17.08.2013 Views

1. Let u = cosx. Then du = s

1. Let u = cosx. Then du = s

1. Let u = cosx. Then du = s

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MATH2007* Partial Answers to Review Exercises Fall 2004<br />

Evaluate each of the following integrals:<br />

<strong>1.</strong> <strong>Let</strong> u = <strong>cosx</strong>. <strong>Then</strong> <strong>du</strong> = − sin x dx and<br />

Hence<br />

sin 3 x dx = (1 − cos 2 x)(sin x dx) = (u 2 − 1) <strong>du</strong>.<br />

3<br />

sin x<br />

cos7 2 u − 1<br />

dx =<br />

x u7 <strong>du</strong> = · · · · · · Please finish this.<br />

2. We use integration by parts:<br />

<br />

Please finish this.<br />

(x 2 3 d x 5x2<br />

+ 5x + 2) ln x dx =<br />

+<br />

dx 3 2<br />

<br />

3<br />

3<br />

x 5x2<br />

x 5x2<br />

= + + 2x ln x − +<br />

3 2 3 2<br />

<br />

+ 2x<br />

ln x dx<br />

<br />

1<br />

+ 2x<br />

x<br />

dx = · · · · · ·<br />

3. We use trigonometric substitution x = 2 sin t. <strong>Then</strong> dx = 2 cos t dt and<br />

<br />

x<br />

I ≡<br />

2 2<br />

4 sin t<br />

√ dx = 2 cos t dt<br />

4 − x2 2 cos t<br />

<br />

= 4 sin 2 <br />

t dt = 2 (1 − cos 2t) dt = 2t − sin 2t + C<br />

Notice that t = sin −1 (x/2) and<br />

sin 2t = 2 sin t cos t = 1<br />

2 (2 sin t) 4 − (2 sin t) 2 = 1<br />

2 x 4 − x 2 .<br />

−1 x<br />

So the final answer is I = 2 sin<br />

2<br />

4. <strong>Let</strong> u = 1 + √ x. <strong>Then</strong> <strong>du</strong> = 1<br />

2 √ dx and<br />

x<br />

Please finish this.<br />

3 1 + √ x<br />

√ x<br />

x<br />

− 4 − x2 + C.<br />

2<br />

<br />

√3 dx = u 2 <strong>du</strong> = 2<br />

1<br />

u 1/3 <strong>du</strong> = · · · · · ·


5. Use the partial fractions decomposition<br />

Please finish this.<br />

1<br />

x 2 + 2x − 15 =<br />

1<br />

(x − 3)(x + 5)<br />

<br />

1 1 1<br />

= − .<br />

8 x − 3 x + 5<br />

6. Use the trigonometric substitution x = (3/2) tan t. Please continue and finish this.<br />

7. Use the partial fractions decomposition of the form<br />

1<br />

4x 3 + x =<br />

Please continue and finish this.<br />

1<br />

x(4x 2 + 1)<br />

= A<br />

x<br />

+ Bx + C<br />

4x 2 + 1 .<br />

8. Use the trigonometric substitution x = cos t. Please continue and finish this.<br />

9. Note that x 4 − x = x(x 3 − 1) = x(x − 1)(x 2 + x + 1). Use the partial fractions<br />

decomposition of the form<br />

2x 3 − x 2 − 2x − 2<br />

x 4 − x<br />

Please continue and finish this.<br />

= A<br />

x<br />

B Cx + D<br />

+ +<br />

x − 1 x2 + x + 1 .<br />

Determine which of the following improper integrals converge:<br />

<strong>1.</strong><br />

2.<br />

3.<br />

4.<br />

5.<br />

1<br />

−1<br />

−1<br />

−∞<br />

∞<br />

e<br />

∞<br />

−∞<br />

1<br />

0<br />

dx<br />

. Divergent.<br />

(x + 1) 3/2<br />

dx<br />

. Convergent.<br />

1 + x2 dx<br />

. Divergent.<br />

x ln x<br />

xe −x2<br />

dx. Convergent.<br />

dx<br />

x √ . Divergent. 6.<br />

x<br />

π/2<br />

sec x dx. Divergent.<br />

0<br />

2


Sketch the curves described by parametric or polar equations and write down<br />

the integrals representing their lengths (do not evaluate these integrals):<br />

<strong>1.</strong> We have dx/dt = e t , dy/dt = −2e −2t . So the arc length is<br />

