19.08.2013 Views

Avionics Preliminary Design Review - University of Maryland

Avionics Preliminary Design Review - University of Maryland

Avionics Preliminary Design Review - University of Maryland

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>Avionics</strong><br />

Establishing a Recurring Human<br />

Presence on the Moon<br />

<strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Overview<br />

• <strong>Preliminary</strong> <strong>Design</strong> <strong>Review</strong> <strong>of</strong> avionics,<br />

s<strong>of</strong>tware and simulation for a low-cost lunar<br />

lander<br />

– Link Budget and Communications<br />

– Sensors<br />

– Simulation (<strong>Design</strong>/Build/Test/Evaluate)<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Link Budgets<br />

• Link budget analysis conducted for the following<br />

cases:<br />

– Ku band direct to earth<br />

– S band direct to earth<br />

– Ka band to relay satellite at Lagrange 2<br />

– Ku band from relay satellite to Earth<br />

– UHF Omni-directional to EVA suits<br />

• Link margins >7 dB desired to ensure 99.5% link<br />

availability<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Assumptions<br />

• Maximum operational distances:<br />

– Direct to earth = 384,000 km<br />

– To Lagrange 2 = 60,000 km<br />

– L2 to earth = 444,000 km<br />

– Spacecraft to EVA Suits = 1 km<br />

• Data Rates:<br />

– Ka band = 100 Mbps<br />

– Ku band = 25 Mbps<br />

– S band = 100 kbps<br />

– UHF = 50 kbps<br />

• Ground station antenna diameter = 15m<br />

• Relay satellite specs from Boeing TDRS-J<br />

• All other assumptions from standard spreadsheet<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ku-Band Direct to Earth<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


S-Band Direct to Earth<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ka-Band to Lagrange 2 Relay Satellite<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ku-Band L2 Relay Satellite to Earth<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


UHF Omni-directional to Relay Suits<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Link Budget Conclusions<br />

• Baseline design is a 0.3 meter diameter<br />

transmitting antenna on spacecraft<br />

• Ku-band direct to earth requires a 1 m dia.<br />

transmitting antenna, a 50 m dia. receiving<br />

antenna or a reduced data transfer rate <strong>of</strong> 2.25<br />

Mbps; reduced rate is the only practical option<br />

• S-band direct to earth meets all requirements<br />

under nominal conditions, but at a lower data<br />

transfer rate (100 kbps) and a higher power<br />

requirement than Ku-Band (40 W vs. 20 W)<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Link Budget Conclusions<br />

• Ka-band relayed through L2 satellite to earth in<br />

Ku-band meets all requirements in nominal<br />

condition assuming a relay satellite comparable<br />

to Boeing TDRS-J, includes cost <strong>of</strong> additional<br />

satellite<br />

• UHF omni-directional to EVA suits meets gain<br />

requirements with 1 cm dia. transmission and<br />

receiving antennas for EVA’s up to 1 km; ample<br />

room to scale for missions with long distance<br />

EVA’s<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Proprioceptive Sensors<br />

• Pressure Transducers<br />

• Control Position Indicators<br />

– Attitude Control<br />

– Altimeters<br />

– Gyroscope<br />

– Strain Gauges<br />

– Magnetometer<br />

• Concern for South Atlantic Anomaly<br />

• Fluid Flow Sensors<br />

– Internal Cabin Gas monitoring<br />

– Propulsion Systems<br />

• Thermal Sensors<br />

– Internal Cabin<br />

– Propulsion systems<br />

• Space Crew Sensors<br />

– Radiation Sensors (Dosimeters)<br />

– Gas Leak Sensors<br />

• Each tied to alarm system<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Adapted from [5]<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Exterioceptive Sensors<br />

• Position Indicators<br />

– Star Trackers<br />

– Telemetry Devices<br />

– Landing Gear Position Indicators<br />

• Laser Altimeters (LIDAR)<br />

– Cameras<br />

• Analyzing Devices<br />

– Tied to probability and calculation s<strong>of</strong>tware<br />

• Detecting Devices<br />

– Micrometeoroid Sensors<br />

– Ablation Sensors<br />

• Camera<br />

– Horizon Sensors<br />

– Infrared Sensors<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Examples <strong>of</strong> Sensors<br />

• Pressure Sensors<br />

– Internal cockpit sensor<br />

• Critical for maintaining atmospheric conditions<br />

• Pressure Transducer provides extremely low weight[2]<br />

• LIDAR support for landing struts<br />

– Redundancy for comparative analysis<br />

– Serious weight issue (100 kg per system) [6]<br />

• Cameras- Everywhere<br />

– Infrared<br />

– Pan Tilt Zoom<br />

– Additional masking or filter features<br />

• Star tracker<br />

– Readily available COTS brand<br />

• Radiation Sensor<br />

– Simple badge or dynamic sensor<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

SpaceMicro’s μStar<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Processing Power<br />

