30.12.2013 Views

Petrology and Cu-Ni-PGE Mineralization of the Bovine Igneous ...

Petrology and Cu-Ni-PGE Mineralization of the Bovine Igneous ...

Petrology and Cu-Ni-PGE Mineralization of the Bovine Igneous ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Petrology</strong> <strong>and</strong> <strong>Cu</strong>-<strong>Ni</strong>-<strong>PGE</strong> <strong>Mineralization</strong> <strong>of</strong> <strong>the</strong> <strong>Bovine</strong> <strong>Igneous</strong> Complex, Baraga<br />

County, Nor<strong>the</strong>rn Michigan<br />

A THESIS<br />

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL<br />

OF THE UNIVERSITY OF MINNESOTA<br />

BY<br />

Daniel Jay Foley<br />

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS<br />

FOR THE DEGREE OF<br />

MASTER OF SCIENCE}<br />

James D. Miller<br />

July 2011


© Daniel Foley 2011


Acknowledgements<br />

I would like to thank my advisor, Dr. Jim Miller, for all <strong>the</strong> help, guidance,<br />

patience, support, <strong>and</strong> encouragement he has given through <strong>the</strong> entirety <strong>of</strong> this project.<br />

Without his help I would have would never have completed this work. I would also like<br />

to thank Kennecott Eagle Minerals for <strong>the</strong> great opportunity to work on <strong>the</strong> BIC <strong>and</strong> for<br />

funding <strong>the</strong> analytical costs <strong>of</strong> this project. I thank Andrew Ware <strong>and</strong> Dean Rossell for<br />

all <strong>of</strong> <strong>the</strong> help, support, <strong>and</strong> insight <strong>the</strong>y gave while I worked on this project. I would<br />

also like to thank Kayla Ricksham <strong>and</strong> my family <strong>and</strong> friends for <strong>the</strong>ir encouragement<br />

<strong>and</strong> constant reminders to get to school <strong>and</strong> keep working. Lastly I would like to thank<br />

all <strong>of</strong> <strong>the</strong> o<strong>the</strong>rs who have supported or helped me in some way while I worked on this<br />

<strong>the</strong>sis.<br />

i


Abstract<br />

The <strong>Bovine</strong> <strong>Igneous</strong> Complex (BIC), located 8 kilometers sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> town<br />

<strong>of</strong> L’anse, Michigan, is a small basin-shaped mafic/ultramafic intrusion emplaced in <strong>the</strong><br />

southwestern part <strong>of</strong> <strong>the</strong> Paleoproterozoic Baraga Basin. Although age dating <strong>of</strong> <strong>the</strong> BIC<br />

intrusion has so far been unsuccessful, <strong>the</strong> intrusion was very likely emplaced during <strong>the</strong><br />

early magmatic stage <strong>of</strong> Midcontinent Rift development, given its similarities to o<strong>the</strong>r<br />

mineralized early stage intrusions, such as Tamarack <strong>and</strong> Eagle. Targeted by Kennecott<br />

as a <strong>Cu</strong>-<strong>Ni</strong>-<strong>PGE</strong> prospect, <strong>the</strong> intrusion has undergone extensive exploration drilling<br />

since 1995. To date, <strong>the</strong> intrusion has been found to be only weakly to moderately<br />

mineralized with <strong>Cu</strong>-<strong>Ni</strong>-<strong>PGE</strong> sulfides. Metal tenors provided by initial drilling averaged<br />

less than .5% <strong>Cu</strong> <strong>and</strong> <strong>Ni</strong>, <strong>and</strong> less than 350 ppb Pt <strong>and</strong> Pd (Rossell, 2008). Preliminary<br />

evaluation <strong>of</strong> field mapping, core logging <strong>and</strong> geochemical data by Rossell (2008)<br />

interpreted <strong>the</strong> intrusion to be a layered ultramafic/mafic body with an igneous<br />

stratigraphy composed <strong>of</strong> a basal wehrlite, overlain by a clinopyroxenite, <strong>and</strong> capped by a<br />

gabbro.<br />

This study was undertaken to fur<strong>the</strong>r refine <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> BIC,<br />

specifically its phase layering <strong>and</strong> cryptic variation, toward <strong>the</strong> goal <strong>of</strong> better<br />

underst<strong>and</strong>ing its emplacement, crystallization, <strong>and</strong> mineralization history. For this<br />

study, two drill cores (BIC01-01 <strong>and</strong> 08BIC-044) that pr<strong>of</strong>ile <strong>the</strong> BIC were investigated<br />

for <strong>the</strong>ir petrographic attributes, cryptic mineral compositions, <strong>and</strong> whole rock<br />

lithochemistry. In addition, a detailed (1:6,000) re-mapping <strong>of</strong> <strong>the</strong> BIC was conducted.<br />

