ∂R dt ∂R<br />

∑ ∑ V<br />

∀ j j ∀ j j<br />

p<br />

Lagrangian <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

j<br />

j


Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>model</str<strong>on</strong>g><br />

dRi<br />

() t = Vi<br />

dt<br />

dv<br />

dt<br />

i<br />

dV<br />

i m i<br />

dt<br />

dS<br />

dt<br />

i<br />

=<br />

∑<br />

j<br />

=<br />

() t = 0<br />

∂ v<br />

∂R<br />

∑<br />

j<br />

i<br />

j<br />

iV<br />

∂ v<br />

∂R<br />

j<br />

i<br />

j<br />

p<br />

j<br />

Euler equati<strong>on</strong>s (Inviscid <str<strong>on</strong>g>fluid</str<strong>on</strong>g>)<br />

dρ(,) r t<br />

dv( r=−<br />

, t)<br />

ρ(,)<br />

r t ∇⋅v(,)<br />

r t<br />

dt = v( r,<br />

t)<br />

∇ ⋅v(<br />

r,<br />

t)<br />

dt<br />

dgr (,) t<br />

=−gr (,) t ∇ ∇⋅v(,) rt − ∇<br />

∇P(,)<br />

rt<br />

dtdv<br />

( r,<br />

t)<br />

m = −v(<br />

r,<br />

t)<br />

∇P(<br />

r,<br />

t)<br />

ds(,) r t dt<br />

=−s(,) r t ∇⋅v(,)<br />

r t<br />

dt<br />

dS( r,<br />

t)<br />

dt<br />

Discrete variables ... In c<strong>on</strong>tinuum C<strong>on</strong>tinuum extensive fields fields<br />

Discrete versi<strong>on</strong><br />

of<br />

c<strong>on</strong>tinuum operators<br />

.<br />

=<br />

Specific Volume, momentum and Entropy<br />

ANALOGY<br />

Gradient<br />

Divergence<br />

−<br />

0<br />

∂v<br />

f ≈ v∇f ∑ R<br />

j<br />

j<br />

j ∂ i<br />

∂v<br />

∑<br />

i f j<br />

j ∂Rj<br />

⋅ ≈v∇⋅<br />

f


Vor<strong>on</strong>oi<br />

Ri<br />

Aij<br />

Rij<br />

Rj<br />

cij<br />

eij<br />

lim<br />

σ →0<br />

R Distance between two neighbouring <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

ij<br />

eij Unit vector in <strong>the</strong> line joining this two <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

dr<br />

Aij = R ∫ ij<br />

χ ( ) ( )<br />

v 2 i r χ j r<br />

0 σ<br />

Rij dr<br />

⎛ R i + R j ⎞<br />

cij = ∫ χ ( ) ( )<br />

v 2 i r χ j r ⎜r-⎟ A 0<br />

ij<br />

σ<br />

⎝ 2 ⎠<br />

A ij<br />

Area joining two neighbouring cells<br />

c ij Parallel vector to <strong>the</strong> face ij giving <strong>the</strong> positi<strong>on</strong><br />

of <strong>the</strong> face center of mass with respect to <strong>the</strong><br />

medium point defined by <strong>the</strong>se two cells<br />

∂v<br />

⎛ c i<br />

ij e ⎞ ⎛ ij<br />

cij<br />

e ⎞ ij<br />

=− Aij⎜ + ⎟+ δ ∑ ij Aij⎜ − ⎟<br />

∂R ⎜<br />

j Rij2<br />

⎟ ⎜<br />

i≠j Rij<br />

2 ⎟<br />

⎝ ⎠ ⎝ ⎠


Vor<strong>on</strong>oi<br />

Final Reversible<br />

equati<strong>on</strong>s<br />

dRi () t = Vi<br />

dt<br />

,<br />

dmi = 0<br />

dt<br />

,<br />

dSi<br />

= 0<br />

dt<br />

dV<br />

⎛ c i<br />

ij e ⎞ ij<br />

m i = ∑ Aij⎜<br />

− ⎟(<br />

Pi − Pj)<br />

dt ⎜<br />

j≠i Rij<br />

2 ⎟<br />

⎝ ⎠<br />

The analogy is a quantitative relati<strong>on</strong>ship, because <strong>on</strong>e can dem<strong>on</strong>strate<br />

