19.08.2013 Views

Fundamentals of Decompression

Fundamentals of Decompression

Fundamentals of Decompression

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

• History<br />

• Tissue models<br />

– Haldane<br />

– Workman<br />

– Bühlmann<br />

• Physics <strong>of</strong> bubbles<br />

• Spacecraft cabin atmospheres<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

1<br />

© 2011 David L. Akin - All rights reserved<br />

http://spacecraft.ssl.umd.edu<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


First Class Assignment<br />

• Four topics in the first section <strong>of</strong> the course<br />

– Space Habitability<br />

– Human Factors<br />

– Anthropometrics<br />

– Psychosocial Aspects<br />

• Find a technical paper in two <strong>of</strong> the topic areas<br />

• Post the paper (in PDF) and a summary (~0.5-1<br />

page) to discussion board on Blackboard<br />

• No duplication! There’s an advantage in being first<br />

• Due Thursday March 3rd<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

2<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Discussion <strong>of</strong> Term Project<br />

• Please go to Blackboard site and list team members<br />

(and innovative team names) for all teams<br />

• First phase: design interior layout <strong>of</strong> X-Hab in<br />

configuration for 2011 test series<br />

– Accommodations for four crew<br />

– Diagrams coming for outer envelope<br />

• Submit as slide package (no presentation) by<br />

March 18 (i.e., before Spring break)<br />

• Second phase: full interior layout <strong>of</strong> two layers<br />

with life support and habitat elements<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

3<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Caissons<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

4<br />

• Pressurized chambers<br />

for digging tunnels and<br />

bridge foundations<br />

• Late 1800’s - caisson<br />

workers exhibited<br />

severe symptoms<br />

– joint pain<br />

– arched back<br />

– blindness<br />

– death<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Brooklyn Bridge<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

• Designed by John Roebling, who<br />

died from tetanus contracted<br />

while surveying it<br />

• Continued by son Washington<br />

Roebling, who came down with<br />

Caisson Disease in 1872<br />

• Competed by wife Emily<br />

Warren Roebling<br />

• 110 instances <strong>of</strong> caisson disease<br />

from 600 workers<br />

5<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


<strong>Decompression</strong> Sickness (DCS)<br />

• 1872 - Dr. Alphonse Jaminet noted similarity<br />

between caisson disease and air embolisms<br />

• Suggested procedural modifications<br />

– Slow compression and decompression<br />

– Limiting work to 4 hours, no more than 4 atm<br />

– Restricting to young, healthy workers<br />

• 1908 - J.B.S. Haldane linked to dissolved gases in<br />

blood and published first decompression tables<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

6<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Supersaturation <strong>of</strong> Blood Gases<br />

• Early observation that “factor <strong>of</strong> two” (50% drop in<br />

pressure) tended to be safe<br />

• Definition <strong>of</strong> tissue ratio R as ratio between<br />

saturated pressure <strong>of</strong> gas compared to ambient<br />

pressure<br />

R = PN2<br />

Pambient<br />

• 50% drop in pressure corresponds to R=1.58<br />

(R values <strong>of</strong> ~1.6 considered to be “safe”)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

=0.79 (nominal Earth value)<br />

7<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Tissue Models <strong>of</strong> Dissolved Gases<br />

• Issue is dissolved inert gases (not involved in<br />

metabolic processes, like N2 or He)<br />

• Diffusion rate is driven by the gradient <strong>of</strong> the<br />

partial pressure for the dissolved gas<br />

dPtissue(t)<br />

dt<br />

where k=time constant for specific tissue (min -1 )<br />

P refers to partial pressure <strong>of</strong> dissolved gas<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

= k [Palveoli(t) − Ptissue(t)]<br />

8<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Tissue Saturation following Descent<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

11<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Tissue Saturation after Ascent<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

12<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Effect <strong>of</strong> Multiple Tissue Times<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

13<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Haldane Tissue Models<br />

• Rate coefficient frequently given as time to evolve<br />

half <strong>of</strong> dissolved gases:<br />

T 1/2 =<br />

• Example: for 5-min tissue, k=0.1386 min -1<br />

• Haldane suggested five tissue “compartments”: 5,<br />

10, 20, 40, and 75 minutes<br />

• Basis <strong>of</strong> U. S. Navy tables used through 1960’s<br />

• Three tissue model (5 and 10 min dropped)<br />

• 1950’s: Six tissue model (5, 10, 20, 40, 75, 120)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

ln (2)<br />

k<br />

14<br />

k =<br />

ln (2)<br />

T 1/2<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Workman Tissue Models<br />

• Dr./Capt. Robert D. Workman <strong>of</strong> Navy<br />

Experimental Diving Unit in 1960’s<br />

• Added 160, 200, 240 min tissue groups<br />

• Recognized that each type <strong>of</strong> tissue has a differing<br />

amount <strong>of</strong> overpressure it can tolerate, and this<br />

changes with depth<br />

• Defined the overpressure limits as “M values”<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

15<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Workman M Values<br />

• Discovered linear relationship between partial<br />

pressure where DCS occurs and depth<br />

M=partial pressure limit (for each tissue compartment)<br />

M0=tissue limit at sea level (zero depth)<br />

ΔM=change <strong>of</strong> limit with depth (constant)<br />

d=depth <strong>of</strong> dive<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

M = M0 + ∆Md<br />

• Can use to calculate decompression stop depth<br />

dmin = Pt − M0<br />

∆M<br />

16<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


PADUA (Univ <strong>of</strong> Penn.) Tissue Model<br />

Tissue T 1/2 (minutes) M 0 (bar)<br />

1 5 3.040<br />

2 10 2.554<br />

3 20 2.067<br />

4 40 1.611<br />

5 80 1.581<br />

6 120 1.550<br />

7 160 1.520<br />

8 240 1.490<br />

9 320 1.490<br />

10 480 1.459<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

17<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Bühlmann Tissue Models<br />

