22.08.2013 Views

problems

problems

problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Problem 8.1<br />

Solutions to Chapter 8 Exercise Problems<br />

A cam that is designed for cycloidal motion drives a flat-faced follower. During the rise, the<br />

follower displaces 1 in for 180˚ of cam rotation. If the cam angular velocity is constant at 100 rpm,<br />

determine the displacement, velocity, and acceleration of the follower at a cam angle of 60˚.<br />

Solution:<br />

The equation for cycloidal motion is:<br />

y = L <br />

<br />

1<br />

sin<br />

2<br />

<br />

2 <br />

For L = 1, and =180˚= , then<br />

y = L <br />

<br />

1<br />

sin<br />

2<br />

=1<br />

2 <br />

1 sin<br />

2<br />

( 2 )= 1 2 sin2<br />

( )<br />

y ˙ = L <br />

˙ y ˙ = 2L <br />

<br />

<br />

<br />

<br />

<br />

1 cos<br />

2<br />

=<br />

<br />

( 1 cos2)<br />

<br />

2<br />

<br />

sin 2<br />

= 2 ( ) 2<br />

sin2<br />

The angular velocity is ˙ =100 rpm =100 2<br />

=10.472 rad / s<br />

60<br />

When = 60˚= 3 ,<br />

3<br />

y = <br />

1 ( sin2( 3)<br />

2 ) = 1 <br />

1 ( sin(2 3)<br />

3 2 )= 0.195 in<br />

y ˙ = 1cos2 ( )= 10.472 ( 1 cos(2 3) )= 5.000<br />

<br />

in.<br />

sec.<br />

˙ y ˙ = 2 ( ) 2<br />

Problem 8.2<br />

sin2 = 2 10.472 ( ) 2<br />

sin(2 3) = 60.46 in.<br />

sec2<br />

A constant-velocity cam is designed for simple harmonic motion. If the flat-faced follower<br />

displaces 2 in for 180˚ of cam rotation and the cam angular velocity is 100 rpm, determine the<br />

displacement, velocity, and acceleration when the cam angle is 45˚.<br />

Solution:<br />

- 328 -


The equation for simple harmonic motion is:<br />

y = L 2 1 cos <br />

<br />

<br />

<br />

<br />

For L = 2, and =180˚= , then<br />

y = L 2 1 cos <br />

<br />

<br />

=<br />

<br />

2 1 cos<br />

2( )= ( 1 cos)<br />

y ˙ = dy<br />

dt = d ( 1 cos)=<br />

dt ˙ sin<br />

˙ y ˙ = d2y<br />

dt2 = d dt ˙ ( sin)=<br />

˙ 2cos<br />

The angular velocity is ˙ =100 rpm =100 2<br />

=10.472 rad / s<br />

60<br />

When = 45˚,<br />

y = ( 1 cos)=<br />

( 1 cos45˚)=10.707<br />

= 0.292 in ,<br />

y ˙ = ˙ sin =10.472 sin45˚=10.472 (0.707) = 7.405 in s<br />

˙ y ˙ = ˙ 2 cos =10.4722 (0.707) = 77.531 in<br />

s2<br />

Problem 8.3<br />

A cam drives a radial, knife-edged follower through a 1.5-in rise in 180˚ of cycloidal motion. Give<br />

the displacement at 60˚ and 100˚. If this cam is rotating at 200 rpm, what are the velocity (ds/dt) and<br />

the acceleration (d 2 s/dt 2 ) at = 60˚?<br />

Solution:<br />

The equation for cycloidal motion is:<br />

y = L <br />

<br />

1<br />

sin<br />

2<br />

<br />

2 <br />

For L = 1.5, and =180˚= , then<br />

y = L <br />

<br />

1<br />

sin<br />

2<br />

=1.5<br />

2 <br />

<br />

1<br />

sin<br />

2<br />

( 2 )=1.5 1 2 sin2<br />

( )<br />

y ˙ = L <br />

<br />

1 cos<br />

2<br />

=<br />

<br />

1.5 ( 1cos2 )<br />

<br />

- 329 -


2<br />

<br />

˙ y ˙ = 2L <br />

<br />

<br />

<br />

<br />

sin 2<br />

= 2(1.5) ( ) 2<br />

sin2 = 3 ( ) 2<br />

sin2<br />

The angular velocity is ˙ = 200 rpm = 200 2<br />

= 20.944 rad / s<br />

60<br />

When = 60˚= 3 ,<br />

y =1.5 <br />

1<br />

2 sin2<br />

3<br />

( )=1.5<br />

1 2 sin 2 ( 3 ) = 0.293 in<br />

y ˙ = 1.5 ( 1 cos2)=<br />

1.5(20.944)<br />

1cos<br />

<br />

2 ( 3 )=15.00 in s<br />

˙ y ˙ = 3 ( ) 2<br />

=362.76<br />

in<br />

s2<br />

When =100˚= 100<br />

180 = 5 9 ,<br />

sin2 = 3 20.944 ( ) 2<br />

sin 2 3<br />

( )<br />

y =1.5 <br />

1<br />

2 sin2<br />

5 9<br />

( )=1.5<br />

1 2 sin10 = 0.915 in<br />

9<br />

Problem 8.4<br />

Draw the displacement schedule for a follower that rises through a total displacement of 1.5 inches<br />

with constant acceleration for 1/4th revolution, constant velocity for 1/8th revolution, and constant<br />

deceleration for 1/4th revolution of the cam. The cam then dwells for 1/8th revolution, and returns<br />

with simple harmonic motion in 1/4th revolution of the cam.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 using Matlab.<br />

The curves are matched at the endpoints of each segment. The profile equations are:<br />

For 0 <br />

2<br />

y1 = a0 + a1 + a2 2<br />

The boundary conditions at = 0 are y1 = 0 and y'1 = 0 . Therefore,<br />

a0 = a1 = 0<br />

So,<br />

and<br />

y1 = a2 2<br />

y'1 = 2a2<br />

where a2 is yet to be determined.<br />

- 330 -


For 3<br />

<br />

2 4<br />

y2 = b0 + b1<br />

( ) 2<br />

The boundary conditions at = <br />

2 are y1 = a2 <br />

2<br />

and<br />

Also<br />

or<br />

b0 + b1 <br />

2<br />

( ) 2<br />

= a2 <br />

2<br />

0 = a2 ( 2 ) 2<br />

+ b0 + b1 <br />

2<br />

y'2 = b1 = a2<br />

0 = a2 b1<br />

For 3 5<br />

<br />

4 4<br />

y3 = c0 + c1 + c2 2<br />

y'3 = c1 + 2c2<br />

y"3 = 2c2<br />

- 331 -<br />

and y'1 = 2a2 <br />

2 = a2 . Then<br />

The boundary conditions at = 3<br />

4 are y2 = a2 <br />

4 + ( ) = a2 3<br />

+<br />

4 4<br />

Also, at = 5<br />

4 , y3 =1.5 and y'3 = 0 . Then, matching the conditions,<br />

2<br />

y3 = a2<br />

2 = c0 +c1 3<br />

4<br />

y'3 = c1 + 2c2 3<br />

= a2<br />

4<br />

1.5 = c0 + c1 5 5<br />

+c2<br />

4 4<br />

( ) 2<br />

3<br />

+ c2( 4 ) 2<br />

y'3 = c1 + 2c2 5<br />

4 = 0<br />

The boundary condition equations can be written as:<br />

( )<br />

= a2 2<br />

2 and y'2 = a2 .


( ) 2<br />

0 = a2 <br />

2<br />

0 = a2 b1<br />

2<br />

0 a2<br />

+ b0 + b1 <br />

2<br />

2 + c0 +c1 3<br />

4<br />

0 = a2 + c1 + 2c2 3<br />

4<br />

1.5 = c0 + c1 5<br />

4<br />

+c2 5<br />

4<br />

( ) 2<br />

+ c2 3<br />

4<br />

( ) 2<br />

0 = c1 + 2c2 5<br />

4<br />

In matrix form,<br />

<br />

0 <br />

0 <br />

<br />

0 <br />

0 =<br />

<br />

0 <br />

<br />

1.5<br />

<br />

( 2)<br />

2<br />

1 <br />

<br />

2<br />

<br />

2<br />

0<br />

0<br />

0<br />

2<br />

1 0<br />

0 1<br />

0<br />

0<br />

0<br />

0<br />

3<br />

<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 0<br />

0 0<br />

0 1<br />

4<br />

1<br />

1<br />

3<br />

4<br />

3<br />

2<br />

5<br />

2<br />

5<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

5<br />

4<br />

( ) 2<br />

( ) 2<br />

Solving for the constraints using Matlab,<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

a2<br />

b0<br />

b1<br />

c0<br />

c1<br />

c2<br />

0.2026 <br />

-0.5000<br />

<br />

0.6366 <br />

= -1.6250<br />

<br />

1.5915 <br />

<br />

<br />

<br />

-0.2026<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The equations are then given in the following:<br />

For 0 <br />

2<br />

y1 = a2 2 = 0.2026 2<br />

For 3<br />

<br />

2 4<br />

y2 = b0 + b1 = - 0.5000 + 0.6366<br />

a2<br />

b0<br />

b1<br />

c0<br />

c1<br />

c2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

- 332 -


For 3<br />

4<br />

For 5<br />

4<br />

5<br />

4<br />

y3 = c0 + c1 + c2 2 = -1.6250 +1.5915 0.2026 2<br />

3<br />

2<br />

y4 =1.5<br />

For the return, 3<br />

2 2 , and<br />

y5 = L<br />

2<br />

3<br />

1 +cos = ( 1+ cos2)<br />

4<br />

The displacement diagram is plotted in the following:<br />

Normalized Follower Displacement, Velocity, and Acceleration<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Position, max value is: 1.5<br />

Velocity, max value is: 1.5 ( )<br />

Acceleration, max value is: 3 ( 2 )<br />

Follower Displacement, Velocity, and Acceleration Diagrams<br />

TextEnd<br />

0 50 100 150 200 250 300 350<br />

Cam Angle<br />

- 333 -


Problem 8.5<br />

Draw the displacement schedule for a follower that rises through a total displacement of 20 mm<br />

with constant acceleration for 1/8th revolution, constant velocity for 1/4th revolution, and constant<br />

deceleration for 1/8th revolution of the cam. The cam then dwells for 1/4th revolution, and returns<br />

with simple harmonic motion in 1/4th revolution of the cam.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 using Matlab.<br />

The curves are matched at the endpoints of each segment. The profile equations are:<br />

For 0 <br />

4<br />

y1 = a0 + a1 + a2 2<br />

The boundary conditions at = 0 are y1 = 0 and y'1 = 0 . Therefore,<br />

a0 = a1 = 0<br />

So,<br />

and<br />

y1 = a2 2<br />

y'1 = 2a2<br />

where a2 is yet to be determined.<br />

For 3<br />

<br />

4 8<br />

y2 = b0 + b1<br />

( ) 2<br />

The bounary conditions at = <br />

4 are y1 = a2 <br />

4<br />

and<br />

Also<br />

or<br />

b0 + b1 <br />

4<br />

( ) 2<br />

= a2 <br />

4<br />

0 = a2 ( 4 ) 2<br />

+ b0 + b1 <br />

4<br />

y'2 = b1 = a2 <br />

2<br />

0 = a2 <br />

b1<br />

2<br />

For 3<br />

<br />

8<br />

- 334 -<br />

and y'1 = 2a2 <br />

4<br />

<br />

= a2 . Then,<br />

2


y3 = c0 + c1 + c2 2<br />

y'3 = c1 + 2c2<br />

y"3 = 2c2<br />

The boundary conditions at = 3<br />

8 are y2 = b0 + b1 3<br />

8 and y'2 = b1. Also, at = , y3 = 20, and<br />

y'3 = 0 . Then matching the conditions,<br />

( ) 2<br />

y3 = b0 +b1 3<br />

8 = c0 + c1 3 3<br />

+ c2<br />

8 8<br />

y'3 = c1 + 2c2 3<br />

8 = b1<br />

20 = c0 +c1 + c2 2<br />

y'3 = c1 + 2c2 = 0<br />

The boundary condition equations can be written as:<br />

( ) 2<br />

0 = a2 <br />

4<br />

0 = a2 <br />

b1<br />

2<br />

+ b0 + b1 <br />

4<br />

0 b0 b1 3<br />

8 +c0 + c1 3<br />

8<br />

0 = b1 +c1 +c2 3<br />

4<br />

20 = c0 +c1 + c2 2<br />

0 = c1 + 2c2<br />

In matrix form,<br />

( ) 2<br />

3<br />

+c2 ( 8 ) 2<br />

<br />

0 <br />

0 <br />

<br />

0 <br />

0 =<br />

<br />

0 <br />

<br />

20<br />

<br />

<br />

1 0 0 0<br />

4 4<br />

<br />

0 1 0 0 0<br />

2<br />

0 1 3<br />

1<br />

8<br />

3 3<br />

8 ( 8 ) 2<br />

3<br />

0 0 1 0 1<br />

4<br />

0 0 0 0 1 2<br />

0 0 0 1 2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Solving for the constraints using Matlab,<br />

a2<br />

b0<br />

b1<br />

c0<br />

c1<br />

c2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

- 335 -


a2<br />

b0<br />

b1<br />

c0<br />

c1<br />

c2<br />

7.2051 <br />

-4.4444<br />

<br />

11.3177<br />

= -8.4444<br />

<br />

18.1083<br />

<br />

<br />

<br />

-2.8820<br />

<br />

The equations are then given in the following:<br />

For 0 <br />

4<br />

y1 = a2 2 = 7.2051 2<br />

For 3<br />

<br />

4 8<br />

For 3<br />

8<br />

y2 = b0 + b1 = - 4.4444 +11.3177<br />

<br />

y3 = c0 + c1 + c2 2 = -8.4444 +18.1083 -2.8820 2<br />

For 3<br />

2<br />

y4 = 20 mm<br />

For the return, 3<br />

2 2 , and<br />

y5 = L<br />

2<br />

<br />

1 +cos<br />

<br />

=10( 1+cos 2 )<br />

The displacement diagram is plotted in the following:<br />

- 336 -


Normalized Follower Displacement, Velocity, and Acceleration<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Problem 8.6<br />

