18.08.2013 Views

Statistical and Transform Methods in Geophysical Signal Processing

Statistical and Transform Methods in Geophysical Signal Processing

Statistical and Transform Methods in Geophysical Signal Processing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Statistical</strong> <strong>and</strong> <strong>Transform</strong> <strong>Methods</strong><br />

<strong>in</strong> <strong>Geophysical</strong> <strong>Signal</strong> Process<strong>in</strong>g<br />

M. D. Sacchi<br />

DEPARTMENT OF PHYSICS<br />

UNIVERSITY OF ALBERTA


ii<br />

Contact:<br />

¨¥©<br />

¢¡¤£¦¥§<br />

¡¢¢<br />

¢¡¢¢¡<br />

¢¢¨¢<br />

©¢¢¥¡¥<br />

¥§¥§¡¥¢¢ <br />

<br />

<br />

c<br />

2002 by M.D.Sacchi


Contents<br />

1 Fourier Analysis 1<br />

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.1 Orthogonal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 The Fourier <strong>Transform</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.2.1 Properties of the FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.2.2 The FT of some signals . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.2.3 Truncation <strong>in</strong> time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

1.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.4 Liv<strong>in</strong>g <strong>in</strong> a discrete World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2 Z-transform <strong>and</strong> Convolution 21<br />

2.1 L<strong>in</strong>ear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.1.1 Discrete convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

2.1.2 An algorithm to compute the convolution sum . . . . . . . . . . . . 27<br />

2.2 The Z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2.2.1 Convolution <strong>and</strong> the Z-transform . . . . . . . . . . . . . . . . . . . . 30<br />

2.2.2 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.3 Elementary <strong>Signal</strong>s: Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

2.3.1 M<strong>in</strong>imum phase dipoles . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

2.3.2 Maximum phase dipoles . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

2.3.3 Autocorrelation function of dipoles . . . . . . . . . . . . . . . . . . . 39<br />

iii


iv CONTENTS<br />

2.3.4 Least squares <strong>in</strong>version of a m<strong>in</strong>imum phase dipole . . . . . . . . . 43<br />

2.3.5 Inversion of M<strong>in</strong>imum Phase sequences . . . . . . . . . . . . . . . . 47<br />

2.4 MATLAB codes used <strong>in</strong> Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

2.4.1 Inversion of dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

2.4.2 Amplitude <strong>and</strong> phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

2.4.3 Least squares <strong>in</strong>version of a dipole . . . . . . . . . . . . . . . . . . . 52<br />

2.4.4 Eigenvalues of the Toeplitz matrix . . . . . . . . . . . . . . . . . . . 53<br />

2.4.5 Least square <strong>in</strong>verse filters . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.5 The autocorrelation function . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

2.5.1 The Toeplitz matrix <strong>and</strong> the autocorrelation coefficients . . . . . . . 56<br />

2.6 Inversion of non-m<strong>in</strong>imum phase wavelets: optimun lag Spik<strong>in</strong>g filters . . 59<br />

3 Discrete Fourier <strong>Transform</strong> 61<br />

3.1 The Z transform <strong>and</strong> the DFT . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.1.1 Inverse DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

3.1.2 Zero padd<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

3.1.3 The Fast Fourier <strong>Transform</strong> (FFT) . . . . . . . . . . . . . . . . . . . . 67<br />

3.1.4 Work<strong>in</strong>g with the DFT/FFT . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.2 The 2D DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.3 On the Design of F<strong>in</strong>ite Impulse Response filters . . . . . . . . . . . . . . . 73<br />

3.3.1 Low Pass FIR filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.3.2 High Pass filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

4 Deconvolution of reflectivity series 79<br />

4.1 Model<strong>in</strong>g normal <strong>in</strong>cidence seismograms . . . . . . . . . . . . . . . . . . . 79<br />

4.1.1 Normal <strong>in</strong>cidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.1.2 Impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