1 ∂v<br />

1 ⎛ ⎞<br />

j<br />

cij eij<br />

∇P<br />

( R = ∑<br />

i) ≈− ∑ P(<br />

R ) Aij<br />

⎜ − ⎟βi.<br />

j<br />

Rij = β<br />

v<br />

v ⎜<br />

i j Rij<br />

2 ⎟<br />

i j ∂Ri<br />

⎝ ⎠<br />

For linear pressures P() r = [ α + βi. r]<br />

( )<br />

The result is exact for<br />

arbitrary meshes !!<br />

Linear c<strong>on</strong>sistency supports our idea that<br />

<str<strong>on</strong>g>fluid</str<strong>on</strong>g> pressure forces are a discrete pressure gradient<br />

Serrano, Español, Zúñiga, J. Statistical Physics, 2005


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


How can we incorporate in <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g> <strong>the</strong> dissipative dynamics in order to<br />

keep as close as possible to <strong>the</strong> c<strong>on</strong>tinuum Navier Stokes equati<strong>on</strong>s?<br />

dv ∂v<br />

= ∑ dt ∂R<br />

i i<br />

j j<br />

dV<br />

∂v<br />

m = p +<br />

i<br />

j<br />

i<br />

dt j ∂Ri<br />

j<br />

dS<br />

i Ti dt<br />

dR<br />

dt<br />

i<br />

Irreversible dynamics<br />

=<br />

= 0 +<br />

V<br />

i<br />

<br />

-A e<br />

∑<br />

?<br />

i.<br />

V<br />

j<br />

?<br />

We requiere expressi<strong>on</strong>s for <strong>the</strong> sec<strong>on</strong>d derivatives,<br />

