17.08.2013 Views

Solutions - School of Mathematics and Statistics - Carleton University

Solutions - School of Mathematics and Statistics - Carleton University

Solutions - School of Mathematics and Statistics - Carleton University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CARLETON UNIVERSITY<br />

SCHOOL OF MATHEMATICS AND STATISTICS<br />

MATH2107 Linear Algebra II<br />

<strong>Solutions</strong> to Test 2<br />

1. (a) To show that B1 is a basis for V = P2, we first check for linear independence. Consider<br />

the linear combination<br />

a · 1 + b(1 + x) + c(1 + x + x 2 ) = 0<br />

which gives the system <strong>of</strong> linear equations<br />

a + b + c = 0<br />

b + c = 0<br />

c = 0.<br />

Clearly c = 0, <strong>and</strong> substituting this into the earlier equations gives a = b = 0 also.<br />

Hence B1 is linearly independent.<br />

Since dim(P2) = 3, <strong>and</strong> there are three polynomials in B1, it follows that B1 is a<br />

basis for P2.<br />

Similarly, to show that B2 is a basis for V = P2, we first show linear independence.<br />

This time, we have the linear combination<br />

a(1 − x) + b(1 + 2x) + c(1 − x 2 ) = 0<br />

which gives the system <strong>of</strong> linear equations<br />

a +b +c = 0<br />

−a +2b = 0<br />

−c = 0.<br />

Clearly c = 0, <strong>and</strong> substituting this into the first equation gives a + b = 0. Adding<br />

this to the second equation gives 3b = 0, so we then get a = b = 0. Hence B2 is<br />

linearly independent.<br />

Again, there are three polynomials in B2 <strong>and</strong> dim(P2) = 3, so it follows that B2 is a<br />

basis for P2.<br />

(6 marks)<br />

(b) To find the co-ordinate vector <strong>of</strong> p(x) = 2 + x 2 with respect to B1, we notice that<br />

so therefore<br />

2 + x 2 = 2 · 1 − 1(1 + x) + 1(1 + x + x 2 ),<br />

[p(x)]B1 =<br />

⎡ ⎤<br />

2<br />

⎣−1⎦.<br />

1<br />

(2 marks)


(c) Let B1 be the matrix whose columns are the co-ordinate vectors <strong>of</strong> B1 with respect<br />

to the st<strong>and</strong>ard basis, <strong>and</strong> likewise B2 the same matrix but for B2. So we have<br />

⎡<br />

1 1<br />

⎤<br />

1<br />

B1 = ⎣0<br />

1 1⎦<br />

0 0 1<br />

<strong>and</strong><br />

B2 =<br />

⎡<br />

1 1<br />

⎤<br />

1<br />

⎣−1<br />

2 0 ⎦.<br />

0 0 −1<br />

To use the Gauss–Jordan Method, we take the 3 × 6 matrix [B2 | B1], <strong>and</strong> apply<br />

elementary row operations until the left-h<strong>and</strong> matrix is the identity:<br />

⎡<br />

1 1 1 1 1<br />

⎤<br />

1<br />

⎡<br />

1 1 1 1 1<br />

⎤<br />

1<br />

⎣ −1 2 0 0 1 1 ⎦ ∼ ⎣ 0 3 1 1 2 2 ⎦<br />

0 0 −1 0 0 1 0<br />

⎡<br />

1<br />

0<br />

1<br />

−1<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

⎤<br />

1<br />

∼<br />

∼<br />

⎣ 0<br />

0<br />

⎡<br />

1<br />

⎣<br />

1<br />

0<br />

0<br />

1 1 2 2 ⎦<br />

3 3 3 3<br />

−1 0 0 1<br />

2 0 1<br />

2 1 1<br />

3 3 3 3<br />

1 ∼<br />

0<br />

⎡<br />

1<br />

⎣<br />

0<br />

0<br />

⎤<br />

1 2 2 ⎦<br />

3 3 3 3<br />

1 0 0 −1<br />

0 2 0 1<br />

1<br />

3 3 1<br />

0 1 0 0<br />

⎤<br />

2<br />

3 3 1 ⎦<br />

1 0 0 −1<br />

So the change-<strong>of</strong>-basis matrix is the matrix on the right, i.e.<br />

PB2←B1 =<br />

⎡ 2<br />

3<br />

⎣ 1<br />

3<br />

0<br />

1<br />

3<br />

2<br />

3<br />

0<br />

⎤<br />

1<br />

1 ⎦.<br />

−1<br />

(7 marks)<br />

(d) To find the co-ordinate vector <strong>of</strong> p(x) with respect to B2, we take the one we obtained<br />

in (b) <strong>and</strong> multiply it by the change-<strong>of</strong>-basis matrix we obtained in (c):<br />

