17.08.2013 Views

Microstructure-Properties - Materials Science and Engineering

Microstructure-Properties - Materials Science and Engineering

Microstructure-Properties - Materials Science and Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

<strong>Microstructure</strong>-<strong>Properties</strong>: I<br />

Lecture 4B:<br />

Anisotropic Elasticity<br />

27-301<br />

Fall, 2007<br />

Prof. A. D. Rollett<br />

Processing<br />

Performance<br />

<strong>Microstructure</strong> <strong>Properties</strong>


2<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Objective of Lecture 4B<br />

• The objective of this lecture is to provide a<br />

mathematical framework for the description of<br />

properties, especially when they vary with<br />

direction.<br />

• A basic property that occurs in almost<br />

applications is elasticity. Although elastic<br />

response is linear for all practical purposes, it<br />

is often anisotropic (composites, textured<br />

polycrystals etc.).


3<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Linear properties<br />

• Certain properties, such as elasticity in<br />

most cases, are linear which means that<br />

we can simplify even further to obtain<br />

or if R 0 = 0,<br />

R = R 0 + PF<br />

R = PF.<br />

e.g. elasticity: σ = C ε<br />

stiffness<br />

In tension, C ≡ Young’s modulus, Y or E.


4<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Elasticity<br />

• Elasticity: example of a property that requires tensors<br />

to describe it fully.<br />

• Even in cubic metals, a crystal is quite anisotropic.<br />

The [111] in many cubic metals is stiffer than the<br />

[100] direction.<br />

• Even in cubic materials, 3<br />

numbers/coefficients/moduli are required to describe<br />

elastic properties; isotropic materials only require 2.<br />

• Familiarity with Miller indices is assumed.


5<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Elastic Anisotropy: 1<br />

• First we restate the linear elastic relations for<br />

the properties Compliance, written S, <strong>and</strong><br />

Stiffness, written C (!), which connect stress, σ<br />

, <strong>and</strong> strain, ε. We write it first in vector-tensor<br />

notation with “:” signifying inner product (i.e.<br />

add up terms that have a common suffix or<br />

index in them):<br />

σ = C:ε<br />

ε = S:σ<br />

• In component form (with suffixes),<br />

σ ij = C ijkl ε kl<br />

ε ij = S ijkl σ kl


6<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Elastic Anisotropy: 2<br />

The definitions of the stress <strong>and</strong> strain tensors mean<br />

that they are both symmetric (second rank) tensors.<br />

Therefore we can see that<br />

ε 23 = S 2311 σ 11<br />

ε 32 = S 3211 σ 11 = ε 23<br />

which means that,<br />

S 2311 = S 3211<br />

<strong>and</strong> in general,<br />

S ijkl = S jikl<br />

We will see later on that this reduces considerably the<br />

number of different coefficients needed.


7<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Stiffness in sample coords.<br />

• Consider how to express the elastic properties of a<br />

single crystal in the sample coordinates. In this case<br />

we need to rotate the (4 th rank) tensor from crystal<br />

coordinates to sample coordinates using the<br />

orientation (matrix), a (see lecture A):<br />

c ijkl ' = a im a jn a ko a lp c mnop<br />

• Note how the transformation matrix appears four<br />

times because we are transforming a 4th rank tensor!<br />

• The axis transformation matrix, a, is also written as λ.


8<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Young’s modulus from compliance<br />