ij<br />

ij<br />

dv<br />

= v∇⋅v<br />

dt<br />

dv<br />

2 ⎛ d −2<br />

⎞<br />

m =− v∇P+ ηv ∇ ∇ v+ ⎜η + ζ⎟v<br />

∇(∇<br />

∇(∇⋅v)<br />

dt<br />

⎝ d ⎠<br />

dS 2<br />

T = κv∇∇ ∇ ∇T+ 2 ηv ∇ ∇v: ∇ ∇ v+ ζv(∇<br />

(∇<br />

(∇⋅v)<br />

dt<br />

<br />

⎣ ⎦ ∑ v<br />

<br />

⎣ ⎦<br />

<br />

⎡ f⎤ ⎣<br />

∇∇<br />

∇∇<br />

⎦<br />

≈− ∑<br />

<br />

f<br />

11 ⎡ f ⎤ =− A ⎡ ij ij f ⎤<br />

⎣<br />

=− ∇i<br />

⎦ ∑ ijeij e i<br />

v ⎣ ⎦<br />

Divergence<br />

⎡ <strong>the</strong>orem ∇∇ ∇∇f⎤ A ⎡ ∇<br />

∇f⎤<br />

fij<br />

i i<br />

i j i j<br />

ij ij<br />

i<br />

1<br />

vi j<br />

Aij<br />

ee ij ij<br />

Rij<br />

ij<br />

≈<br />

2<br />

R<br />

ij<br />

<br />

e<br />

ij


Spatial derivatives SDPD/Vor<strong>on</strong>oi<br />

“Soft” volume SDPD<br />

<br />

rc<br />

vi<br />

i<br />

e ij<br />

( { } )<br />

∂v<br />

∂ R<br />

j<br />

v j<br />

1<br />

∑≠<br />

i j i<br />

Volume<br />

[ ] [ ( ) ] µ ν<br />

'<br />

µ ν µ<br />

∇ ∇ f i=<br />

−∑<br />

v jWij<br />

d + 2 eij<br />

eij<br />

−δ<br />

ij fij<br />

j<br />

“Sharp” volume<br />

Ri<br />

VORONOI<br />

Volume<br />

v R =∫ χ ( r) dr<br />

( { } ) v0<br />

i i<br />

∂v<br />

⎛ c i<br />

ij e ⎞ ⎛ ij<br />

cij<br />

e ⎞ ij<br />

=− Aij⎜ + + δ ij Aij −<br />

⎜<br />

⎟<br />

j Rij2<br />

⎟ ∑ ⎜ ⎟<br />

∂R ⎜<br />

i≠j Rij<br />

2 ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

<br />

1 ⎛ cij<br />

e ⎞ ij<br />

∇f i=<br />

− ∑ A ⎜<br />

ij − ⎟<br />

v ⎜<br />

i j i R ⎟<br />

≠ ⎝ ij 2 ⎠<br />

1 Aij<br />

<br />

⎡ f ⎤<br />

⎣<br />

∇∇<br />

∇∇<br />

⎦<br />

≈− ∑ ee f<br />

i v R<br />

[ ] ( 2 2 ) '<br />

∇ f i=<br />

− vi<br />

fi<br />

+ v j f j Wije<br />

[ ] ij<br />

fij<br />

v<br />

1<br />

v<br />

i<br />

⎛<br />

⎜W<br />

⎝<br />

( { R } )<br />

k<br />

=<br />

∑<br />

j<br />

W<br />

i Rk '<br />

'<br />

= ij eij<br />

−δ<br />

ij∑W<br />

2<br />

jk<br />

j vi<br />

k ≠i<br />

r<br />

c<br />

1<br />

( R − R )<br />

Español, Revenga, Phys. Rev. E, 2003<br />

i<br />

e<br />

<br />

jk<br />

⎞<br />

⎟<br />

⎠<br />

j<br />

i j ij<br />

ij ij ij<br />

Serrano, Physica A, 2005<br />

i


Complete Vor<strong>on</strong>oi<br />

dynamics<br />

dRi<br />

() t = Vi<br />

dt<br />

dV<br />

⎛ cij e ⎞ ij Aij<br />

⎡ i<br />

⎛ ⎛ 2 ⎞ ⎞ ⎤<br />

m i = ∑Aij⎜ − ⎟Pij + − η ij + η 1 − + ζ ( ij⋅ ij) ij<br />

dt ⎜<br />

j i Rij 2 ⎟ ∑ ⎢ v<br />

≠<br />

j R<br />

⎜ ⎜ ⎟<br />

ij<br />

d<br />

⎟ e v e ⎥<br />

⎝ ⎠ ⎣ ⎝ ⎝ ⎠ ⎠ ⎦<br />