Position, max value is: 20<br />

Velocity, max value is: 20 ( )<br />

Acceleration, max value is: 40 ( 2 )<br />

Follower Displacement, Velocity, and Acceleration Diagrams<br />

TextEnd<br />

0 50 100 150 200 250 300 350<br />

Cam Angle<br />

Draw the displacement schedule for a follower that rises through a total displacement of 30 mm<br />

with constant acceleration for 90˚ of rotation and constant deceleration for 45˚ of cam rotation. The<br />

follower returns 15 mm with simple harmonic motion in 90˚ of cam rotation and dwells for 45˚ of<br />

cam rotation. It then returns the remaining 15 mm with simple harmonic motion during the<br />

remaining 90˚ of cam rotation.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 using Matlab.<br />

The curves are matched at the endpoints of each segment. The profile equations are:<br />

For 0 <br />

2<br />

y1 = a0 + a1 + a2 2<br />

The boundary conditions at = 0 are y1 = 0 and y'1 = 0 . Therefore,<br />

a0 = a1 = 0<br />

So,<br />

and<br />

y1 = a2 2<br />

y'1 = 2a2<br />

- 337 -


where a2 is yet to be determined.<br />

For 3<br />

<br />

2 4<br />

y2 = b0 + b1 + b2 2<br />

( ) 2<br />

The boundary conditions at = <br />

2 and y1 = a2 <br />

2<br />

b0 + b1 <br />

+b2<br />

2 ( 2)<br />

2<br />

= a2 ( 2 ) 2<br />

and<br />

Also<br />

0 = a2 ( 2 ) 2<br />

+ b0 + b1 <br />

2<br />

y'2 = b1 + b2 = a2<br />

( ) 2<br />

+ b2 <br />

2<br />

- 338 -<br />

and y'1 = 2a2 <br />

2 = a2 . Then,<br />

or<br />

0 = a2 + b1 +b2<br />

The boundary conditions at = 3<br />

4 are y2 = 30 and y'2 = 0 . Then,<br />

and<br />

b0 + b1 3<br />

4<br />

( ) 2<br />

+ b2 3<br />

4<br />

0 = b1 +2b2 3<br />

4<br />

= 30<br />

( )= b1 + b2 3<br />

( )<br />

The four boundary condition equations can be summarized as:<br />

( ) 2<br />

0 = a2 <br />

2<br />

0 = a2 + b1 +b2<br />

30 = b0 + b1 3<br />

4<br />

( )<br />

0 = b1 +b2 3<br />

2<br />

In matrix form,<br />

( ) 2<br />

+ b0 + b1 <br />

2<br />

( ) 2<br />

+b2 3<br />

4<br />

( ) 2<br />

2<br />

( ) 2<br />

+ b2 <br />

2<br />

0<br />

<br />

<br />

0 <br />

=<br />

30<br />

<br />

0 <br />

<br />

<br />

1<br />

<br />

2 2 2<br />

0 1 <br />

0 1 3 3<br />

4 ( 4 ) 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0 0 1<br />

3 <br />

<br />

<br />

2 <br />

a2<br />

b0<br />

b1<br />

b2<br />

<br />

<br />

<br />

<br />

<br />

<br />

7.5


Solving for the constraints using Matlab,<br />

<br />

<br />

<br />

<br />

<br />

<br />

a2<br />

b0<br />

b1<br />

b2<br />

8.1057 <br />

-60.0000<br />

= <br />

76.3944 <br />

<br />

<br />

<br />

-16.2114<br />

<br />

The equations are then given in the following:<br />

For 0 <br />

2<br />

y1 = a2 2 = 8.1057 2<br />

For 3<br />

<br />

2 4<br />

y2 = b0 + b1 + b2 2 = -60.0000 + 76.3944 +-16.2114 2<br />

For 3 5<br />

<br />

4 4<br />

= <br />

2<br />

and<br />

y3 = L<br />

<br />

1+ cos<br />

2 <br />

= 15<br />

2<br />

( 1+ cos2)<br />

This equation assumes that the curve is 15 mm high and that the curve falls to zero. However, the<br />

actual curve begins at a height of 30 mm and returns to only 15 mm. Because of this, we need to<br />

add 15 mm to the value for y3. Then,<br />

y3 =15+ 7.5( 1+ cos2 )<br />

For 5 6<br />

<br />

4 4<br />

y4 =15<br />

For 6<br />

2<br />

4<br />

= <br />

2<br />

and<br />

y5 = L<br />

2<br />

<br />

1 +cos<br />

<br />

= 15<br />

2<br />

( 1 +cos2)<br />

The displacement diagram is plotted in the following:<br />

- 339 -


Normalized Follower Displacement, Velocity, and Acceleration<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Problem 8.7<br />

Position, max value is: 30<br />

Velocity, max value is: 25.4648 ( )<br />

Acceleration, max value is: 32.4228 ( 2 )<br />

Follower Displacement, Velocity, and Acceleration Diagrams<br />

TextEnd<br />

0 50 100 150 200 250 300 350<br />

Cam Angle<br />

Draw the displacement schedule for a follower that rises through a total displacement of 3 inches<br />

with cycloidal motion in 120 degrees of cam rotation. The follower then dwells for 90˚ and returns<br />

to zero with simple harmonic motion in 90˚ of cam rotation. The follower then dwells for 60˚<br />

before repeating the cycle.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 using Matlab.<br />

The curves are matched at the endpoints of each segment. The profile equations are:<br />

For 0 2<br />

3<br />

and<br />

= 2<br />

3<br />

y1 = L <br />

( )<br />

1 2 3 1<br />

sin = 3 <br />

2 2 2 sin3<br />

- 340 -


( )<br />

y'1 = L 1 1 2 3 3<br />

cos = 3 cos 3<br />

2 2<br />

y"1 = L 2 <br />

2 sin2<br />

<br />

<br />

<br />

= 3 9<br />

2 sin3 ( )<br />

For 2 7<br />

<br />

3 6<br />

y2 = 3<br />

For the return, 7<br />

6<br />

and<br />

= <br />

2<br />

5<br />

3 _<br />

y3 = L<br />

<br />

1+ cos<br />

2 <br />

For the remainder of the cycle,<br />

and<br />

5<br />

3<br />

y4 = 0<br />

2<br />

=1.5( 1+ cos2)<br />

The displacement diagram is plotted in the following:<br />

- 341 -


Normalized Follower Displacement, Velocity, and Acceleration<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Problem 8.8<br />

Position, max value is: 3<br />

Velocity, max value is: 3 ( )<br />

Acceleration, max value is: 6 ( 2 )<br />

Follower Displacement, Velocity, and Acceleration Diagrams<br />

TextEnd<br />

0 50 100 150 200 250 300 350<br />

Cam Angle<br />

A cam returns from a full lift of 1.2 in during its initial 60˚ rotation. The first 0.4 in of the return is<br />

half-cycloidal. This is followed by a half-harmonic return. Determine 1 and 2 so that the motion<br />

has continuous first and second derivatives. Draw a freehand sketch of y', y'', and y''' indicating<br />

any possible mismatch in the third derivative.<br />

Solution:<br />

Follower Travel<br />

1.2 in<br />

0.4 in<br />

- 342 -<br />

Not to Scale<br />

0˚ 60˚<br />

β 1 β 2<br />

The first part of the return is made up of a cycloidal curve and the second part is made up of a<br />

harmonic curve. This is shown schematically in the figure below.


Follower Travel<br />

1.2"<br />

β1 β2<br />

0.4"<br />

The range for the cycloidal curve is given by<br />

0 1 21<br />

Cycloidal Curve<br />

and the range for the harmonic curve is given by<br />

Also,<br />

1 2 2 1 + 2<br />

2 =1 (1 2)<br />

0˚ 60˚<br />

β1<br />

β2<br />

- 343 -<br />

2β<br />

2<br />

2 β1<br />

Harmonic Curve<br />

The general form for the cycloidal equation for a return is given in Section 7.8 as<br />

y = L 1 <br />

+<br />

1<br />

sin<br />

2 <br />

2 <br />

Half of the cycloidal return is 0.4 so return is 0.8. The range for 1 is 21. As<br />

indicated in the figure above, the cycloidal curve is offset from the horizontal axis by 0.4".<br />

Therefore, this much must be added to y. The cycloidal equation for the return is<br />

<br />

y1 = L1 1 1 21 + 1<br />

= 0.8 1.5 1<br />

<br />

2 1<br />

<br />

2 sin 21 21 +0.4 = 0.8 1 1 21 + 1 2 sin 1<br />

1<br />

<br />

<br />

<br />

+ 1 2 sin 1<br />

1<br />

<br />

+0.4<br />

The harmonic curve is given by Eq. (812). Half of the harmonic return is (1.2"-0.4") = 0.8 so that<br />

the whole return is 1.6". The range for 2 is 22 . Therefore, the equation for the harmonic part<br />

of the return is:<br />

y2 = L 2<br />

2 1+ cos <br />

2<br />

= 0.8 1+ cos <br />

2 <br />

<br />

2 2<br />

2 2<br />

We also know that 2 =1 (1 2) and 2 = 3<br />

1<br />

0.4"<br />

(1)<br />

(2)


Eqs. (1) and (2) can be reduced so that the only unknown is 1. To solve for the unknown, we can<br />

equate the slopes at 1 = 1 . For the cycloidal equation,<br />

y'1= 0.8 <br />

<br />

and at 1 = 1<br />

2 1<br />

y'1= 0.8 <br />

<br />

2 1<br />

1 cos 1 1 1 cos 1 1 For the harmonic equation<br />

y'2 = 0.4<br />

sin 2 <br />

<br />

2<br />

2 2<br />

<br />

<br />

<br />

<br />

At 1 = 1, 2 = 2. Therefore,<br />

y'2 = 0.4 <br />

<br />

2<br />

sin 2 22 = 0.8<br />

1<br />

<br />

<br />

= <br />

0.4 <br />

<br />

2<br />

sin 2 22 <br />

<br />

= 0.4<br />

2<br />

Equation Eqs. (3) and (4) give the following equation<br />

or<br />

0.8<br />

1<br />

= 0.4<br />

2<br />

2<br />

=<br />

1 =<br />

<br />

2 /3 1 This equation can be easily solved for 1. The result is: 1 =<br />

- 344 -<br />

2<br />

= 0.4073436 radians.<br />

3( +2)<br />

We can now write y, y', and y" for each part of the curve. For 1 0.4073436<br />

y = 0.8 1.5 1 + 1<br />

<br />

<br />

y' = 0.8 <br />

<br />

2 1<br />

y"= 0.8 <br />

<br />

2 1<br />

1 cos 1 1 22 1 sin 1 1 2 sin 1<br />

1 <br />

<br />

<br />

<br />

and for 0.4073436 /3<br />

y = 0.8 1+cos <br />

2 <br />

<br />

2 2<br />

<br />

<br />

(3)<br />

(4)<br />

(4)


where<br />

y' = 0.4 <br />

<br />

2<br />

y"= 0.2 2<br />

2 2<br />

sin 2<br />

22 <br />

<br />

<br />

<br />

cos 2<br />

22 <br />

<br />

2 =1 (1 2) and 2 = 3<br />

1<br />

The results are plotted in the following<br />

- 345 -


Problem 8.9<br />

Assume that s is the cam-follower displacement and is the cam rotation. The rise is 1.0 cm after<br />