• Laboratory <strong>of</strong> Hyperbaric Physiology at University<br />

Hospital, Zurich, Switzerland<br />

• Developed techniques for mixed-gas diving,<br />

including switching gas mixtures during<br />

decompression<br />

• Showed role <strong>of</strong> ambient pressure on<br />

decompression (diving at altitude)<br />

• Independently developed M-values, based on<br />

absolute pressure rather than SL depth<br />

• “Zurich” 12 and 16-tissue models widely used<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

18<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Bühlmann M-Value Models<br />

• Modifies Workman model by not assuming sea<br />

level pressure at water’s surface<br />

M = Pamb<br />

+ a<br />

b<br />

Pamb=pressure <strong>of</strong> breathing gas<br />

b=ratio <strong>of</strong> change in ambient pressure to change in tissue<br />

pressure limit (dimensionless)<br />

a=limiting tissue limit at zero absolute pressure<br />

• ZH-L16 model values for a and b<br />

a =2T<br />

− 1<br />

3<br />

1/2<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

< bar > b =1.005 − T − 1<br />

2<br />

1/2<br />

19<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Physics <strong>of</strong> Bubbles<br />

• Pressure inside a bubble is balanced by exterior<br />

pressure and surface tension<br />

Pinternal = Pambient + Psurface = Pambient + 2γ<br />

where γ=surface tension in J/m 2 or N/m (=0.073 for water<br />

at 273°K)<br />

• Dissolve gas partial pressure Pg=Pamb in<br />

equilibrium<br />

• Gas pressure in bubble Pint>Pamb due to γ<br />

• All bubbles will eventually diffuse and collapse<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

20<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support<br />

r


Critical Bubble Size<br />

• Minimum bubble size is defined by point at which<br />

interior pressure Pint = gas pressure Pg<br />

2γ<br />

• rrmin - bubble will grow<br />

• r=rmin - unstable equilibrium<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

rmin =<br />

21<br />

Pg − pambient<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Bubble Formation and Growth<br />

• In equilibrium, external pressure balanced by internal<br />

gas pressure and surface tension<br />

• Surface tension forces inversely proportional to radius<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

22<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


“Clinical” Discussion <strong>of</strong> DCS<br />

• Tissue models are predictive, not definitive<br />

• Every individual is different<br />

– Overweight people more susceptible to DCS<br />

– Tables and models are predictive limits - there will be<br />

“outliers” who develop DCS while adhering to tables<br />

• Doppler velocimetry reveals prevalence <strong>of</strong> bubbles<br />

in bloodstream without presence <strong>of</strong> DCS<br />

symptoms - “asymptomatic DCS”<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

23<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Implications <strong>of</strong> DCS in Space Flight<br />

• Drop from sea level pressure to ~4 psi, 100% O2<br />

pressure<br />

– Equivalent to ascent from fully saturated 120 ft dive<br />

– Launch in early space flight<br />

– Extravehicular activity from shuttle or ISS<br />

R = PN2<br />

Pamb<br />

• To have “safe” (R=1.4) EVA from shuttle requires<br />

suit pressure <strong>of</strong> 8.2 psi<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

24<br />

= 14.7(0.78)<br />

4<br />

=2.87<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Current Denitrogenation Approaches<br />

• Depress to 10.2 psi for 12-24 hours prior to EVA<br />

– Full cabin depress in shuttle<br />

– “Campout” in air lock module <strong>of</strong> ISS<br />

• Exercise while breathing 100% O2<br />

• In-suit decompression on 100% O2 (3.5-4 hours)<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

25<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Historical Data on Cabin Atmospheres<br />

from Scheuring et. al., “ Risk Assessm ent <strong>of</strong> Physiological Effects <strong>of</strong> Atm ospheric Com position and Pressure<br />

in Constellation Vehicles” 1 6th Annual Humans in Space, Beijing, China, May 2007<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

26<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Spacecraft Atmosphere Design Space<br />

from Scheuring et. al., “ Risk Assessm ent <strong>of</strong> Physiological Effects <strong>of</strong> Atm ospheric Com position and Pressure<br />

in Constellation Vehicles” 1 6th Annual Humans in Space, Beijing, China, May 2007<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

27<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Effect <strong>of</strong> Pressure and %O2 on Flammability<br />

from Hirsch, William s, and Beeson, “ Pressure Effects on Oxygen Concentration Flam m ability Thresholds <strong>of</strong><br />

Materials for Aerospace Applications” J. Testing and Evaluation, Oct. 2006<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

28<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Atmosphere Design Space with Constraints<br />

from Scheuring et. al., “ Risk Assessm ent <strong>of</strong> Physiological Effects <strong>of</strong> Atm ospheric Com position and Pressure<br />

in Constellation Vehicles” 1 6th Annual Humans in Space, Beijing, China, May 2007<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

29<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support


Constellation Spacecraft Atmospheres<br />

from Scheuring et. al., “ Risk Assessm ent <strong>of</strong> Physiological Effects <strong>of</strong> Atm ospheric Com position and Pressure<br />

in Constellation Vehicles” 1 6th Annual Humans in Space, Beijing, China, May 2007<br />

U N I V E R S I T Y O F<br />

MARYLAND<br />

30<br />

<strong>Fundamentals</strong> <strong>of</strong> <strong>Decompression</strong><br />

ENAE 697 - Space Human Factors and Life Support

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!