dS<br />

A<br />

i<br />

ij ⎡ 1 2 1⎛ ⎛ 2 ⎞ ⎞<br />

2⎤<br />

= 0 + ∑ ⎢− κ Tij<br />

+ η vij + η⎜1 − ⎟+<br />

ζ ( ij ⋅ ij ) ⎥<br />

dt j Rij 2 2<br />

⎜<br />

d<br />

⎟ e v<br />

⎣ ⎝ ⎝ ⎠ ⎠ ⎦<br />

REVERSIBLE IRREVERSIBLE


2<br />

m i<br />

Ex ( ) = ∑ + ε ( mi, Si, vi)<br />

i 2<br />

V<br />

POTENTIALS<br />

∂Ex<br />

( )<br />

Sx () =∑Si<br />

i ∂<br />

⎛ ⎞<br />

∂x<br />

∂x<br />

⎜ ⎟<br />

d<br />

⎛ ⎞<br />

⎜<br />

R<br />

<br />

i ⎟ ⎛ ⎞⎜<br />

⎟ ⎛ ⎞⎛⎞<br />

⎜ dt ⎟ ⎜ ⎟ vk<br />

δij<br />

0 ⎜<br />

∂<br />

− p ⎟ ⎜ ⎟⎜⎟<br />

k 0 0<br />

d<br />

⎜<br />

0 1 <br />

⎜ ⎟ ⎟ ∑ ⎜<br />

0 <br />

⎟⎜0<br />

V<br />

⎜ k ∂R<br />

i<br />

j ⎟<br />

⎟<br />

VV SV<br />

⎜m= ⎜ δ 0 ⎟ ⎜ i ⎟ ∑ −1<br />

ij<br />

0 ⎜ ⎟+<br />

∑ 0 M ij M ⎟ ij ⎜0⎟ ⎜ dt ⎟ j ⎜ ⎟ mj<br />

j ⎜ VS SS ⎟<br />

0<br />

⎜ V ⎟ j<br />

⎜ ⎟<br />

⎜<br />

0 M ij M ij 1<br />

dS ⎟ ⎜ 0 0 ⎟⎜<br />

i<br />

T ⎟ ⎜ ⎟⎜⎟<br />

⎜ ⎟ j<br />

⎜ ⎟ ⎜ ⎟ ⎜ ⎟<br />

dt<br />

⎝ ⎠⎜ ⎟ ⎝ ⎜<br />

⎠⎝⎟<br />

⎜ ⎟<br />

⎜ ⎟ ⎝ <br />

⎠<br />

⎠<br />

⎝ ⎠<br />

T<br />

Lx ( ) =− Lx ( )<br />

M( x) = M ( x)<br />

≥0<br />

OPERATORS<br />

S( x)<br />

A SV ij ⎡ ⎛ ⎛d−2⎞ ⎞ ⎤<br />

M ij = ⎢− η vij + ( ij ij ) ij<br />

R<br />

⎜η⎜ ⎟+<br />

ζ<br />

ij<br />

d<br />

⎟ e ⋅v<br />

e ⎥<br />

∂S(<br />

x)<br />

⎣ ⎝ ⎝ ⎠ ⎠ ∂E(<br />

x⎦)<br />

L(<br />

x)<br />

⋅ = 0 PROPERTIES M ( x)<br />

⋅ = 0<br />

∂x<br />

A VS ij ⎡ ⎛ ⎛d−2⎞ ⎞ ∂x<br />

T T ⎤<br />

M ij = ⎢− η v ij + η⎜ ⎟+<br />

ζ ( ij ⋅ ij ) ij ⎥<br />

R<br />

⎜<br />

ij<br />

d<br />

⎟ e v e<br />

The <str<strong>on</strong>g>model</str<strong>on</strong>g> has a STRUCTURE ⎣ known ⎝ ⎝ as GENERIC<br />

⎠ ⎠ ⎦<br />

dEx<br />

( )<br />

Assure <strong>the</strong><br />

A SS<br />

ij A ⎡ ij η 2 ⎛η( d − 2)<br />

ζ ⎞ ⎤ 2<br />

M ij =−<br />

First<br />

κ<br />

Law<br />

= 0<br />

<strong>the</strong>rmodynamical<br />

Tij<br />

+ ⎢ vdt ij + ⎜ Grmela + & ⎟Öttinger<br />

( eij<br />

⋅vij<br />

) ⎥<br />

Rij Rij<br />

⎢⎣2 ⎝ 2d2 c<strong>on</strong>sistency<br />

dSx<br />

( ) Phys. Rev. ⎠ E 1997<br />

⎥<br />

Sec<strong>on</strong>d Law<br />

⎦<br />

0<br />

dt ≥


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


Including <strong>the</strong>rmal fluctuati<strong>on</strong>s<br />

⎛ ∂E(<br />

x)<br />

∂S( x)<br />

∂ ⎞<br />

dx = ⎜ L ( x)<br />

⋅ + M ( x) ⋅ + kB⋅M ( x)<br />

⎟dt+<br />

dx<br />

⎝ ∂x<br />

∂x<br />

∂x ⎠<br />

T<br />

Fluctuati<strong>on</strong>-disipati<strong>on</strong> <strong>the</strong>orem dxd x = 2 k M ( x)<br />