4.2 Deconvolution of reflectivity series . . . . . . . . . . . . . . . . . . . . . . . 85<br />

4.2.1 The autocorrelation sequence <strong>and</strong> the white reflectivity assumption 86<br />

4.2.2 What to do with the noise? . . . . . . . . . . . . . . . . . . . . . . . . 88


CONTENTS v<br />

4.2.3 Deconvolution <strong>in</strong> the frequency doma<strong>in</strong> . . . . . . . . . . . . . . . . 93<br />

4.3 Sparse deconvolution <strong>and</strong> Bayesian analysis . . . . . . . . . . . . . . . . . . 96<br />

4.3.1 Norms for sparse deconvolution . . . . . . . . . . . . . . . . . . . . 96<br />

4.3.2 Modify<strong>in</strong>g ¢¡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

4.3.3 Iterative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

4.3.4 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

4.4 Bayesian <strong>in</strong>version of impedance . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

4.5 L<strong>in</strong>ear programm<strong>in</strong>g impedance <strong>in</strong>version . . . . . . . . . . . . . . . . . . 115<br />

4.5.1 Constra<strong>in</strong>ed m<strong>in</strong>imization us<strong>in</strong>g l<strong>in</strong>ear programm<strong>in</strong>g . . . . . . . . 116<br />

4.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.5.3 L<strong>in</strong>ear programm<strong>in</strong>g code . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.6 Non-m<strong>in</strong>imum phase wavelet estimation . . . . . . . . . . . . . . . . . . . 120<br />

4.6.1 Non-m<strong>in</strong>imum phase system identification . . . . . . . . . . . . . . 120<br />

4.6.2 The bicepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

4.6.3 The tricepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

4.6.4 Comput<strong>in</strong>g the bicepstrum <strong>and</strong> the tricepstrum . . . . . . . . . . . 125<br />

4.6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

4.7 M<strong>in</strong>imum entropy deconvolution . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

4.7.1 M<strong>in</strong>imum Entropy estimators . . . . . . . . . . . . . . . . . . . . . . 138<br />

4.7.2 Entropy norms <strong>and</strong> simplicity . . . . . . . . . . . . . . . . . . . . . . 139<br />

4.7.3 Wigg<strong>in</strong>s’ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

4.7.4 Frequency domian algorithm (Sacchi et. al, 1994) . . . . . . . . . . 142<br />

4.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

5 <strong>Signal</strong>-to-noise-ratio Enhancement 147<br />

5.1 £¥¤ filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

5.1.1 The signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

5.1.2 AR FX Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

5.1.3 Data resolution matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

5.1.4 The convolution matrix . . . . . . . . . . . . . . . . . . . . . . . . . 151


vi CONTENTS<br />

5.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

5.1.6 Non-l<strong>in</strong>ear events: Chirps <strong>in</strong> ¢¡¤£ ? . . . . . . . . . . . . . . . . . . . 157<br />

5.1.7 Gap fill<strong>in</strong>g <strong>and</strong> recovery of near offset traces . . . . . . . . . . . . . . 157<br />

5.1.8 Pre-stack surface consistent FX filters . . . . . . . . . . . . . . . . . 161<br />

5.2 £¥¤ Projection Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

5.2.1 Wavenumber doma<strong>in</strong> formulation . . . . . . . . . . . . . . . . . . . 162<br />

5.2.2 Space doma<strong>in</strong> formulation . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

5.2.3 Wrong formulation of the problem . . . . . . . . . . . . . . . . . . . 165<br />

5.3 ARMA formulation of Projection filters . . . . . . . . . . . . . . . . . . . . . 165<br />

5.3.1 Estimation of the ARMA prediction error filter . . . . . . . . . . . . 166<br />

5.3.2 Noise estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

5.3.3 ARMA <strong>and</strong> Projection Filters . . . . . . . . . . . . . . . . . . . . . . . 169<br />

5.4 FX Process<strong>in</strong>g Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

5.4.1 Prediction of harmonic models us<strong>in</strong>g AR filters . . . . . . . . . . . . 176<br />

5.4.2 £ ¤ algorithm, Canales (1984) . . . . . . . . . . . . . . . . . . . . . . 176<br />