1<br />

−1<br />

(dx/dt) 2 + (dy/dt) 2 dt =<br />

1<br />

2. dx/dt = 6 cos 3t, dy/dt = −6 sin 3t. So the arc length is<br />

π/2<br />

0<br />

−1<br />

<br />

6 2 cos 2 3t + 6 2 sin 2 3t dt<br />

e 2t + 4e −4t dt.<br />

4. We have x = r cos θ = cos 3θ cos θ and y = r sin θ = cos 3θ sin θ. So<br />

dx/dθ = −3 sin 3θ cos θ − cos 3θ sin θ, dy/dθ = −3 sin 3θ sin θ + cos 3θ cos θ<br />

So the required arc length is<br />

L =<br />

=<br />

2π<br />

0<br />

2π<br />

0<br />

The required area is 1<br />

<br />

2 C<br />

(−3 sin 3θ cos θ − cos 3θ sin θ) 2 + (−3 sin 3θ sin θ + cos 3θ cos θ) 2 dt<br />

<br />

9 sin 2 3θ + sin 2 2π <br />

3θ dθ = 1 + 8 sin<br />

0<br />

2 3θ dθ.<br />

r 2 dθ = 1<br />

π/6<br />

2 −π/6<br />

Solve each of the following differential equations:<br />

<strong>1.</strong> Separate variables and integrate:<br />

<br />

e −y <br />

dy =<br />

2. Using the integratiing factor ex2, we have<br />

d<br />

dx (ex2y)<br />

= (x + 1)e x2 +2x<br />

cos 2 3θ dθ. Please compute this integral.<br />

or e x2<br />

y =<br />

<strong>Let</strong> u = (x + 1) 2 ≡ x 2 + 2x + <strong>1.</strong> The last integral becomes<br />

Please finish this.<br />

1<br />

2<br />

<br />

sin x dx. Please finish it.<br />

<br />

e u−1 <strong>du</strong> = 1<br />

2 eu−1 + C.<br />

3<br />

(x + 1)e x2 +2x dx.


3. This is a homogeneous equation. As usual, let u = y/x. <strong>Then</strong> y = xu, which gives<br />

dy/dx = u + x(<strong>du</strong>/dx). The original equation becomes<br />

u + x <strong>du</strong> 1 + u 1<br />

= =<br />

dx u + u2 u<br />

or x <strong>du</strong> 1 − u2<br />

= .<br />

dx u<br />

Separating variables, we have<br />

<br />

u <strong>du</strong> dx<br />

= . Please finish.<br />

1 − u2 x<br />

4. Answer: y = C1e (−2+√ 7)x + C2e (−2−√ 7)x . Notice that r = −2 ± √ 7 are roots of<br />

r 2 + 4r − 3 = 0.<br />

5. Answer: y = −x + C1e x + C2e −x .<br />

6. Write M = e x sin y + 2x and N = e x cos y + 2y. We can check<br />

∂M/∂y = ∂N/∂x = e x cos y.<br />

Hence this equation is exact. We look for a function u = u(x, y) satisfying<br />

∂u<br />

∂x = M ≡ ex sin y + 2x,<br />

From the first equation we have<br />

<br />

u =<br />

∂u<br />

∂y = N ≡ ex cos y + 2y.<br />

(e x sin y + 2x) dx = e x sin y + 2x 2 + h(y).<br />

Substitutuing this in the second equation, we obtain h ′ (y) = 2y, from which we get<br />

h = y 2 + C0. So the final answer (in the form u = C) is e x sin y + 2x 2 + y 2 = C.<br />

7. The general solution to the homogeneous equation y ′′ + y ′ − 2y = 0 is yH =<br />

C1e −2x + C2e x . The final answer is of the form y = yH + yS. To find a special<br />

solution yS, try yS = A cos(2x) + B sin(2x). Please complete these steps.<br />

8. The final answer is y = yH + yS, where yH is the same as the one in Question 7<br />

above. To find a particulra solution yS, try yS = Ae −x . Please complete this.<br />

9. The final answer is y = yH + yS. where yH is the same as the one in Question 7<br />

above. To find a particulra solution yS, try yS = Ae 3x . Please complete this.<br />