dt<br />

Energy c<strong>on</strong>servati<strong>on</strong><br />

∂Ex<br />

( )<br />

⋅ dx<br />

= 0<br />

∂x<br />

Vor<strong>on</strong>oi Model with fluctuati<strong>on</strong>s: Sp<strong>on</strong>taneous<br />

fluctuati<strong>on</strong>s<br />

dx = ( ,0, dV, 0, , ) local stresses<br />

i dS<br />

i <br />

and random heat<br />

Mimic <strong>the</strong> irreversible<br />

flux<br />

processes:<br />

heat c<strong>on</strong>ducti<strong>on</strong> and shear and bulk dissipati<strong>on</strong><br />

1 2<br />

d <br />

T<br />

1/2<br />

Pi<br />

= ∑(<br />

BdW ij ijeij + ZdW ij ij eij<br />

)<br />

⎛ A ⎞ ⎛A⎞ ij<br />

ij<br />

j<br />

Bij ∝ ⎜ kBTiζZij ∝⎜ kBTiη ⎜<br />

⎟<br />

⎟<br />

R ⎟ ⎜R⎟ ⎝ ij ⎠<br />

1 1<br />

⎝ ij ⎠<br />

1 2<br />

dS<br />

T<br />

i = ∑HdV ij ij − ∑( Bijeij ⋅ vijdWij+ Zijeij ⋅vijdWij<br />

)<br />

1/2<br />

Ti<br />

j 2T<br />

⎛A⎞ i j<br />

ij<br />

Hij ∝ ⎜ kBTT i jκ<br />

⎜<br />

⎟<br />

R ⎟<br />

⎝ ij ⎠<br />

B<br />

1/2


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


y<br />

Comparing <strong>the</strong> performance of<br />

SDPD/Vor<strong>on</strong>oi in a shear flow<br />

Serrano, Physica A, 2005<br />

External forcing:<br />

x<br />

Theoretical<br />

Stati<strong>on</strong>ary<br />

profile:<br />

(f x,f y)=(G0sin( ky),0)<br />

(v ,v )=(v 0 sin( ky),0)<br />

s s ρG<br />

x y 0<br />

k<br />

Method to meassure <strong>the</strong> effective<br />

shear viscosity of <strong>the</strong> <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

Check:<br />

η<br />

2<br />

η<br />

-Precisi<strong>on</strong><br />

- Spatial resoluti<strong>on</strong><br />

-Complexityof<strong>the</strong>algorithms


The mesh becomes<br />

disordered<br />

Accuracy<br />

SDPD hexag<strong>on</strong>al ordered c<strong>on</strong>figurati<strong>on</strong><br />

SDPD square ordered c<strong>on</strong>figurati<strong>on</strong><br />

SDPD disordered c<strong>on</strong>figurati<strong>on</strong><br />

Vor<strong>on</strong>oi ordered<br />

Input <strong>the</strong>ory


Stati<strong>on</strong>ary velocity profiles<br />

Disordered<br />

Vor<strong>on</strong>oi SDPD<br />

Ordered<br />

Ordered<br />

Disordered


Relative error in <strong>the</strong> stati<strong>on</strong>ary<br />

velocity profile as a functi<strong>on</strong> of<br />

<strong>the</strong> linear resoluti<strong>on</strong><br />

Both methods have a sec<strong>on</strong>d order<br />

spatial error<br />

C.p.u. time as a functi<strong>on</strong> of<br />

<strong>the</strong> total number of <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