This study has found that <strong>the</strong> lithostratigraphy <strong>of</strong> <strong>the</strong> main intrusion is generally<br />

similar to that found by Rossell (2008), but when mineral modes <strong>and</strong> textures are factored<br />

in, <strong>the</strong> cumulate stratigraphy <strong>of</strong> <strong>the</strong> BIC is found to progresses from an olivine cumulate<br />

with intercumulus augite <strong>and</strong> plagioclase (feldspathic wehrlite unit), to an augite+olivine<br />

cumulate with intercumulus plagioclase (feldspathic olivine clinopyroxenite unit), to an<br />

augite+oxide±olivine cumulate with intercumulus plagioclase (oxide clinopyroxenite<br />

unit), <strong>and</strong> finally, a plagioclase+augite+oxide cumulate (oxide gabbro unit) at <strong>the</strong> top.<br />

Complimenting this cumulate phase layering is a smooth cryptic variation <strong>of</strong> upward<br />

decreasing mg# in olivine <strong>and</strong> augite composition.<br />

ii


While this cumulate stratigraphy <strong>of</strong> Ol Ol + Aug Ol + Aug + Ox Aug +<br />

Pl + Ox – Ol Aug + Pl + Ox is evident in <strong>the</strong> field exposures <strong>and</strong> in <strong>the</strong> BIC01-01 drill<br />

core, a lower ultramafic zone was discovered in <strong>the</strong> longer 08BIC-044 core. This lower<br />

ultramafic zone is composed <strong>of</strong> feldspathic wehrlite unit (Ocp cumulate) <strong>and</strong> overlying<br />

feldspathic olivine clinopyroxenite unit (COp cumulate). Although generally similar to<br />

<strong>the</strong> same units composing <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> main intrusion (called <strong>the</strong> upper<br />

ultramafic zone), <strong>the</strong>re are subtle differences in mode, texture <strong>and</strong> composition that<br />

indicate that <strong>the</strong> lower ultramafic zone is a separate intrusive component <strong>of</strong> <strong>the</strong> BIC.<br />

The emplacement model is proposes that <strong>the</strong> system begins with <strong>the</strong> injection <strong>of</strong> a<br />

small pulse <strong>of</strong> magma through <strong>the</strong> Archean gneisses <strong>and</strong> into <strong>the</strong> base <strong>of</strong> <strong>the</strong> Michigamme<br />

Formation. This small pulse fractionally crystallizes from <strong>the</strong> base up, a feldspathic<br />

wehrlite followed by a feldspathic olivine clinopyroxenite. The conduit is <strong>the</strong>n reopened<br />

<strong>and</strong> a second larger magma pulse is intruded above <strong>the</strong> first pulse <strong>and</strong> fractionally<br />

crystallizes producing <strong>the</strong> cumulate stratigraphy seen in outcrop <strong>and</strong> drill core BIC01-01.<br />

Due to <strong>the</strong> collinear nature <strong>of</strong> trace element <strong>and</strong> rare earth geochemistry from <strong>the</strong><br />

lower ultramafic, upper ultramafic, <strong>and</strong> gabbro zones it is concluded that <strong>the</strong> two magma<br />

pulses came from <strong>the</strong> same parent magma source. This parent magma was determined to<br />

be a high magnesium low aluminum tholeiitic basalt with an Mg# between 68 <strong>and</strong> 70.<br />

These estimates were derived by <strong>the</strong> manipulation <strong>of</strong> geochemistry obtained from a<br />

sample located in <strong>the</strong> basal chill.<br />

Chalcophile element geochemistry suggests <strong>the</strong> BIC underwent three episodes <strong>of</strong><br />

sulfur saturation. The first event occurred as <strong>the</strong> initial pulse, which formed <strong>the</strong> lower<br />

ultramafic zone, was injected into <strong>the</strong> surrounding country rock. Next, as <strong>the</strong> second<br />

pulse <strong>of</strong> magma injected above <strong>the</strong> first, <strong>the</strong> magma became oversaturated leading to a<br />

spike in metal tenors at <strong>the</strong> base <strong>of</strong> <strong>the</strong> upper ultramafic zone. The BIC reached sulfide<br />

saturation for a third time in passive event caused by progressive fractional<br />

crystallization.<br />

iii


Table <strong>of</strong> Contents<br />

Acknowledgements………………………………………………………………………...i<br />

Abstract…………………………………………………………………………………....ii<br />

Table <strong>of</strong> Contents…………………………………………………………………………iv<br />

Tables……………………………………………………………………………………..vi<br />

Figures…………………………………………………………………………………...vii<br />

1.0 Introduction……………………………………………………………………………1<br />

1.1 Geologic Setting ..…………………………………………………………………3<br />

1.1.1 Nor<strong>the</strong>rn Complex....…………………………………………………...…….4<br />

1.1.2 Baraga Group………………………………………………… ……………...5<br />

1.1.3 Midcontinent Rift…………………………………………………..………...6<br />

1.1.4 <strong>Bovine</strong> <strong>Igneous</strong> Complex……………………………………………..……...9<br />