Determine whether the given sequence is convergent or divergent:<br />

<strong>1.</strong><br />

(−1) n e n<br />

n 2<br />

<br />

. The sequence diverges to infinity.<br />

4


2.<br />

3.<br />

n 2n<br />

. The sequence diverges to infinity in view of<br />

1 + n<br />

2 n<br />

n n<br />

<br />

. The sequence converges to zero.<br />

2n<br />

1 + n<br />

→ 2 as n → ∞.<br />

Determine whether the given series is conditionally convergent, absolutely convergent,<br />

or divergent:<br />

<strong>1.</strong> ∞<br />

n=1<br />

2. ∞<br />

n=1<br />

3. ∞<br />

n=1<br />

1 ∞<br />

≤<br />

nen n=1<br />

4n − 1<br />

n 3<br />

1<br />

e n<br />

≤ ∞<br />

n=1<br />

n + 2n ∞<br />

≤<br />

1 + 3n n=1<br />

<br />

= 1<br />

<br />

e − 1<br />

4n ∞<br />

= 4<br />

n3 n=1<br />

2 n + 2 n<br />

3 n<br />

4. The series converges. Actually, ∞<br />

5. This series is absolutely convergent.<br />

6. Notice that<br />

<br />

n n n + 1<br />

=<br />

2n + 1<br />

n + 1<br />

< ∞. So the series converges.<br />

1<br />

< ∞. So the series converges.<br />

n2 (= 4) < ∞. So the series converges.<br />

n=1<br />

3 2n+1<br />

n!<br />

2n + 1<br />

= 3 ∞<br />

→ 1<br />

2<br />

n=0<br />

9 n<br />

n! = 3e9 .<br />

as n → ∞.<br />

Since 1/2 < 1, the root test tells us the convergence of the given series.<br />

7. Note that cos nπ is nothing but (−1) n . So<br />

∞<br />

n=1<br />

n cos nπ ∞<br />

=<br />

1 + n2 n=1 (−1)n n<br />

1 + n2 which is convergent in view of the alternating series test. This series is not absolutely<br />

convergent. Indeed<br />

∞ n<br />

= ∞.<br />

n=1 1 + n2 8. Note that<br />

<br />

n<br />

n2n (1 + 2n2 =<br />

) n n2<br />

Hence the series is convergent.<br />

1<br />

→<br />

1 + 2n2 2<br />

5<br />

as n → ∞.


9. Notice that, for large n,<br />

So<br />

∞<br />

n=1<br />

sin π<br />

n<br />

≈ π<br />

n<br />

<br />

sin x<br />

because lim<br />

x→0 x<br />

sin π<br />

, comparable to the divergent series<br />

n<br />

10. Use the integral test and compute<br />

∞<br />

1<strong>1.</strong> The series is conditionally convergent.<br />

2<br />

dx<br />

x ln x<br />

12. Since n/ ln n → ∞ as n → ∞, the series diverges.<br />

∞<br />

n=1<br />

= 1<br />

<br />

.<br />

1<br />

, diverges as well.<br />

n<br />

= · · · = ∞. The series diverges.<br />

In each part, find all x for which the given series is convergent:<br />

<strong>1.</strong><br />

2.<br />

3.<br />

4.<br />

5.<br />

∞ (x − 1) n<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

n!<br />

n 3 (x − 5) n<br />

x n<br />

5 n n 5<br />

∞ (4x + 1) n<br />

n=1<br />

∞<br />

n=1<br />

n 2<br />

n(x − 4) n<br />

2n 2 + 3<br />

Answer: (−∞, ∞)<br />

Answer: (4, 6)<br />

Answer: [−5, 5].<br />

Answer: [−1/2, 0].<br />

Answer: [−3, 5).<br />

Find the Taylor series of f(x) at x = a and its interval of convergence:<br />

<strong>Let</strong>’s recall a list of well-known series expansions that one should learn by heart:<br />

1<br />

1 − x =<br />

∞<br />

x n<br />

n=0<br />

ln<br />

1<br />

1 − x =<br />

6<br />

∞<br />

n=1<br />

x n<br />

n<br />

e x =<br />

∞<br />

n=0<br />

x n<br />

n!