SDPD<br />

SDPD<br />

VORONOI VORONOI<br />

SDPD Verlet list<br />

Vor<strong>on</strong>oi vertex recombinati<strong>on</strong><br />

The complexity of both<br />

algorithms is linear


Outline<br />

1. Motivaci<strong>on</strong>: Lagrangian techniques<br />

2. What is a mesoscopic <str<strong>on</strong>g>fluid</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>?<br />

Volume definiti<strong>on</strong>s: “soft”, “sharp”<br />

3. Building <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>:<br />

- Vor<strong>on</strong>oi Reversible <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

- Vor<strong>on</strong>oi Irreversible dynamics: Structure<br />

- Fluctuati<strong>on</strong>s<br />

4. Comparis<strong>on</strong> performance SDPD/Vor<strong>on</strong>oi<br />

5. General C<strong>on</strong>clusi<strong>on</strong>s


DPD-SPH/VORONOI: Advantages/disadvantages<br />

Both <str<strong>on</strong>g>model</str<strong>on</strong>g>s are <strong>the</strong>rmodynamic c<strong>on</strong>sistent....<br />

-C<strong>on</strong>ceptually: Vor<strong>on</strong>oi is elegant. Parameter free compared to SPH/DPD.<br />

-Computati<strong>on</strong>al efficiency: Both <str<strong>on</strong>g>model</str<strong>on</strong>g>s are comparable, because <strong>the</strong><br />

geometrical calculus in 2D Vor<strong>on</strong>oi is compensated for in SDPD by <strong>the</strong><br />

Verlet list updates and a bigger number of interacti<strong>on</strong>s. SDPD is trivial to<br />

extend 3D while <strong>the</strong> Vor<strong>on</strong>oi implementati<strong>on</strong> is more involved.<br />

-The accuracy in <strong>the</strong>physicalresultsof<strong>the</strong>techniques: Theeffective<br />

viscosities depend <strong>on</strong> <strong>the</strong> regularity of <strong>the</strong> mesh. SDPD gives better<br />

results than Vor<strong>on</strong>oi for disordered meshes because uses more neighbors’<br />

informati<strong>on</strong>. In both techniques <strong>the</strong> accuracy can be mantained by<br />

performing a retessellati<strong>on</strong> or remeshing into ordered c<strong>on</strong>figurati<strong>on</strong>s.


C<strong>on</strong>clusi<strong>on</strong>s<br />

-The discrete <str<strong>on</strong>g>model</str<strong>on</strong>g> formulated <strong>on</strong> physical grounds can be interpreted<br />

as a Lagrangian discretizati<strong>on</strong> of <strong>the</strong> c<strong>on</strong>tinuum Navier Stokes<br />

equati<strong>on</strong>s that preserves First and Sec<strong>on</strong>d law of <strong>the</strong>rmodynamics.<br />

Any physical reas<strong>on</strong>able <str<strong>on</strong>g>model</str<strong>on</strong>g> should be compatible with <strong>the</strong><br />

<strong>the</strong>rmodynamic laws.<br />

-In order to be able to include <strong>the</strong>rmal fluctuati<strong>on</strong>s in any <str<strong>on</strong>g>model</str<strong>on</strong>g> we have<br />

to be sure that <strong>the</strong> dissipative matrix M(x) of <strong>the</strong> irreversible dynamics is<br />

positive definite.<br />

-In order to be able to exploit <strong>the</strong> Lagrangian power of <strong>the</strong> techniques for<br />

applicati<strong>on</strong>s to complex <str<strong>on</strong>g>fluid</str<strong>on</strong>g>s some more <strong>the</strong>oretical work has to be<br />

d<strong>on</strong>e to get good discrete versi<strong>on</strong>s of <strong>the</strong> sec<strong>on</strong>d derivative operators<br />

in n<strong>on</strong> uniform grids.