• Young's modulus as a function of direction<br />

can be obtained from the compliance tensor<br />

as E=1/s' 1111 . Using compliances <strong>and</strong> a stress<br />

boundary condition (only σ 11 ≠0) is most<br />

straightforward. To obtain s' 1111 , we simply<br />

apply the same transformation rule,<br />

s' ijkl = a im a jn a ko a lp s mnop


9<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

“matrix notation”<br />

• It is useful to re-express the three quantities<br />

involved in a simpler format. The stress <strong>and</strong><br />

strain tensors are vectorized, i.e. converted<br />

into a 1x6 notation <strong>and</strong> the elastic tensors are<br />

reduced to 6x6 matrices.<br />

"<br />

$<br />

#<br />

! 1 1 ! 1 2 ! 1 3<br />

! 2 1 ! 2 2 ! 2 3<br />

! 3 1 ! 3 2 ! 3 3<br />

%<br />

' ( )<br />

'<br />

&<br />

*<br />

"<br />

$<br />

#<br />

( * ) ( ! 1,! 2,! 3,! 4,! 5,! )<br />

6<br />

! 1 ! 6 ! 5<br />

! 6 ! 2 ! 4<br />

! 5 ! 4 ! 3<br />

%<br />

'<br />

&


10<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

“matrix notation”, contd.<br />

• Similarly for strain:<br />

"<br />

$<br />

#<br />

! 1 1 ! 1 2 ! 1 3<br />

! 2 1 ! 2 2 ! 2 3<br />

! 3 1 ! 3 2 ! 3 3<br />

The particular definition of shear strain used in the<br />

reduced notation happens to correspond to that used<br />

in mechanical engineering such that ε 4 is the change<br />

in angle between direction 2 <strong>and</strong> direction 3 due to<br />

deformation.<br />

%<br />

'<br />

&<br />

( ) *<br />

"<br />

$<br />

$<br />

#<br />

( * ) ( ! 1,! 2,! 3,! 4,! 5,! )<br />

6<br />

! 1<br />

1<br />

2 ! 6<br />

1<br />

2 ! 5<br />

1<br />

2 ! 6<br />

! 2<br />

1<br />

2 ! 4<br />

1<br />

2 ! 5<br />

1<br />

2 ! 4<br />

! 3<br />

%<br />

'<br />

'<br />

&


11<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Work conjugacy, matrix inversion<br />

• The more important consideration is that the<br />

reason for the factors of two is so that work<br />

conjugacy is maintained.<br />

dW = σ:dε = σ ij : dε ij = σ k • dε k<br />

Also we can combine the expressions<br />

σ = Cε <strong>and</strong> ε = Sσ to give:<br />

σ = CSσ, which shows:<br />

I = CS, or, C = S -1


12<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Tensor conversions: stiffness<br />

• Lastly we need a way to convert the tensor<br />

coefficients of stiffness <strong>and</strong> compliance to the<br />

matrix coefficients. For stiffness, it is very<br />

simple because one substitutes values<br />

according to the following table, such that<br />

matrix C11 = tensor C 1111 for example.<br />

Tensor 11 22 33 23 32 13 31 12 21<br />

Matrix 1 2 3 4 4 5 5 6 6


13<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

C =<br />

!<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

"<br />

Stiffness Matrix<br />

C 1 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 6<br />

C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6<br />

C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6<br />

C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6<br />

C 5 1 C 5 2 C 5 3 C 5 4 C 5 5 C 5 6<br />

C 6 1 C 6 2 C 6 3 C 6 4 C 6 5 C 6 6<br />

$<br />

&<br />

&<br />

&<br />

&<br />

&<br />

&<br />

&<br />

%


14<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Tensor conversions: compliance<br />

• For compliance some factors of two are<br />

required <strong>and</strong> so the rule becomes:<br />

pS = S ijkl mn<br />

p =1 m AND n " [ 1,2,3 ]<br />

p = 2 m XOR n " [ 1,2,3 ]<br />

p = 4 m AND n " [ 4,5,6]


15<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Relationships between coefficients:<br />

C in terms of S<br />

Some additional useful relations between coefficients<br />

for cubic materials are as follows. Symmetrical<br />

relationships exist for compliances in terms of<br />

stiffnesses (next slide).<br />

C 11 = (S 11 +S 12 )/{(S 11 -S 12 )(S 11 +2S 12 )}<br />

C 12 = -S 12 /{(S 11 -S 12 )(S 11 +2S 12 )}<br />

C 44 = 1/S 44 .


16<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

S in terms of C<br />

The relationships for S in terms of C are symmetrical to<br />

those for stiffnesses in terms of compliances (a<br />

simple exercise in algebra!).<br />

S 11 = (C 11 +C 12 )/{(C 11 -C 12 )(C 11 +2C 12 )}<br />

S 12 = -C 12 /{(C 11 -C 12 )(C 11 +2C 12 )}<br />

S 44 = 1/C 44 .