1.0 radian of rotation, and the rise begins and ends at a dwell. The displacement equation for the<br />

follower during the rise period is<br />

n<br />

i<br />

<br />

s = h Ci <br />

<br />

<br />

<br />

<br />

i =0<br />

If the position, velocity, and acceleration are continuous at = 0, and the position and velocity are<br />

continuous at = 1.0 rad, determine the value of n required in the equation, and find the coefficients<br />

Ci if ˙ = 2 rad/s. Note: Use the minimum possible number of terms.<br />

Solution:<br />

Dwell<br />

1.0<br />

S<br />

Β<br />

Α 1.0<br />

- 346 -<br />

Dwell<br />

First determine the number of terms required. There are a total of five conditions to match;<br />

therefore, the number of terms is 5 making n = 4.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

=<br />

d2s<br />

= 0<br />

d d2<br />

At = , s = h = 1.0<br />

ds<br />

= 0<br />

d<br />

Now,<br />

s = Ci <br />

<br />

<br />

<br />

n i<br />

= C0 +C1<br />

<br />

<br />

<br />

<br />

<br />

+ C2<br />

<br />

<br />

<br />

<br />

<br />

2<br />

+C3<br />

<br />

<br />

<br />

<br />

<br />

3<br />

+ C4<br />

<br />

<br />

<br />

<br />

<br />

4<br />

<br />

<br />

and<br />

i=0<br />

ds<br />

d = C1 + 2C2 <br />

<br />

<br />

<br />

+<br />

<br />

3C3 <br />

<br />

<br />

<br />

<br />

<br />

d2s<br />

d 2 = 2C 2<br />

2 + 6C3 2<br />

2<br />

<br />

<br />

<br />

<br />

+<br />

<br />

12C4 <br />

<br />

2 <br />

<br />

<br />

<br />

+ 4C 4<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

θ, rad


Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

ds<br />

d = C 1<br />

C1 = 0<br />

d2s<br />

d 2 = 2C 2<br />

2 = 0 C2 = 0<br />

Applying the conditions at = ,<br />

or<br />

s = C3 <br />

<br />

3<br />

<br />

<br />

ds<br />

d = 3C3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

3C3 + 4C4 = 0<br />

4<br />

<br />

+C4 <br />

<br />

<br />

<br />

<br />

2<br />

+ 4C 4<br />

<br />

Solving for the constants,<br />

and<br />

C3 = 4<br />

C4 = 3<br />

Therefore,<br />

s = 4 <br />

<br />

<br />

<br />

<br />

Problem 8.10<br />

3<br />

<br />

4<br />

<br />

3 <br />

<br />

<br />

<br />

<br />

= C3 + C4 =1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

= 3C3 + 4C4 = 0<br />

<br />

Resolve Problem 8.9 if = 0.8 rad and ˙<br />

= 200 rad/s.<br />

Solution:<br />

First determine the number of terms required. There are a total of five conditions to match;<br />

therefore, the number of terms is 5 making n = 4.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

=<br />

d2s<br />

= 0<br />

d d2<br />

At = , s = h = 1.0<br />

- 347 -


Now,<br />

and<br />

ds<br />

= 0<br />

d<br />

s = Ci <br />

n i<br />

<br />

= C0 +C1<br />

<br />

i= 0<br />

<br />

<br />

ds C1 2C2 <br />

= +<br />

d <br />

d2s 2C2 6C3<br />

d 2 =<br />

2 +<br />

2<br />

+ 3C3<br />

<br />

<br />

+C2<br />

<br />

<br />

<br />

2<br />

<br />

<br />

+12C4<br />

<br />

<br />

2<br />

Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

ds C1<br />

=<br />

d C1 = 0<br />

d2s 2C2<br />

d 2 =<br />

2 = 0 C2 = 0<br />

Applying the conditions at = ,<br />

or<br />

s = C3 <br />

3<br />

<br />

+ C4 <br />

4<br />

<br />

<br />

ds 3C3<br />

=<br />

d <br />

<br />

<br />

3C3 + 4C4 = 0<br />

2<br />

<br />

+ 4C4<br />

<br />

Solving for the constants,<br />

and<br />

C3 = 4<br />

C4 = 3<br />

Therefore,<br />

s = 4 <br />

<br />

3<br />

3 <br />

<br />

4<br />

+ 4C4<br />

<br />

2<br />

= C3 +C4 =1<br />

<br />

<br />

3<br />

= 3C3<br />

<br />

2<br />

+C3 <br />

<br />

<br />

<br />

+ 4C4<br />

<br />

3<br />

= 0<br />

- 348 -<br />

3<br />

+C4 <br />

<br />

Notice that this solution is EXACTLY the same as that for 8.9. The results are independent of both<br />

and ˙ . This is one of the reasons for normalizing the problem with respect to .<br />

4


Problem 8.11<br />

For the cam displacement schedule given, h is the rise, is the angle through which the rise takes<br />

place, and s is the displacement at any given angle . The displacement equation for the follower<br />

during the rise period is<br />

5<br />

i<br />

<br />

s = h ai <br />

<br />

<br />

<br />

<br />

i =0<br />

Determine the required values for a 0 ... a 5 such that the displacement, velocity, and acceleration<br />

functions are continuous at the end points of the rise portion.<br />

Solution:<br />

Dwell<br />

h<br />

Α<br />

S<br />

Β<br />

β<br />

- 349 -<br />

Dwell<br />

θ, rad<br />

There are a total of six conditions to match; therefore, the number of terms is 6 making n = 5.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

=<br />

d2s<br />

= 0<br />

d d2<br />

At = , s = h<br />

and<br />

ds<br />

=<br />

d2s<br />

= 0<br />

d d 2<br />

Now,<br />

s = h Ci <br />

<br />

<br />

<br />

n i<br />

= hC0 +C1<br />

<br />

<br />

<br />

<br />

<br />

+ C2<br />

<br />

<br />

<br />

<br />

<br />

2<br />

+C3<br />

<br />

<br />

<br />

<br />

<br />

3<br />

+ C4<br />

<br />

<br />

<br />

<br />

<br />

4<br />

+ C5<br />

<br />

<br />

<br />

<br />

<br />

<br />

5<br />

<br />

<br />

<br />

<br />

<br />

<br />

and<br />

i=0<br />

ds<br />

d = h C1 + 2C2 <br />

<br />

<br />

<br />

+<br />

<br />

3C3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

d2s<br />

d 2 = h 2C <br />

2<br />

<br />

<br />

2 + 6C3 2<br />

2<br />

<br />

<br />

<br />

<br />

+<br />

<br />

12C4 <br />

<br />

2 <br />

<br />

<br />

<br />

+ 4C 4<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

+ 20C 5<br />

2<br />

3<br />

+ 5C5 <br />

<br />

<br />

<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3


Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

ds<br />

d = h C 1<br />

C1 = 0<br />

d2s<br />

d 2 = h 2C 2<br />

2 = 0 C2 = 0<br />

Applying the conditions at = ,<br />

or<br />

or<br />

or<br />

s = hC3 <br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

C3 + C4 +C5 =1<br />

ds<br />

d = h 3C3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

+C4 <br />

<br />

<br />

<br />

<br />

3C3 + 4C4 +5C5 = 0<br />

2<br />

+ 4C 4<br />

<br />

4<br />

+ C5 <br />

d2s<br />

d 2 = h 6C3 <br />

<br />

<br />

2 <br />

<br />

+<br />

<br />

12C4 <br />

<br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

6C3 +12C4 + 20C5 = 0<br />

Solving for the constants,<br />

C3 =10; C4 = 15; C5 = 6<br />

Therefore,<br />

s = h 10 <br />

<br />

<br />

<br />

3<br />

15<br />

<br />

<br />

<br />

<br />

<br />

4<br />

+ 6<br />

<br />

<br />

<br />

<br />

<br />

<br />

5<br />

<br />

<br />

<br />

<br />

<br />

<br />

Problem 8.12<br />

<br />

<br />

<br />

5<br />

<br />

<br />

= hC3 [ + C4 + C5]=h<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

= h<br />

<br />

3C3 + 4C4 + 5C <br />

5<br />

<br />

<br />

= 0<br />

2<br />

+ 20C 5<br />

2<br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

= h<br />

<br />

6C 3<br />

<br />

Resolve Problem 8.11 if h = 20 mm and = 120˚.<br />

Solution:<br />

- 350 -<br />

2 +12C4 2 + 20C5 2<br />

<br />

<br />

= 0<br />

There are a total of six conditions to match; therefore, the number of terms is 6 making n = 5.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

d = d2s d2 = 0


At = , s = h<br />

and<br />

ds<br />

d = d2s d 2 = 0<br />

Now,<br />

s = h Ci <br />

n<br />

<br />

<br />

and<br />

i<br />

= hC0 + C1<br />

i= 0<br />

<br />

2<br />

<br />

+ C2 + C3<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

ds C1<br />

= h<br />

d<br />

<br />

<br />

<br />

+ 2C2<br />

<br />

<br />

<br />

<br />

d2s 2C2 6C3<br />

d 2 = h<br />

2 +<br />

2<br />

<br />

<br />

<br />

+ 3C3<br />

<br />

<br />

<br />

Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

ds C1<br />

= h<br />

d C1 = 0<br />

d2s 2C2<br />

d 2 = h<br />

2 = 0 C2 = 0<br />

Applying the conditions at = _<br />

or<br />

or<br />

or<br />

s = hC3 <br />

<br />

<br />

3<br />

C3 +C4 +C5 = 1<br />

ds 3C3<br />

= h<br />

d<br />

<br />

<br />

<br />

<br />

<br />

+C4 <br />

<br />

3C3 + 4C4 +5C5 = 0<br />

d2s 6C3<br />

d 2 = h<br />

2<br />

<br />

<br />

<br />

2<br />

+ 4C4<br />

<br />

<br />

<br />

+ 12C4<br />

2<br />

2<br />

+ 4C4<br />

<br />

<br />

<br />

4<br />

+ C5 <br />

5<br />

<br />

3<br />

<br />

<br />

+12C4<br />

<br />

<br />

6C3 +12C4 + 20C5 = 0<br />

Solving for the constants,<br />

2<br />

<br />

2<br />

<br />

3C3<br />

<br />

= h<br />

<br />

<br />

2<br />

+ 20C5<br />

2<br />

<br />

<br />

+ 20C5<br />

2<br />

3<br />

- 351 -<br />

+ 5C5<br />

<br />

3<br />

<br />

<br />

<br />

<br />

+C4 <br />

<br />

<br />

<br />

<br />

<br />

= hC3 [ +C4 + C5 ]= h<br />

+ 4C4<br />

<br />

<br />

<br />

3<br />

+ 5C5<br />

<br />

6C3<br />

= h<br />

<br />

<br />

4<br />

<br />

<br />

= 0<br />

<br />

<br />

<br />

2 +12C4<br />

4<br />

+ C5 <br />

5<br />

<br />

<br />

<br />

20C5<br />

2 +<br />

2<br />

<br />

<br />

= 0


C3 =10; C4 = 15; C5 = 6<br />

Therefore,<br />

s = h 10 <br />

<br />

<br />

3<br />

15 <br />

<br />

If h=20 mm and = 120˚, then,<br />

( ) 3<br />

s = 20 10 <br />

<br />

120<br />

4<br />

15 ( 120)<br />

4<br />

+6 <br />

<br />

5<br />

<br />

<br />

<br />

( ) 5<br />

+6 <br />

120<br />

<br />

<br />

<br />

Here, is assumed to be given in degrees. Note that the values for h and do not enter the<br />

problem until the last step.<br />

Problem 8.13<br />

Resolve Problem 8.11 if h = 2 in and = 90˚.<br />

Solution:<br />

There are a total of six conditions to match; therefore, the number of terms is 6 making n = 5.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

d = d2s d2 = 0<br />

At = , s = h<br />

and<br />

ds<br />

d = d2s d 2 = 0<br />

Now,<br />

s = h Ci <br />

n<br />

<br />

<br />

and<br />

i<br />

= hC0 + C1<br />

i= 0<br />

<br />

2<br />

<br />

+ C2 + C3<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

ds C1<br />

= h<br />

d<br />

<br />

<br />

<br />

+ 2C2<br />

<br />

<br />

<br />

<br />

d2s 2C2 6C3<br />

d 2 = h<br />

2 +<br />

2<br />

<br />

<br />

<br />

+ 3C3<br />

<br />

<br />

<br />

Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

<br />

<br />

+ 12C4<br />

2<br />

2<br />

+ 4C4<br />

<br />

<br />

<br />

2<br />

<br />

<br />

+ 20C5<br />

2<br />

3<br />

- 352 -<br />

+ 5C5<br />

<br />

3<br />

<br />

<br />

<br />

<br />

+C4 <br />

<br />

<br />

<br />

4<br />

<br />

<br />

<br />

4<br />

+ C5 <br />

5


ds C1<br />

= h<br />

d C1 = 0<br />

d2s 2C2<br />

d 2 = h<br />

2 = 0 C2 = 0<br />

Applying the conditions at = _<br />

or<br />

or<br />

or<br />

s = hC3 <br />

<br />

<br />

3<br />

C3 +C4 +C5 = 1<br />

ds 3C3<br />

= h<br />

d<br />

<br />

<br />

<br />

<br />

<br />

+C4 <br />

<br />

3C3 + 4C4 +5C5 = 0<br />

d2s 6C3<br />

d 2 = h<br />

2<br />

<br />

<br />

<br />

2<br />

+ 4C4<br />

<br />

4<br />

+ C5 <br />

5<br />

<br />

3<br />

<br />

<br />

+12C4<br />

<br />

<br />

6C3 +12C4 + 20C5 = 0<br />

Solving for the constants,<br />

2<br />

C3 =10; C4 = 15; C5 = 6<br />

Therefore,<br />

s = h 10 <br />

<br />

<br />

3<br />

15 <br />

<br />

If h=2 in and = 90˚, then,<br />

( ) 3<br />

s = 210 <br />

<br />

90<br />

4<br />

15 ( 90)<br />

4<br />

<br />

<br />

3C3<br />

<br />

= h<br />

<br />

<br />

2<br />

+6 <br />

<br />

+ 20C5<br />

2<br />

5<br />

( ) 5<br />

+6 <br />

90<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= hC3 [ +C4 + C5 ]= h<br />

+ 4C4<br />

<br />

<br />

<br />

3<br />

- 353 -<br />

+ 5C5<br />

<br />

6C3<br />

= h<br />

<br />

<br />

<br />

<br />

= 0<br />

2 +12C4<br />

20C5<br />

2 +<br />

2<br />

<br />

<br />

= 0<br />

Here, is assumed to be given in degrees. Note that the values for h and do not enter the<br />

problem until the last step.