• Proton400k Or RAD 750<br />

• Requires suitable Error Detection and<br />

Correction (EDAC)<br />

• Multiple computer banks for redundancy<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Adapted from [2]<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Sensors<br />

• Radiation Tested Equipment a major concern<br />

– 3 main scenarios <strong>of</strong> testing [4]<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

• Total Ionizing Dose: Co 60 gamma or Co-3 MeV electrons<br />

( Linac or VdG )<br />

• Displacement Damage: Protons (10 20 MeV ), Neutrons<br />

(1 MeV ), Electrons (3 5 MeV 10-MeV), MeV), 3-<br />

• Single Event: Heavy Ion Accelerator (ESA Louvain HIF),<br />

Proton Accelerator (ESA PSI PIF) ESA- ESA-Cf 252 CASE<br />

laboratory system. Cf-‘CASE’ 1-VdG) MeV)<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Proprioceptive Sensor List<br />

Sensors Type Criticality Frequency <strong>of</strong> sampling Weight (kg) Amount Total<br />

Pressure Transducers Moderate 9.1 Hz 2 5 10<br />

Position Indicators 25 1 25<br />

Attitude Control High - -<br />

Altimeters Slight 60 Hz - -<br />

Gyroscope Moderate 60 Hz - -<br />

Strain Gauges Moderate 60 Hz - -<br />

Magnetometer Moderate 333 mHz - -<br />

Fluid Flow Sensors<br />

Internal Cabin Gas Monitors High 900 Hz 1 4 4<br />

Propulsion Systems High 900 Hz 1 6 6<br />

Thermal Sensors<br />

Internal Cabin Slight 900 Hz 0.25 4 1<br />

Propulsion Systems High 900 Hz 0.25 6 1.5<br />

Space Crew Sensors<br />

Radiation Sensors (Dosimeters) High N/A 1 6 6<br />

Gas Leak Sensors High 900 Hz 0.25 6 1.5<br />

Total Weight 55<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Exterioceptive Sensors List<br />

Sensors Type Criticality Frequency <strong>of</strong> sampling Weight (kg) Amount Total<br />

Position Indicators<br />

Star Trackers Moderate 60 Hz 1.85 2 3.7<br />

Telemetry Devices High 60 Hz 4 2 8<br />

Landing Gear Position Indicators<br />

LIDAR High 100 Hz 100 2 200<br />

Cameras Moderate 60 Hz 0.5 20 10<br />

Analyzing Devices<br />

General Purpose Computers High 3 GHz 10 5 50<br />

Total Weight 271.7<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Total weight <strong>of</strong> all sensors 326.7 kg<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


<strong>Design</strong>/Build/Test/Evaluate Projects<br />

1. Cabin Interior<br />

– Living and working environment during transit and<br />

on lunar surface<br />

– Object and workstation placement<br />

2. Lunar landing visuals and operations<br />

– Landing gear must be visible from cabin window<br />

3. Ingress/Egress<br />

– Difficulty level <strong>of</strong> ingress/egress on lunar surface<br />

while wearing spacesuits<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Cabin Interior – Overview<br />

• Limited interior space creates close-quarters<br />

living and working environment<br />

• Interior includes:<br />

– 3 launch seats, food storage, waste management<br />

system, 3 spacesuits, 3 crew members, additional<br />

stowage<br />

• Sleeping and working arrangements must<br />

provide comfort level expected <strong>of</strong> 10-13 day<br />

mission<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Cabin Interior – Research Objectives<br />

• Size and placement <strong>of</strong> each interior item<br />

– Examine various possible combinations <strong>of</strong> item placement<br />

– Simulate living and working. Determine which placements work well and<br />

which are hazardous or inconvenient<br />

• Working environment<br />

– 3 crew members must work as a team. Simulate working together<br />

during each mission phase<br />

– Each mission phase may have unique requirements, i.e. launch seats for<br />

take-<strong>of</strong>f, window visibility for lunar landing<br />

– Ensure workstations are accessible during each phase, promote crew<br />

cohesion and contribute to mission success<br />

• Living and sleeping arrangements<br />

– Transit and lunar phases <strong>of</strong>fer different challenges due to gravity<br />

– Floor space must be sufficient for 3 sleeping crew members<br />

– Determine comfort level <strong>of</strong> occupying launch seats for sleeping<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Cabin Interior – CONOPS<br />

• Construct shell <strong>of</strong> cabin interior size<br />

– Material is not important, i.e. can be cardboard<br />

– Cut holes for windows and hatch (include door)<br />

• Create mockup <strong>of</strong> each interior item<br />

– Find/create seats, food, simulated spacesuits<br />

– Most important is to size each item as accurately as possible<br />

– Items must be easily movable to allow for multiple<br />

placement possibilities<br />

• Simulate all phases and aspects <strong>of</strong> mission<br />

– Launch, landing, sleeping, eating, working together<br />

– Evaluate each for feasibility and optimal environment<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Cabin Interior – Mockup<br />