17<br />

Effect of symmetry on stiffness matrix<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

• Why do we need to look at the effect of symmetry?<br />

For a cubic material, only 3 independent coefficients<br />

are needed as opposed to the 81 coefficients in a 4th<br />

rank tensor. The reason for this is the symmetry of<br />

the material.<br />

• What does symmetry mean? Fundamentally, if you<br />

pick up a crystal, rotate [mirror] it <strong>and</strong> put it back<br />

down, then a symmetry operation [rotation, mirror] is<br />

such that you cannot tell that anything happened.<br />

• From a mathematical point of view, this means that<br />

the property (its coefficients) does not change. For<br />

example, if the symmetry operator changes the sign<br />

of a coefficient, then it must be equal to zero.


18<br />

Effect of symmetry on stiffness matrix<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

• Following Reid, p.66 et seq.:<br />

Apply a 90° rotation about the crystal-z axis<br />

(axis 3),<br />

C’ ijkl = O im O jn O ko O lp C mnop :<br />

C’ = C<br />

C ! =<br />

#<br />

%<br />

%<br />

%<br />

%<br />

%<br />

%<br />

%<br />

%<br />

$ %<br />

O 4 z =<br />

C 22 C 21 C 23 C 25 "C 24 "C 26<br />

C 21 C 11 C 13 C 15 "C 14 "C 16<br />

C 23 C 13 C 33 C 35 "C 34 "C 36<br />

C 25 C 15 C 35 C 55 "C 54 "C 56<br />

"C 24 "C 14 "C 34 "C 54 C 44 C 46<br />

"C 26 "C 16 "C 36 "C 56 C 46 C 66<br />

" 0 !1 0%<br />

$ '<br />

$ 1 0 0'<br />

$ '<br />

# 0 0 1&<br />

&<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

(<br />

' (


19<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Effect of symmetry, 2<br />

• Using P’ = P, we can equate coefficients <strong>and</strong><br />

find that:<br />

C 11 =C 22 , C 13 =C 23, C 44 =C 35 , C 16 =-C 26,<br />

C 14 =C 15 = C 24 = C 25 = C 34 = C 35 = C 36 = C 45 = C 46<br />

= C 56 = 0.<br />

C ! =<br />

# C1 1 C1 2 C1 3 0 0 C1 6 &<br />

% C1 2 C1 1 C1 3 0 0 "C1 6(<br />

% C1 3<br />

% 0<br />

%<br />

0<br />

%<br />

$ C1 6<br />

C1 3<br />

0<br />

0<br />

"C1 6<br />

C3 3<br />

0<br />

0<br />

0<br />

0<br />

C4 4<br />

0<br />

0<br />

0<br />

0<br />

C4 4<br />

C4 6<br />

0<br />

0<br />

C4 6<br />

C6 6<br />

(<br />

(<br />

(<br />

(<br />

'


20<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Effect of symmetry, 3<br />

• Thus by repeated applications of the<br />

symmetry operators, one can demonstrate<br />

(for cubic crystal symmetry) that one can<br />

reduce the 81 coefficients down to only 3<br />

independent quantities. These become two in<br />

the case of isotropy.<br />

! C11 C12 C12 0 0 0 $<br />

#<br />

&<br />

# C12 C11 C12 0 0 0 &<br />

#<br />

&<br />

# C12 C12 C11 0 0 0 &<br />

#<br />

0 0 0 C44 0 0<br />

&<br />

#<br />

&<br />

# 0 0 0 0 C44 0 &<br />

#<br />

&<br />

" # 0 0 0 0 0 C44% &


21<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Cubic crystals: anisotropy factor<br />

• If one applies the symmetry elements of<br />

the cubic system, it turns out that only<br />

three independent coefficients remain: C 11 ,<br />

C 12 <strong>and</strong> C 44 , (similar set for compliance).<br />

From these three, a useful combination of<br />

the first two is<br />

C' = (C 11 - C 12 )/2<br />

• See Nye, Physical <strong>Properties</strong> of Crystals


22<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Zener’s anisotropy factor<br />

• C' = (C 11 - C 12 )/2 turns out to be the stiffness<br />

associated with a shear in a direction<br />

on a plane. In certain martensitic<br />

transformations, this modulus can approach<br />

zero which corresponds to a structural<br />

instability. Zener proposed a measure of<br />

elastic anisotropy based on the ratio C 44 /C'.<br />

This turns out to be a useful criterion for<br />

identifying materials that are elastically<br />

anisotropic.