Problem 8.14<br />

Assume that s is the cam-follower displacement and is the cam rotation. The rise is h after <br />

degrees of rotation, and the rise begins at a dwell and ends with a constant velocity segment. The<br />

displacement equation for the follower during the rise period is<br />

n<br />

i<br />

<br />

s = h Ci <br />

<br />

<br />

<br />

<br />

i =0<br />

If the position, velocity, and acceleration are continuous at = 0 and the position and velocity are<br />

continuous at = , determine the n required in the equation, and find the coefficients C i that will<br />

satisfy the requirements if s = h = 1.0.<br />

Solution:<br />

Dwell<br />

S<br />

β<br />

First determine the number of terms required. There are a total of five conditions to match;<br />

therefore, the number of terms is 5 making n = 4.<br />

The conditions to match are:<br />

At = 0 , s = ds<br />

=<br />

d2s<br />

= 0<br />

d d2<br />

At = , s = h = 1.0<br />

ds<br />

= tan45˚=1.0<br />

d<br />

Now,<br />

s = Ci <br />

<br />

<br />

<br />

n i<br />

= C0 +C1<br />

<br />

<br />

<br />

<br />

<br />

+ C2<br />

<br />

<br />

<br />

<br />

<br />

2<br />

+C3<br />

<br />

<br />

<br />

<br />

<br />

3<br />

+ C4<br />

<br />

<br />

<br />

<br />

<br />

4<br />

<br />

<br />

i=0<br />

- 354 -<br />

h<br />

45˚<br />

θ


and<br />

ds<br />

d = C1 + 2C2 <br />

<br />

<br />

<br />

+<br />

<br />

3C3 <br />

<br />

<br />

<br />

<br />

<br />

d2s<br />

d 2 = 2C 2<br />

2 + 6C3 2<br />

2<br />

<br />

<br />

<br />

<br />

+<br />

<br />

12C4 <br />

<br />

2 <br />

<br />

<br />

<br />

Applying the conditions at = 0 ,<br />

s = C0 = 0<br />

ds<br />

d = C 1<br />

C1 = 0<br />

d2s<br />

d 2 = 2C 2<br />

2 = 0 C2 = 0<br />

Applying the conditions at = ,<br />

or<br />

s = C3 <br />

<br />

3<br />

<br />

<br />

ds<br />

d = 3C3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

3C3 + 4C4 = <br />

4<br />

<br />

+C4 <br />

<br />

<br />

<br />

<br />

2<br />

+ 4C 4<br />

<br />

Solving for the constants,<br />

and<br />

C3 = 4 <br />

C4 = 3<br />

Therefore,<br />

s =(4 ) <br />

<br />

<br />

<br />

<br />

Problem 8.15<br />

3<br />

<br />

+ 4C 4<br />

<br />

2<br />

= C3 + C4 =1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

+( 3) <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

= 3C 3<br />

+ 4C 4<br />

=1<br />

4<br />

<br />

A follower moves with simple harmonic motion a distance of 20 mm in 45˚ of cam rotation. The<br />

follower then moves 20 mm more with cycloidal motion to complete its rise. The follower then<br />

dwells and returns 25 mm with cycloidal motion and then moves the remaining 15 mm with<br />

harmonic motion in 45˚. Find the intervals of cam rotation for the cycloidal motions and dwell by<br />

matching velocities and accelerations, then determine the equations for the displacement (S) as a<br />

function of for the entire motion cycle.<br />

Solution:<br />

- 355 -


This is a curve matching problem. To begin the problem, consider the equations for harmonic and<br />

cycloidal motions:<br />

Harmonic:<br />

y = L<br />

2<br />

Cycloidal:<br />

<br />

1cos<br />

<br />

y'= L<br />

2 sin<br />

<br />

<br />

y"= 2L <br />

22 cos<br />

<br />

y = L 1 2 <br />

sin<br />

2 <br />

y'= L 1 1 2<br />

cos<br />

<br />

y"= L 2 2 <br />

2 sin<br />

<br />

<br />

<br />

<br />

For both the harmonic and cycloidal motions, we must determine L and . There are a total of four<br />

curves, so we need to determine four L’s and four ’s The geometry is shown in the following<br />

figure.<br />

Follower Travel<br />

Cycloidal Curve<br />

45˚<br />

2<br />

1<br />

Harmonic Curve<br />

20<br />

20<br />

25<br />

- 356 -<br />

15<br />

Harmonic Curve<br />

Cycloidal Curve<br />

We can treat the rise and return separately, and then determine the dwell to ensure that there is a full<br />

cycle of motion.<br />

3<br />

4<br />

45˚


For the rise section, assume that the harmonic curve is half-harmonic, and the cycloidal curve is half<br />

cycloidal. This will allow us to match the curves at their inflections points and will ensure curvature<br />

continuity. For the harmonic curve,<br />

and<br />

2 = <br />

2<br />

L2 = 40<br />

Therefore, the harmonic curve is<br />

y = L 40<br />

1cos = ( 1 cos2 )= 20( 1 cos2)<br />

2 2<br />

The slope equation is<br />

y'= L<br />

2 sin<br />

<br />

<br />

1<br />

= Lsin2 ( )<br />

Or the cycloidal curve,<br />

L1 = 40<br />

and<br />

y = L1 1 1 21 1 1 21 <br />

sin = 40 sin<br />

2 2 <br />

1<br />

The slope equation is<br />

y'= L1 1 1 21 <br />

cos<br />

1 1 1 <br />

To find 1, equate the slopes at the midpoint, then,<br />

y'= L2 sin2 2 1 1 2 1<br />

2 <br />

= L1 cos<br />

1 1 1 2 <br />

or<br />

or<br />

40( sin2 )= 40 1 1<br />

<br />

1 cos<br />

<br />

<br />

<br />

<br />

sin ( 2)<br />

1<br />

1<br />

1 1<br />

= <br />

1 cos<br />

<br />

<br />

<br />

<br />

Then,<br />

2<br />

1 =1<br />

or<br />

1 = 2<br />

The rise part of the curve is given by,<br />

For < <br />

4<br />

1<br />

1<br />

- 357 -


y = 20( 1 cos2 )<br />

The cycloidal curve starts at<br />

= (2 1)/2 = ( 2<br />

2 )/ 2 = 0.2146<br />

Therefore,<br />

1 = + 0.2146<br />

<br />

< <<br />

1<br />

+<br />

Then for <br />

<br />

4 4 2 <br />

y = 40 1 1 21<br />

[ + 0.2146]<br />

sin = 40 <br />

2 2<br />

1<br />

<br />

sin[ +0.2146]<br />

<br />

<br />

2 <br />

1<br />

1<br />

The angular distance to the dwell is<br />

= 1<br />

+<br />

2<br />

4 2 <br />

= ( +<br />

4 2)=1+<br />

<br />

4<br />

For the return, use the same procedure. The harmonic part of the return is given by<br />

y4 = L4 <br />

1+ cos4<br />

2 <br />

4<br />

Where<br />

L4 = 2(15) = 30<br />

and<br />

4 = <br />

2<br />

Therefore,<br />

y4 =15( 1+ cos24 )<br />

For the cycloidal curve,<br />

y3 = L3 L3 3 1 23<br />

sin<br />

2 <br />

Where<br />

3<br />

3<br />

L3 = 2(25) = 50<br />

To determine 3, equate the slopes for the two curves at their midpoints. Then,<br />

or<br />

y'4 = L4 <br />

sin<br />

24 4<br />

30 sin ( 2)<br />

Solving for 3,<br />

Or<br />

2<br />

3<br />

= 3<br />

5<br />

3<br />

4<br />

2<br />

<br />

= y'3 = L3 1 <br />

<br />

1 1<br />

= 50 <br />

3 cos<br />

<br />

<br />

<br />

<br />

3<br />

1<br />

3<br />

- 358 -<br />

cos 2<br />

3<br />

3<br />

2


3 = 10<br />

3<br />

The cycloidal part of the curve will start at<br />

= 2 ( 3 +4 )/ 2<br />

Therefore, the dwell period will be<br />

1<br />

+<br />

<br />

4 2 < < 2 3 ( +4 )/ 2<br />

And the dwell distance will b,<br />

y = 40<br />

The cycloidal part of the curve occurs when<br />

2 ( 3 +4 )/ 2 < < 2 3 / 2<br />

And<br />

<br />

y3 = L3 L3 3<br />

3<br />

1 23<br />

sin<br />

2 <br />

The curve will be shifted because L3 is 50. Therefore,<br />

3<br />

3<br />

y = y3 10 = L3 L3 3 1 23<br />

sin<br />

2 10<br />

The second harmonic part of the curve occurs when<br />

And<br />

2 3 / 2 < < 2<br />

y4 = L4<br />

2<br />

<br />

1+ cos<br />

<br />

4<br />

The displacement diagram is shown in the following:<br />

3<br />

- 359 -


Normalized Follower Displacement, Velocity, and Acceleration<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Problem 8.16<br />

Position, max value is: 40<br />

Velocity, max value is: 40 ( )<br />

Acceleration, max value is: 80 ( 2 )<br />

Follower Displacement, Velocity, and Acceleration Diagrams<br />

TextEnd<br />

0 50 100 150 200 250 300 350<br />

Cam Angle<br />

Construct the part of the profile of a disk cam that follows the displacement diagram shown below.<br />

The cam has a 5-cm-diameter pitch circle and is rotating counterclockwise. The follower is a knifeedged,<br />

radial, translating follower. Use 10-degree increments for the construction.<br />

Solution:<br />

Displacement, cm<br />

1.5<br />

1.0<br />

0.5<br />

0˚<br />

45˚ 90˚<br />

Cam Rotation Angle<br />

Start by subdividing the follower diagram into 10˚ increments of cam rotation. Next draw the cam<br />

pitch circle and lay off radial lines in the clockwise direction. The follower displacements can then<br />

be taken directly from the displacement diagram. Use a smooth curve to draw the cam profile.<br />

- 360 -


Problem 8.17<br />

Displacement, cm<br />

1.5<br />

1.0<br />

0.5<br />

0 1 2 3 4 5 6 7 8 9 10<br />

10<br />

Cam Rotation Angle<br />

Pitch<br />

Circle<br />

9<br />

Construct the profile of a disk cam that follows the displacement diagram shown below. The<br />

follower is a radial roller and has a diameter of 10 mm. The base circle diameter of the cam is to be<br />

40 mm and the cam rotates clockwise.<br />

Solution:<br />

Follower Travel, mm<br />

30<br />

15<br />

- 361 -<br />

8<br />

0 0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 360˚<br />

Cam Rotation<br />

7<br />

6<br />

5<br />

4<br />

3<br />

1<br />

2<br />

0<br />

90˚


Use the follower diagram subdivisions of 20˚. Next draw the cam pitch circle and lay off radial<br />

lines in the counterclockwise direction. The follower displacements can then be taken directly from<br />

the displacement diagram. Draw the pitch curve. Draw the cam follower circles on the pitch curve.<br />

Use a smooth curve to draw the cam profile tangent to the follower circles.<br />