Complex Boundary c<strong>on</strong>diti<strong>on</strong>s<br />

Modelling complex geometries in Vor<strong>on</strong>oi <str<strong>on</strong>g>fluid</str<strong>on</strong>g> is extremely easy.<br />

Flat wall boundary<br />

Not upgrading <strong>the</strong> properties and<br />

variables of <strong>the</strong> wall <str<strong>on</strong>g>particle</str<strong>on</strong>g>, but<br />

including it in <strong>the</strong> force of <strong>the</strong><br />

<str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

WALL<br />

FLUID<br />

Modelling suspended objects<br />

Jointing <strong>the</strong> m<strong>on</strong>omers or <str<strong>on</strong>g>fluid</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s with springs or<br />

including differences in<br />

c<strong>on</strong>stitutive equati<strong>on</strong>s<br />

and transport coefficients<br />

POLYMERIC<br />

CHAIN<br />

MICELLE


2d implementati<strong>on</strong><br />

Structure of <strong>the</strong> code is similar to Molecular Dynamic Code in PBC: F77<br />

Initializati<strong>on</strong> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s:<br />

independent variables: positi<strong>on</strong>, velocities, masses, entropies<br />

dependent variables: temperature, internal energy, pressure, volume<br />

For simplicity regular initial c<strong>on</strong>figurati<strong>on</strong> for building up two matrixes<br />

TOPOLOGY: c<strong>on</strong>ectivities am<strong>on</strong>g <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

GEOMETRY: geometrical quantities involved in <strong>the</strong> tesellati<strong>on</strong><br />

Moving or advancing <strong>the</strong> dynamics of <strong>the</strong> independent variables:<br />

Explicit Time integrati<strong>on</strong> schemes: RK4, Trotter, Euler...<br />

Updating <strong>the</strong> dependent variables.<br />

The volume is a functi<strong>on</strong> of <strong>the</strong> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s’ positi<strong>on</strong> that change.<br />

TOPOLOGY CHECK: RECOMBINATION or new calculus<br />

GEOMETRY CALCULUS<br />

Meassuring <strong>the</strong> physical observables


TOPOLOGY INFORMATION<br />

Euler<strong>the</strong>oremfor2D systemin PBC: M-F+V=0<br />

In Vor<strong>on</strong>oi<br />

F/V=3/2<br />

V=2M Vertex Matrix<br />

F=3M<br />

Faces Matrix<br />

We clasify (label) all vertex and faces and c<strong>on</strong>ectivities<br />

i j<br />

GEOMETRICAL INFORMATION<br />

Fil v2 Fjl<br />

With <strong>the</strong> topology matrixes we compute vertex coordinates, areas<br />

(lenght of <strong>the</strong> polig<strong>on</strong>al faces) vectors c and e, volumes...<br />

Of course, <strong>the</strong>y must satisfy total volume c<strong>on</strong>servati<strong>on</strong>. l<br />

a\b b=1 b=2 b=3 b=4 b=5 b=6 b=7 b=8 b=9 b=10 a\b b=1 b=2 b=3 b=4 b=5 b=6<br />

Fij i j k l V1 V2 Fik Fil Fjk Fjl V1 i j k Fij Fik Fjk<br />

TOPOLOGICAL Fik i j l RECOMBINATION<br />

... V1 ... Fik Fij Fj. Fj.<br />

Fil i l j ... V2 ... Fil Fij Flj Fl.<br />

V2 i j l Fij<br />

....<br />

Fil Fjl<br />

Fjl j l i ... V2 ... Fji Fj. Fli Fl.<br />

Because <strong>the</strong> number of faces/vertexes in PBC Vor<strong>on</strong>oi tesselati<strong>on</strong> are<br />

....<br />

c<strong>on</strong>stant, we can compute <strong>the</strong> c<strong>on</strong>nectivities of <strong>the</strong> mesh at <strong>the</strong> same<br />

time <strong>the</strong> positi<strong>on</strong>s (Vor<strong>on</strong>oi centers) follow <strong>the</strong> Lagrangian dynamics. The<br />

essential process in <strong>the</strong> topological change is given by vertex recombinati<strong>on</strong>.<br />