23<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Rotated compliance (matrix)<br />

• Given an orientation a ij , we transform the<br />

compliance tensor, using cubic point group<br />

symmetry, <strong>and</strong> find that:<br />

S 1! 1 = S1 1 a1 1<br />

( 4 4 4<br />

+ a1<br />

2 + ) a1<br />

3<br />

+ 2S 1 2 a 1 2<br />

( 2 2 2 2 2 2<br />

a1 3 + a1 1a1<br />

2 + ) a1 1a1<br />

3<br />

( )<br />

2 2 2 2 2 2<br />

+ S4 4 a1 2a1<br />

3 + a1 1a1<br />

2 + a1 1a1<br />

3


24<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Rotated compliance (matrix)<br />

• This can be further simplified with the aid of the<br />

st<strong>and</strong>ard relations between the direction cosines,<br />

a ik a jk = 1 for i=j; a ik a jk = 0 for i≠j, (a ik a jk = δ ij ) to read as<br />

follows.<br />

s 1! 1 = s1 1 "<br />

2( s1 1 " s1 2 " 1<br />

2<br />

s ) 4 4 # 1<br />

{ 2 2 2 2 2 2<br />

#2 + # 2#3<br />

+ }<br />

#3#1<br />

• By definition, the Young’s modulus in any direction is<br />

given by the reciprocal of the compliance, E = 1/S’ 11.


25<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Anisotropy in cubic materials<br />

• Thus the second term on the RHS is zero for <br />

directions <strong>and</strong>, for C 44 /C'>1, a maximum in <br />

directions (conversely<br />

a minimum for C 44 /C'


26<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Stiffness coefficients, cubics<br />

[Courtney]


27<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Anisotropy in terms of moduli<br />

• Another way to write the above equation is to<br />

insert the values for the Young's modulus in<br />

the soft <strong>and</strong> hard directions, assuming that<br />

the are the most compliant<br />

direction(s). (Courtney uses α, β, <strong>and</strong> γ in<br />

place of my α 1 , α 2 , <strong>and</strong> α 3 .) The advantage of<br />

this formula is that moduli in specific<br />

directions can be used directly.<br />

1<br />

E uvw<br />

= 1<br />

E 100<br />

"<br />

! 3#<br />

$<br />

1<br />

E 100<br />

&<br />

E111' ( 2 2 2 2 2 2<br />

1(<br />

2 + (2(<br />

3<br />

+(3 (1<br />

! 1<br />

%<br />

( )


28<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Example Problem<br />

Should be E = 18.89


29<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Summary<br />

• We have covered the following topics:<br />

– Linear properties<br />

– Non-linear properties<br />

– Examples of properties<br />

– Tensors, vectors, scalars.<br />

– Magnetism, example of linear (permeability), nonlinear<br />

(magnetization curve) with strong<br />

microstructural influence.<br />

– Elasticity, as example as of higher order property,<br />

also as example as how to apply (crystal)<br />

symmetry.


30<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Supplemental Slides<br />

• The following slides contain some useful<br />

material for those who are not familiar with all<br />

the detailed mathematical methods of<br />

matrices, transformation of axes etc.