Problem 8.18<br />

Prime Curve<br />

9<br />

8<br />

10<br />

7<br />

6<br />

Prime Circle<br />

Base Circle<br />

11<br />

Cam<br />

12<br />

Accurately sketch one half of the cam profile (stations 0-6) for the cam follower, base circle, and<br />

displacement diagram given below. The base circle diameter is 1.2 in.<br />

<br />

<br />

Base Circle<br />

- 362 -<br />

Total Follow Travel<br />

5<br />

13<br />

1.0<br />

14<br />

4<br />

15<br />

3<br />

16<br />

2<br />

17<br />

0 1 2 3 4 5 6 7<br />

11 10 9 8<br />

Station Point<br />

Numbers<br />

1<br />

0


Solution:<br />

First draw the displacement schedule to scale, and divide the cam into 12 equal sections. The cam is<br />

rotating in the clockwise direction so that the cam is layed out in the counterclockwise direction.<br />

Then draw the locations of the follower. The cam profile is then drawn such that the cam is tangent<br />

to the follower in the different positions. The cam is drawn as follows:<br />

Problem 8.19<br />

5<br />

4<br />

6<br />

7<br />

8<br />

- 363 -<br />

3<br />

2<br />

1<br />

12<br />

11<br />

9 10<br />

Lay out a cam profile using a harmonic follower displacement (both rise and return). Assume that<br />

the cam is to dwell at zero lift for the first 100˚ of the motion cycle and to dwell at a 1 in lift for cam<br />

angles from 160˚ to 210˚. The cam is to have a translating, radial, roller follower with a 1-in roller<br />

diameter, and the base circle radius is to be 1.5 in. The cam will rotate clockwise. Lay out the cam<br />

profile using 20˚ plotting intervals.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 in a spreadsheet<br />

or MATLAB program. The profile equations are:<br />

For 0 100˚<br />

y=0<br />

For 100˚ 160˚<br />

y = L <br />

<br />

1 cos <br />

2 <br />

where L = 1, = 100˚, and =160˚100˚= 60˚.<br />

For 160˚ 210˚<br />

y=1


For 210˚ 360˚<br />

y = L 1+ cos <br />

<br />

2 <br />

where L = 1, = 210˚, and = 360˚210˚=150˚<br />

The displacement diagram is given below followed by a table of values for y at 20˚ increments of .<br />

Theta Displacement<br />

0.000 0.000<br />

20.000 0.000<br />

40.000 0.000<br />

60.000 0.000<br />

80.000 0.000<br />

100.000 0.000<br />

120.000 0.250<br />

140.000 0.750<br />

160.000 1.000<br />

180.000 1.000<br />

200.000 1.000<br />

220.000 0.989<br />

240.000 0.905<br />

260.000 0.750<br />

280.000 0.552<br />

300.000 0.345<br />

320.000 0.165<br />

340.000 0.043<br />

360.000 0.000<br />

To lay out the cam, first draw the prime circle which has a radius of 1.5" + 0.5" = 2.0". Then lay<br />

off radial lines at 20˚ increments and label the lines in the counterclockwise direction. Draw circle<br />

arcs corresponding to the two dwells and lay off the distances for the other displacements along the<br />

other radial lines. Draw 1" diameter circles through the endponts of the distances layed off along<br />

the radial lines, and fit a smooth curve which is tangent to the circles corresponding to the roller<br />

follower.<br />

- 364 -


Problem 8.20<br />

160˚<br />

200˚<br />

220˚<br />

140˚<br />

240˚<br />

120˚<br />

100˚<br />

260˚ 280˚<br />

- 365 -<br />

300˚<br />

320˚<br />

0˚<br />

340˚<br />

1 inch<br />

Prime circle<br />

Lay out a cam profile using a cycloidal follower displacement (both rise and return) if the cam is to<br />

dwell at zero lift for the first 80˚ of the motion cycle and to dwell at 2-in lift for cam angles from<br />

120˚ to 190˚. The cam is to have a translating, radial, roller follower with a roller diameter of 0.8 in.<br />

The cam will rotate counterclockwise, and the base circle diameter is 2 in. Lay out the cam profile<br />

using 20˚ plotting intervals.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 in a spreadsheet<br />

or MATLAB program. The profile equations are:<br />

For 0 80˚<br />

y=0<br />

For 80˚ 120˚<br />

y = L <br />

<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

where L = 2, = 80˚, and =120˚80˚= 40˚.<br />

For 120˚ 190˚<br />

y=2<br />

For 190˚ 360˚


y = L 1 <br />

+<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

where L = 2, = 190˚, and = 360˚190˚=170˚<br />

The displacement diagram is given below followed by a table of values for y at 20˚ increments of .<br />

Theta Displacement<br />

0.000 0.000<br />

20.000 0.000<br />

40.000 0.000<br />

60.000 0.000<br />

80.000 0.000<br />

100.000 1.000<br />

120.000 2.000<br />

140.000 2.000<br />

160.000 2.000<br />

180.000 2.000<br />

200.000 1.997<br />

220.000 1.932<br />

240.000 1.718<br />

260.000 1.344<br />

280.000 0.883<br />

300.000 0.452<br />

320.000 0.154<br />

340.000 0.021<br />

360.000 0.000<br />

To lay out the cam, first draw the prime circle which has a radius of 1.0" + 0.4" = 1.4". Then lay<br />

off radial lines at 20˚ increments and label the lines in the clockwise direction. Draw circle arcs<br />

corresponding to the two dwells and lay off the distances for the other displacements along the<br />

other radial lines. Draw 0.8" diameter circles through the endponts of the distances layed off along<br />

the radial lines, and fit a smooth curve which is tangent to the circles corresponding to the roller<br />

follower.<br />

Notice the poor pressure angles in the range 80˚120˚. This would probably make the cam<br />

unacceptable.<br />

- 366 -


Problem 8.21<br />

180˚<br />

200˚<br />

220˚<br />

Prime circle<br />

240˚<br />

120˚<br />

100˚<br />

Lay out a cam profile assuming that an oscillating, roller follower starts from a dwell for 0˚ to 140˚<br />

of cam rotation, and the cam rotates clockwise. The rise occurs with parabolic motion during the<br />

cam rotation from 140˚ to 220˚. The follower then dwells for 40˚ of cam rotation, and the return<br />

occurs with parabolic motion for the cam rotation from 260˚ to 360˚. The amplitude of the follower<br />

rotation is 35˚, and the follower radius is 1 in. The base circle radius is 2 in, and the distance<br />

between the cam axis and follower rotation axis is 4 in. Lay out the cam profile using 20˚ plotting<br />

intervals such that the pressure angle is 0 when the follower is in the bottom dwell position.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 using a<br />

spreadsheet or MATLAB program. Remember that the parabolic motion is represented by two<br />

curves in each rise and return region. The curves are matched at the midpoints of the rise and<br />

return. The profile equations are:<br />

For 0 140˚<br />

= 0<br />

For the first part of the rise, 140˚ 180˚ , and<br />

= 2L <br />

<br />

<br />

<br />

2<br />

<br />

<br />

where L = 35˚, = 140˚, and = 220˚140˚= 80˚.<br />

For the second part of the rise, 180˚ 220˚ , and<br />

260˚<br />

- 367 -<br />

80˚<br />

280˚<br />

300˚<br />

320˚<br />

340˚<br />

0˚<br />

1 inch


= L 12 1 <br />

2<br />

<br />

<br />

<br />

where L = 35˚, = 140˚, and = 220˚140˚= 80˚.<br />

For 220˚ 260˚<br />

= 35˚<br />

For the first part of the return, 260˚ 310˚, and<br />

= L 12 <br />

<br />

<br />

2<br />

<br />

<br />

<br />

<br />

where L = 35˚, = 260˚, and = 360˚260˚=100˚<br />

For the second part of the return, 310˚ 360˚, and<br />

= 2L 1 <br />

<br />

2<br />

where L = 35˚, = 260˚, and = 360˚260˚=100˚<br />

The displacement diagram is given below followed by a table of values for at 20˚ increments of<br />

.<br />

0.000 0.000<br />

20.000 0.000<br />

40.000 0.000<br />

60.000 0.000<br />

80.000 0.000<br />

100.000 0.000<br />

120.000 0.000<br />

140.000 0.000<br />

Theta Follower Angle<br />

- 368 -<br />

160.000 4.375<br />

180.000 17.500<br />

200.000 30.625<br />

220.000 35.000<br />

240.000 35.000<br />

260.000 35.000<br />

280.000 32.200<br />

300.000 23.800


320.000 11.200<br />

340.000 2.800<br />

- 369 -<br />

360.000 0.000<br />

To lay out the cam, first draw the prime circle which has a radius of 2.0" + 1.0" = 3.0". Next draw<br />

the pivot circle for the follower pivot. The radius of the pivot circle is 4". Draw the follower in the<br />

initial position ( = 0˚ ) to determine the follower length (r3) and the position on the pivot circle<br />

corresponding to = 0˚ . As indicated in Example 8.5, the length r3 is given by<br />

r3 = r1 2 (rb +r0) = 4 2 (2 +1) 2 = 2.646"<br />

Identify the point on the pivot circle corresponding to = 0˚ , lay off the radial lines at 20˚<br />

increments from this point, and label the lines in the counterclockwise direction. Draw lines from<br />

the intersections of the radal lines with the pivot circle tangent to the prime circle. Then lay off the<br />

angular displacements from these tangent lines. Locate the center of the follower by the distance r3<br />

from the pivot circle along these lines. Draw 1" radius circles through the endponts of the distances<br />

layed off along these lines, and fit a smooth curve which is tangent to the circles corresponding to<br />

the roller follower.<br />

The cam profile is shown in the following figure.


220˚<br />

240˚<br />

Problem 8.22<br />

200˚<br />

260˚<br />

180˚<br />

280˚<br />

160˚<br />

300˚<br />

140˚<br />

- 370 -<br />

320˚<br />

120˚<br />

340˚<br />

0˚<br />

100˚<br />

80˚<br />

20˚<br />

1 inch<br />

Lay out the rise portion of the cam profile if a flat-faced, translating, radial follower's motion is<br />

uniform. The total rise is 1.5 in, and the rise occurs over 100˚ of can rotation. The follower dwells<br />

for 90˚ of cam rotation prior to the beginning of the rise, and dwells for 80˚ of cam rotation at the<br />

end of the rise. The cam will rotate counterclockwise, and the base circle radius is 3 in.<br />

Solution:<br />

The displacement profile can be easily computed using the equations in Chapter 8 in a spreadsheet<br />

or MATLAB program. The profile equations are:<br />

For 0 90˚<br />

s = 0<br />

60˚<br />

40˚


For 90˚ 190˚ ,<br />

s = L<br />

<br />

where L = 1.5, = 90˚, and =190˚90˚=100˚.<br />

For 190˚ 270˚ ,<br />

s = 1.5<br />

For 270˚ 360˚<br />

s = L 1 <br />

<br />

<br />

<br />

where L = 1.5, = 270˚, and = 360˚270˚= 90˚<br />

The displacement diagram is given below followed by a table of values for at 20˚ increments of<br />

.<br />

0.000 0.000<br />

20.000 0.000<br />

40.000 0.000<br />

60.000 0.000<br />

80.000 0.000<br />

100.000 0.150<br />

120.000 0.450<br />

140.000 0.750<br />

160.000 1.050<br />

180.000 1.350<br />

200.000 1.500<br />

220.000 1.500<br />

240.000 1.500<br />

260.000 1.500<br />

280.000 1.333<br />

300.000 1.000<br />

320.000 0.667<br />

340.000 0.333<br />

360.000 0.000<br />

Theta Follower Angle<br />

- 371 -


We will lay out only the rise portion of the cam. To lay out the cam, first draw the base circle which<br />

has a radius of 3". Then lay off radial lines at 20˚ increments and label the lines in the clockwise<br />

direction. Draw circle arcs corresponding to the two dwells and lay off the distances for the other<br />

displacements along the other radial lines. Then lay off the distances from the base circle along the<br />

radial lines. Draw a line perpendicular to the offset lines at the indicated distance from the base<br />

circle. Finally fit a smooth curve tangent to the positions of the follower face indicated by the<br />

perpendicular lines. The dwells and rise part of the resulting cam are shown below.<br />

180˚<br />

160˚<br />

200˚<br />

140˚<br />

220˚<br />

120˚<br />

240˚<br />

100˚<br />

- 328 -<br />

260˚ 280˚<br />

80˚<br />

60˚<br />

1 inch<br />

40˚<br />

0˚<br />

20˚


Problem 8.23<br />

In the sketch shown, the disk cam is used to position the radial flat-faced follower in a computing<br />

mechanism. The cam profile is to be designed to give a follower displacement S for a<br />

counterclockwise cam rotation according to the function S = k 2 starting from dwell. For 60˚ of<br />

cam rotation from the starting position, the lift of the follower is 1.0 cm. By analytical methods,<br />

determine the distances R and L when the cam has been turned 45˚ from the starting position. Also<br />

calculate whether cusps in the cam profile would occur in the total rotation of 60˚.<br />