Interior Height: 2.37 m<br />

Landing<br />

Controls /<br />

<strong>Avionics</strong><br />

Food<br />

Storage<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Interior Diameter: 3.13 m<br />

Waste<br />

Management<br />

Collapsible<br />

Seats (3x)<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Lunar Landing – Research Objectives<br />

• Lunar landing is an especially critical mission<br />

phase which depends on crew for success<br />

• All crew members must be gainfully employed<br />

– Ensure window, workstation, avionics placement allows<br />

each crew member to contribute optimally to the<br />

success <strong>of</strong> this mission phase<br />

• Windows must allow for 360° lateral visibility<br />

• Sight lines such that landing gear feet are visible<br />

during landing<br />

– Enable crew members to have maximum chance <strong>of</strong><br />

avoiding landing hazards<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Lunar Landing – CONOPS<br />

• Elevate cabin interior mockup such that landing<br />

gear can be placed beneath<br />

– Place cabin interior mockup on a stand to accurately<br />

simulate the height <strong>of</strong> lunar landing module and take<strong>of</strong>f<br />

propulsion module<br />

– Landing gear mockup must be accurate length and<br />

angle to evaluate sight lines from window<br />

• Landing hazards<br />

– Simulate various placements <strong>of</strong> landing hazards such as<br />

holes and rocks<br />

– Determine crew’s chances <strong>of</strong> hazard detection and<br />

avoidance based on placement<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Lunar Landing – Mockup<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Sight Lines (3 windows<br />

evenly spaced around SC)<br />

41.9°<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ingress/Egress – Research Objectives<br />

• Extra Vehicular Activity (EVA) is a primary purpose<br />

<strong>of</strong> overall mission<br />

• Crew members must be able to don spacesuits,<br />

egress and ingress easily and readily<br />

• Investigate how each <strong>of</strong> the following affects this<br />

mission phase:<br />

– Hatch size and placement<br />

– Ladder deployment and stowage<br />

– Spacesuits and cabin interior<br />

• Ensure that crew members are not overly<br />

encumbered during this phase and are able to<br />

focus on mission<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ingress/Egress – CONOPS<br />

• Donning spacesuits inside cabin<br />

– All crew members must be able to don suits prior to cabin<br />

depressurization<br />

– Mockup spacesuits must simulate actual suit size and mobility<br />

level to ensure crew can don them properly inside cabin<br />

• Hatch size and placement<br />

– Hatch must be appropriately sized and positioned above cabin<br />

floor to allow feet-first egress<br />

• Ladder deployment<br />

– Mockup ladder must be <strong>of</strong> material to support weight <strong>of</strong> one<br />

crew member plus suit<br />

– Mockup ladder must be compressible such that it can be stored<br />

inside cabin and deployed easily outside hatch while wearing suit<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Ingress/Egress – Mockup<br />

Hatch Diameter: 1.0 m<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

EVA Hatch<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


Mass Budget – Crew Vehicle<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

Component Mass (kg)<br />

Crew Systems 1323<br />

Power, Propulsion and Thermal 1342<br />

Structure 682<br />

Sensors 327<br />

Total 3674<br />

• 1121 kg remaining for additional mass<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda


References<br />

• [1] http://lhcb-elec.web.cern.ch/lhcb-elec/html/radiation_hardness.htm<br />

• [2]http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/15130/1/00-1141.pdf<br />

• [3] http://www.spacemicro.com/pdfs/Proton400k-8X_Datasheet_v3.2.pdf<br />

• [4] http://esamultimedia.esa.int/docs/industry/SME/2003/Space-Component/ESA-<br />

Training-Radiation-ESTEC_May03.pdf<br />

• [5] http://www.lanl.gov/orgs/mpa/mpa11/Panel-Hunter-NASA.pdf<br />

• [6] Radiation Testing <strong>of</strong> Semiconductor devices for Space Electronics<br />

http://web.mst.edu/~umrr/cf043.pdf<br />

• [7] http://ww.gim-international.com/files/productsurvey_v_pdfdocument_11.pdf<br />

• [8] Koon, W. S. Low Energy Transfer to the Moon. Celestial Mechanics and Dynamical<br />

Astronomy. September 2001, Volume 81, Issue 1-2, pp 63-73.<br />

• [9]http://www.eumetsat.int/Home/Main/Satellites/GroundNetwork/GroundStations/in<br />

dex.htm<br />

• [10] http://www.boeing.com/defensespace/space/bss/factsheets/601/tdrs_hij/tdrs_hij.html<br />

• [11] http://tdrs.gsfc.nasa.gov/assets/files/PressKits/TDRS%20J.pdf<br />

• [12] Maral, Gérard, and Michel Bousquet. Satellite Communications Systems: Systems,<br />

Techniques, and Technology. 5th ed. Chichester: Wiley, 2011. Print.<br />

<strong>Avionics</strong><br />

ENAE 788D <strong>Design</strong> Project<br />

<strong>University</strong> <strong>of</strong> <strong>Maryland</strong>, Fall 2012<br />

Block, Henninger, Rotunda

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!