31<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Notation<br />

F Stimulus (field)<br />

R Response<br />

P Property<br />

j electric current<br />

E electric field<br />

D electric polarization<br />

ε Strain<br />

σ Stress (or conductivity)<br />

ρ Resistivity<br />

d piezoelectric tensor<br />

C elastic stiffness<br />

S elastic compliance<br />

a rotation matrix<br />

W work done (energy)<br />

I identity matrix<br />

O<br />

Y Young’s Young s modulus<br />

δ Kronecker delta<br />

e axis (unit) vector<br />

T tensor<br />

αα direction cosine<br />

symmetry operator (matrix)


32<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Bibliography<br />

• R.E. Newnham, <strong>Properties</strong> of <strong>Materials</strong>: Anisotropy, Symmetry, Structure, Oxford University<br />

Press, 2004, 620.112 N55P.<br />

• De Graef, M., lecture notes for 27-201.<br />

• Nye, J. F. (1957). Physical <strong>Properties</strong> of Crystals. Oxford, Clarendon Press.<br />

• T. Courtney, Mechanical Behavior of <strong>Materials</strong>, McGraw-Hill, 0-07-013265-8, 620.11292<br />

C86M.<br />

• Chen, C.-W. (1977). Magnetism <strong>and</strong> metallurgy of soft magnetic materials. New York,<br />

Dover.<br />

• Chikazumi, S. (1996). Physics of Ferromagnetism. Oxford, Oxford University Press.<br />

• Attwood, S. S. (1956). Electric <strong>and</strong> Magnetic Fields. New York, Dover.<br />

• Newey, C. <strong>and</strong> G. Weaver (1991). <strong>Materials</strong> Principles <strong>and</strong> Practice. Oxford, Engl<strong>and</strong>,<br />

Butterworth-Heinemann.<br />

• Kocks, U. F., C. Tomé, et al., Eds. (1998). Texture <strong>and</strong> Anisotropy, Cambridge University<br />

Press, Cambridge, UK.<br />

• Reid, C. N. (1973). Deformation Geometry for <strong>Materials</strong> Scientists. Oxford, UK, Pergamon.<br />

• Braithwaite, N. <strong>and</strong> G. Weaver (1991). Electronic <strong>Materials</strong>. The Open University, Engl<strong>and</strong>,<br />

Butterworth-Heinemann.


33<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Mathematical Descriptions<br />

• Mathematical descriptions of properties are available.<br />

• Mathematics, or a type of mathematics provides a<br />

quantitative framework. It is always necessary,<br />

however, to make a correspondence between<br />

mathematical variables <strong>and</strong> physical quantities.<br />

• In group theory one might say that there is a set of<br />

mathematical operations & parameters, <strong>and</strong> a set of<br />

physical quantities <strong>and</strong> processes: if the mathematics<br />

is a good description, then the two sets are<br />

isomorphous.


34<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Non-Linear properties, example<br />

• Another important example of non-linear properties is plasticity,<br />

i.e. the irreversible deformation of solids.<br />

• A typical description of the response at plastic yield<br />

(what happens when you load a material to its yield stress)<br />

is elastic-perfectly plastic. In other<br />

words, the material responds<br />

elastically until the yield stress is<br />

reached, at which point the stress<br />

remains constant (strain rate<br />

unlimited).<br />

• A more realistic description is a power-law with<br />

a large exponent, n~50. The stress is scaled by<br />

the crss, <strong>and</strong> be expressed as either shear stressshear<br />

strain rate [graph], or tensile stress-tensile<br />

strain [equation].<br />

˙<br />

! =<br />

# " &<br />

% (<br />

$ " yield '<br />

n


35<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Einstein Convention<br />

• The Einstein Convention, or summation rule<br />

for suffixes looks like this:<br />

A i = B ij C j<br />

where “i” <strong>and</strong> “j” both are integer indexes<br />

whose range is {1,2,3}. So, to find each “i th ”<br />

component of A on the LHS, we sum up over<br />

the repeated index, “j”, on the RHS:<br />

A 1 = B 11 C 1 + B 12 C 2 + B 13 C 3<br />

A 2 = B 21 C 1 + B 22 C 2 + B 23 C 3<br />

A 3 = B 31 C 1 + B 32 C 2 + B 33 C 3


36<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Matrix Multiplication<br />