Fik<br />

v1<br />

Fij<br />

k<br />

Fjk


OLD TOPOLOGY<br />

Fik<br />

Fil<br />

v1<br />

i j<br />

v2<br />

Time 1<br />

k<br />

Fij<br />

l<br />

Fjk<br />

Fjl<br />

Fik<br />

Fil<br />

CHECK TOPOLOGY for each FACE<br />

Use old topologic informati<strong>on</strong>. CIRCUMCIRCLE CRITERIA<br />

i<br />

OK!!<br />

v1<br />

v2<br />

k<br />

l<br />

Time 2<br />

Fjk<br />

j<br />

Fij<br />

Fjl<br />

WRONG <str<strong>on</strong>g>particle</str<strong>on</strong>g> k<br />

inside!!<br />

Fik<br />

Fil<br />

i<br />

k<br />

Fkl<br />

v1 v2<br />

l<br />

Fjk<br />

Fjl<br />

WRONG <str<strong>on</strong>g>particle</str<strong>on</strong>g> l inside!!<br />

Time 3<br />

CHANGE<br />

MFACES AND MVERTEX!!<br />

j


Example of recombinati<strong>on</strong> algorithm: shear alternative forc<strong>on</strong>g is applied


Properties of <strong>the</strong> n<strong>on</strong> dissipative Vor<strong>on</strong>oi <str<strong>on</strong>g>model</str<strong>on</strong>g><br />

These equati<strong>on</strong>s preserve energy c<strong>on</strong>servati<strong>on</strong><br />

The Vor<strong>on</strong>oi volume is invariant under<br />

- translati<strong>on</strong>s of <strong>the</strong> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s: C<strong>on</strong>serves tot. Lin. Mom. P= ∑ mVi<br />

- rotati<strong>on</strong>s of <strong>the</strong> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s: C<strong>on</strong>serves angular mom.<br />

These equati<strong>on</strong>s can be c<strong>on</strong>sidered as a Lagrangian discrete<br />

versi<strong>on</strong> of <strong>the</strong> Euler Equati<strong>on</strong>s (inviscid Navier Stokes) (if <strong>the</strong><br />

velocity field is smoo<strong>the</strong>d)<br />

O<strong>the</strong>r symmetries of <strong>the</strong> <str<strong>on</strong>g>model</str<strong>on</strong>g>: Invariance of <strong>the</strong> equati<strong>on</strong>s<br />

under spatial traslati<strong>on</strong>s, temporal, Galilean transformati<strong>on</strong>s,<br />

rotati<strong>on</strong>s,...<br />

Just like <strong>the</strong> Euler equati<strong>on</strong>s!!<br />

...Can our inviscid <str<strong>on</strong>g>model</str<strong>on</strong>g> predict or say something about<br />

<strong>the</strong> statistical properties of stati<strong>on</strong>ary turbulence?<br />

∑<br />

L= R × mV<br />

i<br />

i<br />

i i


Euler <str<strong>on</strong>g>fluid</str<strong>on</strong>g>: Accelerati<strong>on</strong> Distributi<strong>on</strong>s<br />

In fully developed turbulence, big accelerati<strong>on</strong>s often appear in<br />

comparis<strong>on</strong> to <strong>the</strong> Gaussian distributi<strong>on</strong> with <strong>the</strong> same variance.<br />

Simulati<strong>on</strong> Simulati<strong>on</strong> result result<br />

We have perfomed MD simulati<strong>on</strong>s with<br />

pair potentials like Lennard J<strong>on</strong>es, and<br />

this l<strong>on</strong>g tails events do not appear!<br />

Our <str<strong>on</strong>g>model</str<strong>on</strong>g> captures some features<br />

observed in experiments... But we should<br />

include viscosity<br />

A. La Porta, et al. Nature 409,1017, 2001<br />

Experimental<br />

Experimental<br />

result result


SDPD Overlapping<br />

Input <strong>the</strong>ory<br />

s=3<br />

s=2<br />

dependance<br />

s=1.38<br />

s=<br />

h/<br />

λ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!