[p(x)]B2<br />

= PB2←B1 [p(x)]B1<br />

⎡ 2 1<br />

3 3<br />

= ⎣<br />

1<br />

1 2<br />

3 3 1<br />

⎤⎡<br />

⎤<br />

2<br />

⎦⎣−1⎦<br />

0 0 1 1<br />

⎡ ⎤<br />

2<br />

= ⎣ 1 ⎦.<br />

−1<br />

(2 marks)


2. (a) T (A) = trace(A) is a linear transformation from M33 to R, as both conditions hold.<br />

For all matrices A,B <strong>and</strong> scalars c, we have<br />

<strong>and</strong><br />

T (A + B) = (a11 + b11) + (a22 + b22) + (a33 + b33)<br />

= (a11 + a22 + a33) + (b11 + b22 + b33)<br />

= T (A) + T (B)<br />

T (cA) = ca11 + ca22 + ca33<br />

= c(a11 + a22 + a33)<br />

= cT (A).<br />

(b) The map T : M22 → M22 defined by<br />

<br />

a<br />

T<br />

c<br />

<br />

b c<br />

=<br />

d d<br />

<br />

a<br />

b<br />

<br />

a<br />

is a linear transformation. Let A =<br />

c<br />

<br />

b<br />

x<br />

<strong>and</strong> B =<br />

d<br />

z<br />

<br />

y<br />

. Then we have<br />

w<br />

T (A + B) =<br />

=<br />

=<br />

<br />

a + x b + y<br />

T<br />

c + z d + w<br />

<br />

c + z a + x<br />

d + w b + y<br />

<br />

c a z x<br />

+<br />

d b w y<br />

<strong>and</strong> also<br />

(where k is any scalar).<br />

(c) The map T : M22 → M22 defined by<br />

<br />

a b<br />

T =<br />

c d<br />

= T (A) + T (B)<br />

<br />

ka kb<br />

T (kA) = T<br />

kc kd<br />

<br />

kc ka<br />

=<br />

kd kb<br />

<br />

c a<br />

= k<br />

d b<br />

= kT (A)<br />

<br />

1<br />

<br />

a + b<br />

c + d −1<br />

is not a linear transformation, since T (0) = 0: observe that<br />

<br />

0<br />

T<br />

0<br />

<br />

0 1<br />

=<br />

0 0<br />

<br />

0 0<br />

=<br />

−1 0<br />

<br />

0<br />

.<br />

0<br />

(3 marks)<br />

(3 marks)<br />

(3 marks)


3. To show for any linear transformation T : V → W that T (0V ) = 0W , we start by choosing<br />

any vector v ∈ V . Then (by a result about vector spaces), 0v = 0V . Applying T to both<br />

sides <strong>of</strong> this, we have<br />

T (0V ) = T (0v)<br />

= 0T (v) (by the definition <strong>of</strong> a linear transformation)<br />

= 0W<br />

(since T (v) is a vector in W).<br />

4. We have linear transformations T : M22 → P3 <strong>and</strong> S : P3 → R3 given by<br />

<br />

a b<br />

T = (a + b) + (a − b)x + (c − d)x<br />

c d<br />

2 + (c + d)x 3<br />

<strong>and</strong><br />

S(a + bx + cx 2 + dx 3 ⎡ ⎤<br />

2b<br />

) = ⎣ a + c ⎦.<br />

c − 2d<br />

(a) To find the composition S ◦ T : M22 → R3 <br />

, we find S(T (A)) for a matrix<br />

a b<br />

A = :<br />

c d<br />

(S ◦ T )<br />

<br />

a b<br />

c d<br />

= S((a + b) + (a − b)x + (c − d)x 2 + (c + d)x 3 )<br />

⎡<br />

2(a − b)<br />

⎤<br />

= ⎣ (a + b) + (c − d) ⎦<br />

(c − d) − 2(c + d)<br />

⎡<br />

⎤<br />

2a − 2b<br />

= ⎣a<br />

+ b + c − d⎦.<br />

−c − 3d<br />

<br />

1 2<br />

(b) To find (S ◦ T ) , we use the formula we found in part (a):<br />

0 −1<br />

⎡<br />

⎤ ⎡ ⎤<br />

2 − 4 −2<br />

1 2<br />

(S ◦ T ) = ⎣1<br />

+ 2 + 0 − (−1) ⎦ = ⎣ 4 ⎦.<br />

0 −1<br />

0 − (−3) 3<br />

(5 marks)<br />

(4 marks)<br />

(1 mark)<br />

(c) Now we have linear transformations F : M22 → P3 <strong>and</strong> G : P3 → M22 given by<br />