sin x =<br />

∞<br />

(−1)<br />

n=0<br />

n x2n+1<br />

(2n + 1)!<br />

cos x =<br />

If possible, we make use of any one of these identities.<br />

∞<br />

(−1)<br />

n=0<br />

n x2n<br />

(2n)! .<br />

<strong>1.</strong> In the following manipulation, keep in mind that we are trying to use the second<br />

identity above<br />

ln x = ln(3 − (3 − x)) = ln 3(1 − (1 − x/3)) = ln 3 + ln(1 − (1 − x/3))<br />

= ln 3 − ∞<br />

n=1<br />

(1 − x/3) n<br />

(Note that 1 − x/3 = ((−1)/3) (x − 3).)<br />

2. With a = −1, we have<br />

e 2x+3 = e 2(x+1)+1 = e e 2(x+1) = e ∞<br />

3. Again we try to ue the second identity<br />

4. At x = π/3, we have<br />

5. This is easy:<br />

n<br />

= ln 3 − ∞<br />

n=0<br />

n=1<br />

2 n (x + 1) n<br />

ln(2 + x 2 ) = ln 2(1 − (−x 2 /2)) = ln 2 − ln<br />

= ln 2 − ∞<br />

n=0<br />

n=1<br />

(−x/2) n<br />

n<br />

n!<br />

= ln 2 − ∞<br />

(−1) n<br />

3 n n (x − 3)n .<br />

= e ∞<br />

n=0<br />

1<br />

1 − (−x/2)<br />

n=1<br />

(−1) n<br />

2 n n xn .<br />

2 n<br />

n! (x + 1)n .<br />

<br />

π<br />

sin x = sin<br />

3 +<br />

<br />

x − π<br />

<br />

= sin<br />

3<br />

π<br />

3 cos<br />

<br />

x − π<br />

<br />

+ cos<br />

3<br />

π<br />

3 sin<br />

<br />

x − π<br />

<br />

3<br />

√ ∞ 3 (−1)<br />

=<br />

2<br />

n <br />

x −<br />

(2n)!<br />

π<br />

2n + =<br />

3<br />

1<br />

∞ (−1)<br />

2<br />

n <br />

x −<br />

(2n + 1)!<br />

π<br />

2n+1 .<br />

3<br />

xe x = x ∞<br />

n=0<br />

6. We use the double angle formula<br />

x n<br />

n! =<br />

∞<br />

n=0<br />

sin x cos x = 1 1 ∞<br />

sin(2x) =<br />

2 2 n=0<br />

= 1 ∞<br />

2 n=0<br />

n=0<br />

x n+1<br />

n! =<br />

∞<br />

n=1<br />

(−1) n (2x) 2n+1<br />

(2n + 1)!<br />

(−1) n 2 2n+1<br />

(2n + 1)! x2n+1 = ∞<br />

7<br />

n=0<br />

x n<br />

(n − 1)! .<br />

(−1) n 2 2n<br />

(2n + 1)! x2n+1 .


Find the binomial series of the given function<br />

We use the binomial expansion formula (1 + x) α = ∞<br />

<strong>1.</strong><br />

1<br />

(1 − x) 3 = (1 + (−x))−3 = ∞<br />

So we have<br />

<br />

−3<br />

=<br />

n<br />

(−3)(−3 − 1)(−3 − 2) · · · (−3 − n + 1)<br />

n=0<br />

n=0<br />

<br />

−3<br />

(−x)<br />

n<br />

n with<br />

n!<br />

n 3 × 4 × 5 × · · · × (n + 2)<br />

= (−1)<br />

1 × 2 × 3 × · · · × n<br />

1<br />

= (1 + (−x))−3<br />

(1 − x) 3<br />

∞<br />

n (n + 1)(n + 2)<br />

= x (−1) (−x)<br />

2<br />

n =<br />

n=0<br />

2. x √ 1 − x = x(1 + (−x)) 1/2 = x ∞<br />

<br />

1/2<br />

(−1)<br />

n<br />

n =<br />

n=1<br />

1/2<br />

n<br />

<br />

α<br />

x<br />

n<br />

n to each part:<br />

n (n + 1)(n + 2)<br />

= (−1)<br />

1 × 2<br />

∞<br />

n=0<br />

<br />

(−1) n x n . For n ≥ 1,<br />

1/2(1/2 − 1)(1/2 − 2) · · · (1/2 − n + 1)<br />

(−1)<br />

n!<br />

n<br />

= (−1)n−1<br />

2 n<br />

(n + 1)(n + 2)<br />

x<br />

2<br />

n+1 .<br />

1 × 3 × 5 × · · · × 2n − 1<br />

(−1)<br />

n!<br />

n (2n − 1)!!<br />

= −<br />

2n .<br />

n!<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!