Solution:<br />

Starting Position<br />

Dwell<br />

<br />

ω<br />

2.5 cm radius<br />

Spring<br />

S<br />

- 329 -<br />

R<br />

<br />

<br />

θ<br />

L<br />

Point of<br />

Contact<br />

Find k first given the values of S and at the given point. Note that must be converted to radians<br />

to ensure consistent units.<br />

S = k 2<br />

Therefore,<br />

k = S 2 =<br />

1<br />

2 = 0.9119<br />

[ /3]<br />

Now,<br />

R = rb + S = rb + k 2 = 2.5+ 0.9119 2<br />

Where rb is the radius of the base circle. Also,<br />

At = 4 ,<br />

and<br />

L = dR<br />

= 2k = 2(0.9119) = 1.8238<br />

d<br />

R = 2.5+ 0.91192 = 2.5 +0.9119 ( 4 ) 2<br />

= 3.063 cm


L =1.8238 =1.8238 ( 4 ) =1.432 cm<br />

Cusps will not occur if<br />

or<br />

rb + S + d2S<br />

0<br />

d2<br />

rb + S +2k 0<br />

Because,<br />

(2.5+ S +1.18238 = 3.6824 + S) 0<br />

and S is positive for all , there are no cusps for any value of .<br />

Problem 8.24<br />

Determine the cam profile assuming that the translating cylindrical-faced follower starts from a<br />

dwell from 0˚ to 80˚, and the cam rotates clockwise. The rise occurs with cycloidal motion during<br />

the cam rotation from 80˚ to 180˚. The follower then dwells for 60˚ of cam rotation, and the return<br />

occurs with simple harmonic motion for the cam rotation from 240˚ to 360˚. The amplitude of the<br />

follower translation is 3 cm, and the follower radius is 0.75 cm. The base circle radius is 5 cm, and<br />

the offset is 0.5 cm.<br />

Solution:<br />

The displacement profile can be computed using the equations in Chapter 8 in a spreadsheet or<br />

MATLAB program. The profile equations (displacement and first and second derivatives) are:<br />

For 0 80˚<br />

y=0<br />

For 80˚ 180˚<br />

y = L <br />

<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

y' = L <br />

<br />

<br />

1 cos2 <br />

<br />

y"= 2L<br />

sin<br />

2<br />

2 <br />

where L = 3, = 80˚, and =180˚80˚=100˚.<br />

For 180˚ 240˚<br />

y=3<br />

For 240˚ 360˚<br />

- 330 -


y = L 1+ cos <br />

<br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 3, = 240˚, and = 360˚240˚=120˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Table 8.8. These equations have been programmed in the MATLAB program rf_cam.m.<br />

The program calls an m-file called follower.m which contains the equations for the follower<br />

displacement. This file is given as follows:<br />

function [f]= follower(tt,rise)<br />

%<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.24.<br />

% The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower displacement<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta. The derivatives are not used in this problem, but they are<br />

% required by the program rf.cam.m.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 80<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 80 & tt < 180<br />

beta=100*fact;<br />

theta=(tt-80)*fact;<br />

f(1)=rise*((theta/beta)-(1/(2*pi))*sin(2*pi*theta/beta));<br />

f(2)=(rise/beta)*(1-cos(2*pi*theta/beta));<br />

f(3)=(2*rise*pi/beta^2)*sin(2*pi*theta/beta);<br />

end<br />

if tt>=180 & tt< 240<br />

f(1)=rise;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 240 & tt


end<br />

f(2)=-(pi*rise/(2*beta))*sin(pi*theta/beta);<br />

f(3)=-(rise/2)*(pi/beta)^2*cos(pi*theta/beta);<br />

The main program input is specified in the following:<br />

Cam Synthesis for Axial Roller Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (rf_camio.dat): prob8.24.dat<br />

Enter base circle radius [2]: 5<br />

Enter radius of cylindrical or roller follower [0.5]: 0.75<br />

Enter follower offset [1]: 0.5<br />

Enter follower rise [2]: 3<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: -<br />

Enter cam angle increment for design (deg) [10]: 5<br />

The graphical results from the program are given in the following three plots. A file giving the cam<br />

coordinates is also produced.<br />

- 332 -


Problem 8.25<br />

Resolve Problem 8.24 if the amplitude of the follower translation is 4 cm, and the follower radius is<br />

1 cm. The base circle radius is 5 cm, and the offset is 1 cm.<br />

Solution:<br />

The displacement profile equations are the same as those in Problem 8.24. The cam profile can be<br />

determined using the program rf_cam.m using the same follower routine as was used in Problem<br />

8.24. The main program input is specified in the following:<br />

Cam Synthesis for Axial Roller Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (rf_camio.dat): prob8.25.dat<br />

Enter base circle radius [2]: 5<br />

Enter radius of cylindrical or roller follower [0.5]: 1<br />

Enter follower offset [1]: 1<br />

Enter follower rise [2]: 5<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: -<br />

Enter cam angle increment for design (deg) [10]: 5<br />

The graphical results from the program are given in the following three plots. The displacement<br />

diagram is the same as that in Prob. 8.24. Note that the cam shape is visually similar to that shown<br />

with the solution in Prob. 8.24.<br />

- 333 -


- 334 -


Problem 8.26<br />

Solve Problem 8.24 if the cam rotates counterclockwise.<br />

Solution:<br />

Everything is the same except for the direction of motion of the cam. The main program input is<br />

specified in the following:<br />

Cam Synthesis for Axial Roller Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (rf_camio.dat): prob8.26.dat<br />

Enter base circle radius [2]: 5<br />

Enter radius of cylindrical or roller follower [0.5]: 0.75<br />

Enter follower offset [1]: 0.5<br />

Enter follower rise [2]: 3<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: +<br />

Enter cam angle increment for design (deg) [10]: 5<br />

The graphical results from the program are given in the following three plots.<br />

- 335 -


Problem 8.27<br />

Determine the cam profile assuming that the translating flat-faced follower starts from a dwell from<br />

0˚ to 80˚ and rotates clockwise. The rise occurs with parabolic motion during the cam rotation from<br />

80˚ to 180˚. The follower then dwells for 60˚ of cam rotation, and the return occurs with simple<br />

harmonic motion for the cam rotation from 240˚ to 360˚. The amplitude of the follower translation<br />

is 3 cm. First find the minimum base circle radius based on avoiding cusps, and use that base circle<br />

to design the cam.<br />

Solution:<br />

The displacement profile (along with the first and second derivatives) can be computed using the<br />

equations in Chapter 8 using a spreadsheet or MATLAB program. The profile equations are:<br />

For 0 80˚<br />

y=0<br />

For the first part of the rise, 80˚ 130˚, and<br />

- 336 -


2<br />

<br />

y = 2L <br />

<br />

<br />

<br />

<br />

y' = 4L<br />

<br />

<br />

<br />

<br />

<br />

<br />

y"= 4L<br />

2<br />

where L = 3, = 80˚, and =180˚80˚=100˚.<br />

For the second part of the rise, 130˚ 180˚ , and<br />

y = L 1 21 <br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

y' = 4L<br />

1<br />

<br />

<br />

<br />

<br />

y' = 4L<br />

2<br />

where L = 3, = 80˚, and =180˚80˚=100˚.<br />

For 180˚ 240˚<br />

y=3<br />

For 240˚ 360˚<br />

y = L 1+ cos <br />

<br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 3, = 240˚, and = 360˚240˚=120˚<br />

The minimum base circle to avoid cusps for a flat-faced follower is given by<br />

rb > y() y"()<br />

and we must check both the rise and return regions. For the first part of the rise region,<br />

- 337 -


2L <br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

4L<br />

2<br />

For the second part of the rise region<br />

rb > L 1 21 <br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

+<br />

<br />

4L<br />

2<br />

and for the return region,<br />

rb > L <br />

<br />

<br />

1+ cos +<br />

2 <br />

L 2 <br />

<br />

<br />

<br />

2<br />

cos<br />

<br />

<br />

<br />

- 338 -<br />

(7.24.1)<br />

(7.24.2)<br />

(7.24.3)<br />

To find the minimum value of the base circle for the rise and return, we must compute the value of<br />

rb for all in the rise and return ranges. This is most easily done with a program such as<br />

MATLAB.<br />

When this is done, the minimum value in the rise region is 5.3755 cm and the minimum value in the<br />

return region is 0.375 cm. Therefore, the minimum base radius to be used is 5.3755 cm.<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Table 8.9, and these equations have also been programmed in the MATLAB program<br />

ff_cam.m. The program calls an m-file called follower.m which contains the equations for the<br />

follower displacement. This file is given as follows:<br />

function [f]= follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.27.<br />

% The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower displacement<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 80<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 80 & tt < 130<br />

beta=100*fact;<br />

theta=(tt-80)*fact;<br />

f(1)=rise*2*(theta/beta)^2;<br />

f(2)=(4*rise/beta)*(theta/beta);<br />

f(3)=4*rise/beta;


end<br />

if tt >= 130 & tt < 180<br />

beta=100*fact;<br />

theta=(tt-80)*fact;<br />

f(1)=rise*(1-2*(1-theta/beta)^2);<br />

f(2)=(4*rise/beta)*(1-theta/beta);<br />

f(3)=-4*rise/beta;<br />

end<br />

if tt>=180 & tt< 240<br />

f(1)=rise;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >=240 & tt


Problem 8.28<br />

Solve Problem 8.27 if the cam rotates counterclockwise.<br />

Solution:<br />

Everything is the same except for the direction of motion of the cam. The main program input is<br />

specified in the following:<br />

Cam Synthesis for Axial Flat-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (ff_camio.dat): prob8.28.dat<br />

Enter base circle radius [3.2]: 5.3755<br />

Enter follower rise [2]: 3<br />

Enter distance from follower centerline to bottom of face [1.6]: 2.6<br />

Enter distance from follower centerline to top of face [2.6]: 3.6<br />

Enter cam rotation direction [CW(-), CCW(+)] [-]: +<br />

- 340 -


Enter cam angle increment for design (deg) [10]: .5<br />

The graphical results from the program are given in the following three plots.<br />

- 341 -


Problem 8.29<br />

Determine the cam profile assuming that an oscillating, cylindrical-faced follower dwells while the<br />

cam rotates counterclockwise from 0˚ to 100˚. The rise occurs with 3-4-5 polynomial motion<br />

during the cam rotation from 100˚ to 190˚. The follower then dwells for 80˚ of cam rotation, and the<br />

return occurs with simple harmonic motion for the cam rotation from 270˚ to 360˚. The amplitude<br />

of the follower oscillation is 25˚, and the follower radius is 0.75 in. The base circle radius is 2 in,<br />

and the distance between pivots is 6 in. The length of the follower is to be determined such that the<br />

pressure angle starts out at zero.<br />

Solution:<br />

The displacement profile (along with the first and second derivatives) can be computed using the<br />

equations in Chapter 8 in a spreadsheet or MATLAB program. The profile equations are:<br />

For 0 100˚<br />

y=0<br />

For 100˚ 190˚<br />

y = L 10 <br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

4<br />

<br />

15 <br />

<br />

<br />

<br />

<br />

+ 6 <br />

<br />

<br />

<br />

5<br />

<br />

<br />

<br />

<br />

y' = 30L <br />

<br />

<br />

<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

3<br />

+<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

y"= 60L<br />

2<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

<br />

2<br />

+ 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

where L = 25˚, = 100˚, and =190˚100˚= 90˚.<br />

- 342 -


For 190˚ 270˚<br />

y=25˚<br />

For 270˚ 360˚<br />

y = L 1+ cos <br />

<br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 25˚, = 270˚, and = 360˚270˚= 90˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Table 8.11. These equations have been programmed in the MATLAB program orf_cam.m.<br />

The program calls an m-file called o_follower.m which contains the equations for the follower<br />

displacement. This file is given as follows:<br />

function [f]= o_follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8p29. The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 100<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >=100 & tt =190 & tt= 270<br />

beta=90*fact;<br />

- 343 -


end<br />

theta=(tt-270)*fact;<br />

ff=pi*theta/beta;<br />

f(1)=(rise/2)*(1+cos(ff));<br />

f(2)=-pi*rise/(2*beta)*sin(ff);<br />

f(3)=-(rise/2)*(pi*beta)^2*cos(ff);<br />

The main program input is specified in the following:<br />

Cam Synthesis for Oscillating Cylindrical-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (orf_camio.dat): prob8p29.dat<br />