<br />

a b<br />

F = (a + b) + bx + (2c + d)x<br />

c d<br />

2 + cx 3<br />

<strong>and</strong><br />

G(a + bx + cx 2 + dx 3 ) =<br />

<br />

a − b b<br />

.<br />

d c − 2d


To show that F <strong>and</strong> G are inverses, we need to show that both G ◦ F = IM22 <strong>and</strong><br />

F ◦ G = IP3 .<br />

First, we find the composition G ◦ F : M22 → M22. We have<br />

<br />

a b<br />

G ◦ F = G((a + b) + bx + (2c + d)x<br />

c d<br />

2 + cx 3 )<br />

<br />

(a + b) − b b<br />

=<br />

c (2c + d) − 2c<br />

<br />

a b<br />

= ,<br />

c d<br />

so therefore G ◦ F = IM22 .<br />

Second, we find the composition F ◦ G : P3 → P3. We have<br />

F(G(a + bx + cx 2 + dx 3 <br />

a − b b<br />

)) = F<br />

d c − 2d<br />

so therefore F ◦ G = IP3 .<br />

Hence F <strong>and</strong> G are inverses.<br />

5. (a) The kernel <strong>of</strong> T is the set<br />

<strong>and</strong> the range <strong>of</strong> T is the set<br />

= ((a − b) + b) + bx + (2d + (c − 2d))x 2 + dx 3<br />

= a + bx + cx 2 + dx 3 ,<br />

ker(T ) = {v ∈ V | T (v) = 0}<br />

range(T ) = {w ∈ W | w = T (v) for some v ∈ V }.<br />

(b) To show that the map T : M22 → R2 given by<br />

<br />

a b a − b<br />

T =<br />

c d b + c<br />

is a linear transformation, we consider matrices A =<br />

Then we have<br />

<br />

a + x b + y<br />

T (A + B) = T<br />

c + z d + w<br />

<br />

(a + x) − (b + y)<br />

=<br />

(b + y) + (c + z)<br />

<br />

(a − b) + (x − y)<br />

=<br />

(b + c) + (y + z)<br />

<br />

a − b x − y<br />

= +<br />

b + c y + z<br />

= T (A) + T (B)<br />

<br />

a b<br />

c d<br />

<strong>and</strong> B =<br />

(9 marks)<br />

(2 marks)<br />

<br />

x y<br />

.<br />

z w


<strong>and</strong><br />

(for some scalar k).<br />

(c) The kernel <strong>of</strong> T is the set<br />

ker(T ) =<br />

=<br />

=<br />

=<br />

<br />

ka kb<br />

T (kA) = T<br />

kc kd<br />

<br />

ka − kb<br />

=<br />

kb + kc<br />

<br />

a − b<br />

= k<br />

b + c<br />

= kT (A)<br />

<br />

a b a b 0<br />

T =<br />

c d c d 0<br />

<br />

a b a − b 0<br />

=<br />

c d b + c 0<br />

<br />

a b <br />

a − b = 0, b + c = 0<br />

c d<br />

<br />

a a <br />

a,d ∈ R .<br />

−a d<br />

(2 marks)<br />

The range <strong>of</strong> T is all <strong>of</strong> R2 , since any vector in R2 <br />

is the image under T <strong>of</strong> some<br />

x<br />

matrix in M22. To show this, let v = ∈ R<br />

y<br />

2 . Then<br />

<br />

x 0 x − 0 x<br />

T = = ,<br />

y 0 0 + y y<br />

i.e. for any v ∈ R2 <br />

x 0<br />

, there exists the matrix A = ∈ M22 satisfying T (A) = v.<br />

y 0<br />

(8 marks)<br />

(d) The set <br />

1 1<br />

,<br />

−1 0<br />

<br />

0 0<br />

0 1<br />

is a basis for ker(T ). To check for linear independence, we consider the equation<br />

<br />

1<br />

a<br />

−1<br />

<br />

1 0<br />

+ b<br />

0 0<br />

<br />

0 0<br />

=<br />

1 0<br />

<br />

0<br />

0<br />

which gives a = 0 <strong>and</strong> b = 0. To check that it is a spanning set, we notice that any<br />

matrix in the kernel can be written as<br />

<br />

a a 1<br />

= a<br />

−a d −1<br />

<br />

1 0<br />

+ d<br />

0 0<br />

<br />

0<br />

.<br />

1<br />

(3 marks)<br />

Total marks: 60<br />

R. F. Bailey, 14th July 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!