5.4.3 L<strong>in</strong>ear prediction us<strong>in</strong>g AR filters . . . . . . . . . . . . . . . . . . . . 178<br />

5.4.4 ARMA filter<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

5.4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

6 The KL transform <strong>and</strong> eigenimages 181<br />

6.1 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br />

6.2 Eigenimage analysis of common offset sections . . . . . . . . . . . . . . . . 188<br />

6.2.1 Eigenimages <strong>and</strong> application to Velocity Analysis . . . . . . . . . . . 194<br />

6.3 A Matlab Code for Eigenimage Analysis . . . . . . . . . . . . . . . . . . . . 199<br />

6.3.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

7 Radon <strong>Transform</strong>s 201<br />

7.1 Slant Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

7.1.1 The slant stack operator (conventional def<strong>in</strong>ition) . . . . . . . . . . 202<br />

7.1.2 The <strong>in</strong>verse slant stack operator . . . . . . . . . . . . . . . . . . . . . 205


CONTENTS vii<br />

7.1.3 The sampl<strong>in</strong>g theorem for slant stacks . . . . . . . . . . . . . . . . . 207<br />

7.2 Discrete slant stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

7.2.1 The discrete slant stack operator (conventional def<strong>in</strong>ition) . . . . . 209<br />

7.2.2 The least squares solution . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

7.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212<br />

7.3 Parabolic Radon <strong>Transform</strong> (Hampson, 1986) . . . . . . . . . . . . . . . . . 213<br />

7.4 High resolution Parabolic Radon <strong>Transform</strong> . . . . . . . . . . . . . . . . . . 217<br />

7.4.1 Least squares Parabolic Radon transform . . . . . . . . . . . . . . . 219<br />

7.4.2 High resolution parabolic Radon transform . . . . . . . . . . . . . . 220<br />

7.4.3 Conjugate gradients <strong>and</strong> circulant matrices . . . . . . . . . . . . . . 221<br />

7.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222<br />

7.5 Programs for Slant Stack <strong>and</strong> Parabolic Radon <strong>Transform</strong>s . . . . . . . . . . 223<br />

7.6 Time variant velocity stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 228<br />

7.6.1 The conjugate gradients algorithm . . . . . . . . . . . . . . . . . . . 229<br />

7.6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230<br />

7.7 High Resolution Radon <strong>Transform</strong> . . . . . . . . . . . . . . . . . . . . . . . 236<br />

7.8 Interpolation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

7.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244<br />

8 SeismicLab 247


viii CONTENTS<br />

Preface<br />

This course will focus on the application on modern process<strong>in</strong>g <strong>and</strong> <strong>in</strong>version techniques<br />

to geophysical signal process<strong>in</strong>g. We will also discuss the design <strong>and</strong> utilization<br />

of multi-dimensional l<strong>in</strong>ear transforms to suppress determ<strong>in</strong>istic <strong>and</strong> stochastic noise<br />

from seismic records. The course is <strong>in</strong>tended for upper level undergraduate <strong>and</strong> graduate<br />

students <strong>in</strong> geosciences as well as for geophysicists <strong>in</strong>terested <strong>in</strong> underst<strong>and</strong><strong>in</strong>g<br />

current technologies utilized <strong>in</strong> geophysical data process<strong>in</strong>g.<br />

About the author: M.D.Sacchi received a degree <strong>in</strong> Geophysics fron the National University<br />

of La Plata <strong>in</strong> 1988 <strong>and</strong> a PhD <strong>in</strong> Geophysics from the University of British Columbia,<br />

Vancouver, Canada, <strong>in</strong> 1996. S<strong>in</strong>ce 1997 he has been with the Department of Physics,<br />

University of Alberta <strong>in</strong> Edmonton, Canada. He is currently an associate professor of<br />

geophysics. His areas of <strong>in</strong>terest are seismology, signal process<strong>in</strong>g, imag<strong>in</strong>g <strong>and</strong> <strong>in</strong>verse<br />

theory.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!