Enter base circle radius [2]: 2<br />

Enter radius of cylindrical or roller follower [1]: 0.75<br />

Enter distance between fixed pivots [3*rb]: 6<br />

Enter follower length [sqrt(r1^2-(rb+r0)^2)]:<br />

Enter follower rise (deg) [30]: 25<br />

Enter cam rotation direction (CW(-), CCW(+)) [+]: +<br />

Enter angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 344 -


Problem 8.30<br />

Solve Problem 8.29 if the cam rotates clockwise.<br />

Solution:<br />

Everything is the same except for the direction of motion of the cam. The main program input is<br />

specified in the following:<br />

Cam Synthesis for Oscillating Cylindrical-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (orf_camio.dat): prob8p30.dat<br />

Enter base circle radius [2]: 2<br />

Enter radius of cylindrical or roller follower [1]: 0.75<br />

Enter distance between fixed pivots [3*rb]: 6<br />

Enter follower length [sqrt(r1^2-(rb+r0)^2)]:<br />

Enter follower rise (deg) [30]: 25<br />

Enter cam rotation direction (CW(-), CCW(+)) [+]: -<br />

Enter angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 345 -


- 346 -


Problem 8.31<br />

Design a cam and oscillating roller follower assuming that the follower starts from a dwell for 0˚ to<br />

80˚ of cam rotation and the cam rotates clockwise. The rise occurs with cycloidal motion during the<br />

cam rotation from 80˚ to 200˚. The follower then dwells for 40˚ of cam rotation, and the return<br />

occurs with cycloidal motion for the cam rotation from 240˚ to 360˚. The amplitude of the follower<br />

rotation is 45˚. Determine the cam base circle radius, distance between cam and follower pivots, the<br />

length of the follower, and the radius of the follower for acceptable performance.<br />

Solution:<br />

First establish the equations for the displacement profile. These can be determined (along with the<br />

first and second derivatives) from the equations in Chapter 8 using a spreadsheet or MATLAB<br />

program. The profile equations are:<br />

For 0 80˚<br />

y=0<br />

For 80˚ 200˚<br />

y = L <br />

<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

y' = L <br />

<br />

<br />

1 cos2 <br />

<br />

y"= 2L<br />

sin<br />

2<br />

2 <br />

where L = 45˚, = 80˚, and = 200˚80˚=120˚.<br />

For 200˚ 240˚<br />

y=45˚<br />

For 240˚ 360˚<br />

y = L 1 <br />

+<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

y' = L <br />

1+cos<br />

2 <br />

<br />

<br />

y"= 2L<br />

sin<br />

2<br />

2 <br />

where L = 45˚, = 240˚, and = 360˚240˚=120˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Table 8.11 once the cam base radius, distance between cam and follower pivots, the length<br />

- 347 -


of the follower, and the radius of the follower are known. The equations have also been<br />

programmed in the MATLAB program orf_cam.m. The program calls the m-file o_follower.m<br />

which contains the equations for the follower displacement. This file is given as follows:<br />

function [f]= o_follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.31. The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 100<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >=100 & tt =190 & tt= 270<br />

beta=90*fact;<br />

theta=(tt-270)*fact;<br />

ff=pi*theta/beta;<br />

f(1)=(rise/2)*(1+cos(ff));<br />

f(2)=-pi*rise/(2*beta)*sin(ff);<br />

f(3)=-(rise/2)*(pi*beta)^2*cos(ff);<br />

end<br />

Before running the program, we need to establish values for base radius, follower radius, and a<br />

distance<br />

is to experiment with the program orf_cam.m and<br />

determine the types of values which will work. It will be found that the base circle must be fairly<br />

small and the radius of the follower fairly large if a straight stemmed follower is to be used without<br />

interference with the cam. Similarly, the follower pivot must be fairly large to avoid interference<br />

with the cam and follower pivot. One set of values which will work is a base radius of 1 in, a<br />

follower radius of 1.5 in, and a distance between pivots of 7 in. These values and the others given<br />

in the problem can be input into the program to determine the cam geometry. The basic program<br />

input is as follows:<br />

Cam Synthesis for Oscillating Cylindrical-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (orf_camio.dat): prob8p31.dat<br />

Enter base circle radius [2]: 1<br />

Enter radius of cylindrical or roller follower [1]: 1.5<br />

- 348 -


Enter distance between fixed pivots [3*rb]: 7<br />

Enter follower length [sqrt(r1^2-(rb+r0)^2)]:<br />

Enter follower rise (deg) [30]: 45<br />

Enter cam rotation direction (CW(-), CCW(+)) [+]: -<br />

Enter angle increment for design (deg) [10]: 2<br />

The graphical results from the program are given in the following three plots.<br />

- 349 -


Problem 8.32<br />

Determine the cam profile assuming that an oscillating, flat-faced follower starts from a dwell from<br />

0˚ to 45˚ and rotates counterclockwise. The rise occurs with simple harmonic motion during the<br />

cam rotation from 45˚ to 180˚. The follower then dwells for 90˚ of cam rotation, and the return<br />

occurs with simple harmonic motion for the cam rotation from 270˚ to 360˚. The amplitude of the<br />

follower oscillation is 20˚, and the follower offset is 0.5 in. The base circle radius is 5 in, and the<br />

distance between pivots is 8 in.<br />

Solution:<br />

The displacement profile can be computed using the equations in Chapter 8 using a spreadsheet or<br />

MATLAB program. The profile equations are:<br />

For 0 45˚<br />

y=0<br />

For 45˚ 180˚<br />

y = L <br />

<br />

1 cos <br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 20˚, = 45˚, and =180˚45˚=135˚.<br />

For 180˚ 270˚<br />

y=20˚<br />

- 350 -


For 270˚ 360˚<br />

y = L 1+ cos <br />

<br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 20˚, = 270˚, and = 360˚270˚= 90˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Tables 8.12 and 8.13. These equations have also been programmed in the MATLAB<br />

program off_cam.m. The program calls the m-file o_follower.m which contains the equations for<br />

the follower displacement. This file is given as follows:<br />

function [f]= o_follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.32. The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 100<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >=100 & tt =190 & tt= 270<br />

beta=90*fact;<br />

theta=(tt-270)*fact;<br />

ff=pi*theta/beta;<br />

f(1)=(rise/2)*(1+cos(ff));<br />

f(2)=-pi*rise/(2*beta)*sin(ff);<br />

f(3)=-(rise/2)*(pi*beta)^2*cos(ff);<br />

end<br />

- 351 -


The basic program input is specified in the following. Default values are used for noncritical<br />

values.<br />

Cam Synthesis for Oscillating Flat-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (off_camio.dat): prob8p32.dat<br />

Enter base circle radius [2]: 5<br />

Enter distance between fixed pivots [6]: 8<br />

Length of follower face [1.5*r1]:<br />

Enter follower offset [0.5]: 0.5<br />

Enter follower rise (deg) [15]: 20<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: +<br />

Enter angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 352 -


Problem 8.33<br />

Solve Problem 8.32 if the cam rotates clockwise.<br />

Solution:<br />

Everything is the same except for the direction of motion of the cam. The basic program input is<br />

specified in the following. Default values are used for noncritical values.<br />

Cam Synthesis for Oscillating Flat-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (off_camio.dat): prob8p33.dat<br />

Enter base circle radius [2]: 5<br />

Enter distance between fixed pivots [6]: 8<br />

Length of follower face [1.5*r1]:<br />

Enter follower offset [0.5]: 0.5<br />

Enter follower rise (deg) [15]: 20<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: -<br />

Enter angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 353 -


Problem 8.34<br />

Design the cam system assuming that an oscillating, flat-faced follower starts from a dwell for 0˚ to<br />

100˚ of cam rotation and the cam rotates counterclockwise. The rise occurs with uniform motion<br />

during the cam rotation from 100˚ to 200˚. The follower then dwells for 40˚ of cam rotation, and the<br />

return occurs with parabolic motion for the cam rotation from 240˚ to 360˚. The oscillation angle is<br />

20˚.<br />

Solution:<br />

First establish the equations for the displacement profile. The displacement profile can be<br />

computed using the equations in Chapter 8 in a spreadsheet or MATLAB program. The profile<br />

equations are:<br />

For 0 100˚<br />

y=0<br />

For 100˚ 200˚<br />

- 354 -


y = L <br />

y' = L<br />

<br />

y"= 0<br />

where L = 20˚, = 100˚, and = 200˚100˚=100˚.<br />

For 200˚ 240˚<br />

y=20˚<br />

For the first part of the return, 240˚ 300˚, and<br />

y = L 1 2 <br />

<br />

<br />

2<br />

<br />

<br />

<br />

<br />

y' = 4L<br />

<br />

<br />

<br />

<br />

<br />

<br />

y"= 4L<br />

2<br />

where L = 20˚, = 240˚, and = 360˚240˚=120˚<br />

For the second part of the return, 300˚ 360˚, and<br />

y = 2L 1 <br />

<br />

<br />

<br />

<br />

2<br />

y' = 4L <br />

1<br />

<br />

<br />

<br />

y"= 4L<br />

2<br />

where L = 20˚, = 240˚, and = 360˚240˚=120˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Tables 8.12 and 8.13 once the cam base radius, distance between cam and follower pivots,<br />

the offset distance, and the length of the follower are known.. The program calls the m-file called<br />

o_follower3.m which contains the equations for the follower displacement. This file is given as<br />

follows:<br />

function [f]= o_follower3(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.34. The input values are:<br />

- 355 -


%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt =100 & tt =200 & tt=240 & tt=300<br />

beta=120*fact;<br />

theta=(tt-240)*fact;<br />

ff=theta/beta;<br />

f(1)=2*rise*(1-ff)^2;<br />

f(2)=-(4*rise/beta)*(1-ff);<br />

f(3)=(4*rise/beta);<br />

end<br />

Before running the program, we need to establish values for the base radius and the distance<br />

between pivots. The offset distance is arbitrarily taken as 0. One option is to experiment with the<br />

program orf_cam and determine the types of values which will work. It will be found that the base<br />

circle must be fairly large to avoid cusps. Similarly, the distance between pivots must be fairly large<br />

to avoid interference with the cam and follower pivot. One set of values which will work is a base<br />

radius of 3 inches and a distance between pivots of 5 inches. These values and the others given in<br />

the problem can be input into the program to determine the cam geometry. The basic program input<br />

is as follows. Default values are used for noncritical values.<br />

Cam Synthesis for Oscillating Flat-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (off_camio.dat): prob8p34.dat<br />

Enter base circle radius [2]: 3<br />

Enter distance between fixed pivots [6]: 5<br />

Length of follower face [1.5*r1]:<br />

- 356 -


Enter follower offset [0.5]: 0<br />

Enter follower rise (deg) [15]: 20<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: +<br />

Enter angle increment for design (deg) [10]: 0.5<br />

The graphical results from the program are given in the following three plots. The displacement<br />

diagram does not show the acceleration "spikes" at the beginning and end of the dwell; however, the<br />

discontinuities in the radius of curvature are indicated. This cam would perform poorly in a high<br />

speed application.<br />

- 357 -


Problem 8.35<br />

Design the cam system assuming that an oscillating, flat-faced follower starts from a dwell for 0˚ to<br />

50˚ of cam rotation and the cam rotates clockwise. The rise occurs with cycloidal motion during the<br />

cam rotation from 50˚ to 200˚. The follower then dwells for 90˚ of cam rotation, and the return<br />

occurs with harmonic motion for the cam rotation from 290˚ to 360˚. The oscillation angle is 25˚.<br />

Solution:<br />

First establish the equations for the displacement profile. The displacement profile (along with the<br />

first and second derivatives) can be computed using the equations in Chapter 8 in a spreadsheet or<br />

MATLAB program. The profile equations are:<br />

For 0 50˚<br />

y=0<br />

For 50˚ 200˚<br />

y = L <br />

<br />

1<br />

sin<br />

2 <br />

<br />

2 <br />

y' = L <br />

<br />

<br />

1 cos2 <br />

<br />

y"= 2L<br />

sin<br />

2<br />

2 <br />

where L = 25, = 50˚, and = 200˚50˚=150˚.<br />

For 200˚ 290˚<br />

y=25<br />

For 290˚ 360˚<br />

- 358 -


y = L 1+ cos <br />

<br />

2 <br />

y' = L<br />

sin<br />

<br />

2 <br />

2<br />

<br />

y"= L 2 <br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 25, = 290˚, and = 360˚290˚= 70˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Tables 8.12 and 8.13 once the cam base radius, distance between cam and follower pivots,<br />

and the offset distance. The length of the follower must be specified, but its value is not critical as<br />

long as it is long enough for the follower to remain tangent to the cam. The default value in the<br />

program can be used. The program calls an m-file called o_follower4.m which contains the<br />

equations for the follower displacement. This file is given as follows:<br />

function [f]= o_follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.35. The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

theta=tt*fact;<br />

if tt < 50<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 50 & tt =200 & tt< 290<br />

f(1)=rise;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 290<br />

beta=70*fact;<br />

theta=(tt-290)*fact;<br />

f(1)=(rise/2)*(1+cos(pi*theta/beta));<br />

f(2)=-(pi*rise/(2*beta))*sin(pi*theta/beta);<br />

f(3)=-(rise/2)*(pi/beta)^2*cos(pi*theta/beta);<br />

end<br />

- 359 -


Before running the program, we need to establish values for the base radius, the distance between<br />

pivots, and the offset distance. One option is to experiment with the program off_cam and<br />

determine the types of values which will work. It will be found that the base circle must be fairly<br />

large to avoid cusps. Similarly, the distance between pivots must be fairly large to avoid<br />

interference with the cam and follower pivot. One set of values which will work is a base radius of<br />