• Take each row of the LH matrix in turn <strong>and</strong><br />

multiply it into each column of the RH matrix.<br />

• In suffix notation, a ij = b ikc kj<br />

( a! + b" + c# a$ + b% + cµ a# + b& + c' +<br />

*<br />

-<br />

* d! + e" + f# d$ + e% + fµ d# + e& + f' -<br />

*<br />

-<br />

) l! + m" + n# l$ + m% + nµ l# + m& + n',<br />

=<br />

( a b c +<br />

* -<br />

* d e f -<br />

* -<br />

) l m n,<br />

.<br />

( ! $ # +<br />

* -<br />

* " % & -<br />

* -<br />

) / µ ' ,


37<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

<strong>Properties</strong> of Rotation Matrix<br />

• The rotation matrix is an orthogonal matrix, meaning<br />

that any row is orthogonal to any other row (the dot<br />

products are zero). In physical terms, each row<br />

represents a unit vector that is the position of the<br />

corresponding (new) old axis in terms of the (old)<br />

new axes.<br />

• The same applies to columns: in suffix notation -<br />

a ija kj = δ ik , a jia jk = δ ik<br />

! a b c$<br />

# &<br />

# d e f &<br />

# &<br />

" l m n%<br />

bc+ef+mn = 0<br />

ad+be+cf = 0


38<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Matrix<br />

representation<br />

of the rotation<br />

point groups<br />

Kocks: Ch. 1 Table II


39<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Homogeneity<br />

• Stimuli <strong>and</strong> responses of interest are, in general, not scalar quantities<br />

but tensors. Furthermore, some of the properties of interest, such as<br />

the plastic properties of a material, are far from linear at the scale of a<br />

polycrystal. Nonetheless, they can be treated as linear at a suitably<br />

local scale <strong>and</strong> then an averaging technique can be used to obtain the<br />

response of the polycrystal. The local or microscopic response is<br />

generally well understood but the validity of the averaging techniques is<br />

still controversial in many cases. Also, we will only discuss cases<br />

where a homogeneous response can be reasonably expected.<br />

• There are many problems in which a non-homogeneous response to a<br />

homogeneous stimulus is of critical importance. Stress-corrosion<br />

cracking, for example, is a wildly non-linear, non-homogeneous<br />

response to an approximately uniform stimulus which depends on the<br />

mechanical <strong>and</strong> electro-chemical properties of the material.


40<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

The “RVE”<br />

• In order to describe the properties of a<br />

material, it is useful to define a representative<br />

volume element (RVE) that is large enough to<br />

be statistically representative of that region<br />

(but small enough that one can subdivide a<br />

body).<br />

• For example, consider a polycrystal: how<br />

many grains must be included in order for the<br />

element to be representative of that point in<br />

the material?


41<br />

Objective<br />

Linear<br />

Ferromagnets<br />

Non-linear<br />

properties<br />

Electric.<br />

Conduct.<br />

Tensors<br />

Elasticity<br />

Symmetry<br />

Transformations of Stress & Strain Vectors<br />

!<br />

• It is useful to be able to transform the axes<br />

of stress tensors when written in vector<br />

form (equation on the left). The table<br />

(right) is taken from Newnham’s book. In<br />

vector-matrix form, the transformations<br />

are:<br />

$ # 1"<br />

' +<br />

& ) -<br />

&<br />

# " 2)<br />

-<br />

& # " ) - 3<br />

& ) = -<br />

&<br />

# " 4)<br />

-<br />

& # " 5)<br />

-<br />

& )<br />

% # "<br />

-<br />

6(<br />

,<br />

* 11 * 12 * 13 * 14 * 15 * 16<br />

* 21 * 22 * 23 * 24 * 25 * 26<br />

* 31 * 32 * 33 * 34 * 35 * 36<br />

* 41 * 42 * 43 * 44 * 45 * 46<br />

* 51 * 52 * 53 * 54 * 55 * 56<br />

* 61 * 62 * 63 * 64 * 65 * 66<br />

. $ # ' 1<br />

0 & )<br />

0 &<br />

# 2)<br />

0 & # ) 3<br />

0 & )<br />

0 &<br />

# 4)<br />

0 & # 5)<br />

0 & )<br />

/ % # 6(<br />

!<br />

"<br />

# i = $ ij# j<br />

%1<br />

# i = $ ij<br />

# " j<br />

%1T<br />

& " i = $ ij & j<br />

T<br />

&i = $ ij&<br />

" j

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!