2 inches and a distance between pivots of 4 inches. The offset distance is arbitrarily taken as 0.<br />

These values and the others given in the problem can be input into the program to determine the<br />

cam geometry. The program input is as follows. Default values are used for noncritical values.<br />

Cam Synthesis for Oscillating Flat-Faced Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (off_camio.dat): prob8p35.dat<br />

Enter base circle radius [2]: 2<br />

Enter distance between fixed pivots [6]: 4<br />

Length of follower face [1.5*r1]:<br />

Enter follower offset [0.5]: 0<br />

Enter follower rise (deg) [15]: 25<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: -<br />

Enter angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 360 -


Problem 8.36<br />

Determine the cam profile assuming that the translating knife-edged follower starts from a dwell<br />

from 0˚ to 80˚ and rotates clockwise. The rise occurs with cycloidal motion during the cam rotation<br />

from 80˚ to 180˚. The follower then dwells for 60˚ of cam rotation, and the return occurs with<br />

simple harmonic motion for the cam rotation from 240˚ to 360˚. The amplitude of the follower<br />

translation is 4 cm. The base circle radius is 5 cm, and the offset is 0.5 cm.<br />

Solution:<br />

We can treat a knife-edged radial follower as a roller follower with a roller radius of zero. However,<br />

we must first establish the equations for the displacement profile. The displacement profile (along<br />

with the first and second derivatives) can be computed using the equations in Chapter 8 in a<br />

spreadsheet or MATLAB program. The profile equations are:<br />

For 0 80˚<br />

- 361 -


y=0<br />

For 80˚180˚<br />

y = L 1 2 <br />

sin <br />

2 <br />

y' = L<br />

<br />

2 <br />

1 cos <br />

<br />

y"= 2L 2<br />

2 sin<br />

<br />

where L = 4, = 80˚, and = 180˚80˚=100˚.<br />

For 180˚240˚<br />

y=5<br />

For 240˚360˚<br />

y = L<br />

2<br />

<br />

1 + cos <br />

<br />

y' = L <br />

sin<br />

2 <br />

y"= L<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

cos <br />

<br />

where L = 5, = 240˚, and = 360˚240˚=120˚<br />

The cam which will generate this follower displacement can be determined using the equations<br />

given in Table 8.8 if we set r0 = 0. The equations are coded in the program called rf_cam. The<br />

program calls an m-file called follower.m which contains the equations for the follower<br />

displacement. This file is given as follows:<br />

function [f]= follower(tt,rise)<br />

% This function determines the follower displacement and derivatives<br />

% for a full rotation cam. The routine is set up for the displacement<br />

% schedule in Problem 8.36. The input values are:<br />

%theta = cam angle (deg)<br />

%rise = maximum follower rotation<br />

% The results are returned in the variable f where f(1) is the<br />

% displacement, f(2) is the derivative of the displacement with<br />

% respect to theta, and f(3) is the second derivative with respect<br />

% to theta.<br />

% find the correct interval.<br />

fact=pi/180;<br />

- 362 -


theta=tt*fact;<br />

if tt < 80<br />

f(1)=0;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 80 & tt =180 & tt< 240<br />

f(1)=rise;<br />

f(2)=0;<br />

f(3)=0;<br />

end<br />

if tt >= 240<br />

beta=120*fact;<br />

theta=(tt-240)*fact;<br />

f(1)=(rise/2)*(1+cos(pi*theta/beta));<br />

f(2)=-(pi*rise/(2*beta))*sin(pi*theta/beta);<br />

f(3)=-(rise/2)*(pi/beta)^2*cos(pi*theta/beta);<br />

end<br />

Before running the program, we need to establish values for the base radius, the distance between<br />

pivots, and the offset distance. One option is to experiment with the program orf_follower and<br />

determine the types of values which will work. It will be found that the base circle must be fairly<br />

large to avoid cusps. Similarly, the follower pivot must be fairly large to avoid interference with the<br />

cam and follower pivot. One set of values which will work is a base radius of 2 inches and a<br />

distance between pivots of 4 inches. The offset distance is arbitrarily taken as 0. These values and<br />

the others given in the problem can be input into the program to determine the cam geometry. The<br />

program input is as follows:<br />

Cam Synthesis for Axial Roller Follower<br />

Enter 1 for file input and 2 for interactive input [1]: 2<br />

Enter input file name (rf_camio.dat): prob8p36.dat<br />

Enter base circle radius [2]: 5<br />

Enter radius of cylindrical or roller follower [0.5]: 0<br />

Enter follower offset [1]: 0<br />

Enter follower rise [2]: 5<br />

Enter cam rotation direction (CW(-), CCW(+)) [-]: -<br />

Enter cam angle increment for design (deg) [10]: 1<br />

The graphical results from the program are given in the following three plots.<br />

- 363 -


- 364 -


Problem 8.37<br />

A radial flat-faced follower is to move through a total displacement of 20 mm with harmonic motion<br />

with the cam rotates through 30˚. Find the minimum radius of the base circle that is necessary to<br />

avoid cusps.<br />

Solution:<br />

The displacement profile can be computed using the equations in Chapter 8. The profile equation<br />

for the rise is_<br />

For 0 30˚<br />

y = L<br />

2<br />

<br />

1cos<br />

<br />

y'= L<br />

2 sin<br />

<br />

y"= L<br />

2<br />

<br />

cos<br />

2 <br />

<br />

<br />

where L = 20 mm and = 30˚ . Cusps do not occur when<br />

rb > f() f"( )<br />

The minimum base circle radius is<br />

rb = L<br />

2<br />

<br />

1cos<br />

<br />

<br />

L<br />

<br />

cos<br />

2 2 <br />

<br />

<br />

= L<br />

2<br />

= L<br />

2<br />

+ L<br />

2<br />

+ L<br />

2<br />

<br />

1<br />

<br />

2<br />

( ) 2<br />

<br />

1<br />

<br />

<br />

/ 6<br />

<br />

<br />

<br />

cos<br />

<br />

<br />

cos<br />

<br />

<br />

/ 6<br />

= L<br />

2<br />

+<br />

L<br />

2 35 ( )cos6 = 18Lcos6<br />

The value on the right is a maximum when = 30˚ . Then, the minimum base circle radius is<br />

rb =18L =18(20) =360 mm<br />

Problem 8.38<br />

A radial flat-faced follower is to move through a total displacement of 3 in with cycloidal motion<br />

with the cam rotates through 90˚. Find the minimum radius of the base circle that is necessary to<br />

Solution:<br />

- 365 -


The displacement profile can be computed using the equations in Chapter 8. The profile equation<br />

for the rise is:<br />

For 0 90˚<br />

y = L 1 2 <br />

sin<br />

2 <br />

y'= L<br />

2 <br />

1 cos<br />

<br />

y"= 2L 2<br />

2 sin<br />

<br />

where L = 3 in and = 90˚ = / 2 . Cusps do not occur when<br />

rb > f() f"( )<br />

The minimum base circle radius is<br />

rb = L <br />

1 2 2L 2<br />

sin <br />

2 2 sin<br />

<br />

= L L<br />

+<br />

2 sin2<br />

2L 2<br />

<br />

2 sin<br />

<br />

= 2L L 8L 2 15<br />

+ sin4 sin4 = L <br />

2 2 sin4<br />

[ ]<br />

The value on the right is a maximum when drb<br />

= 0 . Then,<br />

d<br />

or<br />

or<br />

[ ]<br />

drb 2 60<br />

= L <br />

d 2 cos4<br />

cos 4 = 2 / 30 =1/15.<br />

L<br />

= [ 2 30cos 4 ]= 0<br />

<br />

= 1<br />

acos(1/15) = 21.54˚, 66.54˚ = 0.376 rad, 1.161 rad<br />

4<br />

Substituting in the two values:<br />

rb1 = L 2 15 2(0.376)<br />

[ sin 4<br />

2 ] = 3 <br />

<br />

15<br />

2 sin86.16<br />

<br />

<br />

<br />

<br />

= 6.42<br />

<br />

rb2 = L 2 15<br />

<br />

2 sin4<br />

2(1.161)<br />

[ ] = 3 <br />

<br />

15<br />

<br />

sin 266.16<br />

<br />

2 <br />

= 9.363 in<br />

- 366 -


Therefore, the minimum base circle radius required is<br />

rb = 9.363 in<br />

Problem 8.39<br />

A radial roller follower is to move through a total displacement of L=19 mm with harmonic motion<br />

while the cam rotates 60˚. The roller radius is 5 mm. Use the program supplied with the book and<br />

find the minimum radius necessary to avoid cusps during the interval indicated.<br />

Solution:<br />

The displacement profile can be computed using the equations in Chapter 8.<br />

When 0 60˚<br />

Now,<br />

and<br />

y = L<br />

2<br />

<br />

1cos<br />

<br />

y'= L<br />

2 sin<br />

<br />

y"= L<br />

2<br />

<br />

cos<br />

2 <br />

<br />

<br />

L =19 mm<br />

= <br />

3<br />

To determine if there are cusps, run the program CAM2 under MAINMENU. Substitute in a base<br />

circle radius of 0, the minimum base circle radius and run the analysis. From this it will be apparent<br />

that there are no cusps for any base circle radius.<br />

Problem 8.40<br />

A radial roller follower is to move through a total displacement of L=45 mm with cycloidal motion.<br />

The roller radius is 5 mm, and the cam rotates 90 degrees during the rise. Use the program<br />

supplied with the book and find the minimum radius necessary to avoid cusps during the interval.<br />

Solution:<br />

- 367 -


The displacement profile can be computed using the equations in Chapter 8.<br />

When 0 90˚<br />

y = L 1 2 <br />

sin<br />

2 <br />

y'= L<br />

2 <br />

1 cos<br />

<br />

y"= 2L 2<br />

2 sin<br />

<br />

where L = 45 mm and = 90˚ = / 2 _<br />

To determine if there are cusps, run the program CAM2 under MAINMENU. Substitute in a base<br />

circle radius of 0, the minimum base circle radius and run the analysis. From this it will be apparent<br />

that there are no cusps for any base circle radius.<br />

Problem 8.41<br />

Assume that a flat-faced translating follower is used with the displacement schedule in Problem<br />

8.10. Determine if a cusp is present at = 60˚.<br />

Solution:<br />

When = 60˚ = <br />

3 _<br />

3<br />

y =<br />

<br />

<br />

1<br />

2<br />

( )<br />

sin 2( 3)<br />

1 1<br />

<br />

= sin(2 3) = 0.195 in<br />

3 2<br />

y ˙ = <br />

10.472<br />

( 1 cos2 )= ( 1cos(2 3) )= 5.000<br />

<br />

in.<br />

sec .<br />

˙ y ˙ = 2 ( ) 2<br />

sin2 = 2 10.472 ( ) 2<br />

sin(2 3) = 60.46 in.<br />

sec2 To avoid a cusp,<br />

Now<br />

and<br />

rb > f() f"( )<br />

f( ) = 0.195<br />

- 368 -


Therefore,<br />

or<br />

f"( ) = 2 1 ( )<br />

2<br />

rb > 0.195 0.551<br />

rb > 0.746<br />

sin2 = 2 ( ) sin(2 3) = 0.551<br />

Therefore, any base radius will work and there will be no cusp.<br />

Problem 8.42<br />

Assume that a flat-faced translating follower is used with the displacement schedule in Problem<br />

8.12. Determine if a cusp is present at = 90˚.<br />

Solution:<br />

When, = 90˚ = <br />

2 _<br />

f( ) = L 1 2<br />

sin =1<br />

2 1<br />

sin 2( 2)<br />

1 1<br />

2 2 <br />

= <br />

2 2 sin<br />

y'= L<br />

2 L<br />

1 cos = ( 1 cos2)<br />

<br />

f"() = 2L 2<br />

sin2 = sin = 0<br />

<br />

To avoid a cusp,<br />

Now<br />

and<br />

Therefore,<br />

or<br />

rb > f() f"( )<br />

f( ) = 0.5<br />

f"( ) = 0<br />

rb > 0.5 0<br />

- 369 -<br />

( )<br />

= 0.5 in


0.5<br />

Therefore, any base radius will work and there will be no cusp.<br />

- 370 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!