1.2 Previous Studies……………………………………………………………..…...10<br />

1.3 Objectives…………………………………………………………………...……12<br />

2.0 Methods……………………………………………………………………………...14<br />

2.1 Core Logging <strong>and</strong> Sampling……………….……………………………………..15<br />

2.2 Detailed Field Mapping…………………………………………………………..16<br />

2.3 Petrographic Study………………………………………………………………..17<br />

2.4 Mineral chemical Analysis……………..………………………………………...19<br />

2.5 Lithogeochemical Analysis.....................................................................................20<br />

3.0 Results..........................................................................................................................21<br />

3.1Field Mapping..........................................................................................................21<br />

3.2 Lithostratigraphy Determined From Logging <strong>and</strong> Petrography <strong>of</strong> Drill Core........26<br />

3.2.1 Core BIC01-01................................................................................................26<br />

3.2.2 Core 08BIC044...............................................................................................34<br />

3.2.3 Core 06BIC007...............................................................................................44<br />

3.3 Mineral Chemistry <strong>and</strong> Cryptic Layering...............................................................53<br />

3.4 Whole rock geochemistry.......................................................................................56<br />

4.0 Discussion....................................................................................................................59<br />

4.1 <strong>Cu</strong>mulus Stratigraphy <strong>and</strong> Mineral Paragenesis.....................................................59<br />

4.2 Cryptic Mineral Layering.......................................................................................64<br />

4.3 Emplacement <strong>and</strong> Crystallization Model................................................................67<br />

4.4 Parental Magma Composition.................................................................................72<br />

4.5 History <strong>of</strong> sulfide liquation during crystallization..................................................79<br />

4.6 Miscellaneous Intrusions........................................................................................81<br />

iv


4.6.1 Little BIC........................................................................................................81<br />

4.6.2 Miscellaneous Dikes.......................................................................................82<br />

5.0 Conclusions..................................................................................................................82<br />

References..........................................................................................................................84<br />

Appendix A........................................................................................................................87<br />

Appendix B........................................................................................................................97<br />

Plate 1...............................................................................................................................111<br />

v


Tables<br />

1 Major Elements BIC01-01..........................................................................................56<br />

2 Major Elements 08BIC044.........................................................................................56<br />

3 Major Elements Field Sample.....................................................................................56<br />

4 Trace Elements BIC01-01...........................................................................................57<br />

5 Trace Elements 08BIC044..........................................................................................57<br />

6 Trace Elements Field Sample.....................................................................................57<br />

7 Chalcophile Elements BIC01-01................................................................................58<br />

8 Chalcophile Elements 08BIC044................................................................................58<br />

9 Chalcophile Elements Field Sample...........................................................................58<br />

10 Parental Magma Estimates..........................................................................................75<br />

vi


Figures<br />

1 Geologic Map <strong>of</strong> Southwestern Baraga Basin..............................................................2<br />

2 Geologic Map <strong>of</strong> BIC <strong>and</strong> Little BIC...........................................................................3<br />

3 Simplified Geologic Map <strong>of</strong> Nor<strong>the</strong>rn Portion <strong>of</strong> Nor<strong>the</strong>rn Michigan.........................4<br />

4 Map <strong>of</strong> MCR.................................................................................................................7<br />

5 Geology <strong>of</strong> Lake Superior Region................................................................................8<br />

6 Cross Section <strong>of</strong> BIC..................................................................................................10<br />

7 Modal Rock Type Classification Scheme...................................................................18<br />

8 Field Photos <strong>of</strong> Feldspathic Wehrlite Unit..................................................................23<br />

9 Field Photos <strong>of</strong> Feldspathic Olivine Clinopyroxenite Unit.........................................24<br />

10 Field Photos <strong>of</strong> Marginal Zone.................................................................................24<br />

11 Field Photos <strong>of</strong> Oxide Gabbro Zone.........................................................................24<br />

12 Bedrock Geology Map <strong>of</strong> BIC..................................................................................25<br />

13 Lithostratigraphy <strong>of</strong> Core BIC01-01.........................................................................30<br />

14 Modal Rock Types in Core BIC01-01......................................................................31<br />

15 Modal Mineralogy <strong>of</strong> Core BIC01-01......................................................................32<br />

16 Mineral Habits in Core BIC01-01.............................................................................33<br />

17 Lithostratigraphy <strong>of</strong> Core 08BIC044........................................................................40<br />

18 Modal Rock Types in Core 08BIC044.....................................................................41<br />

19 Modal Mineralogy <strong>of</strong> Core 08BIC044......................................................................42<br />

20 Mineral Habits in Core 08BIC044............................................................................43<br />

21 Lithostratigraphy <strong>of</strong> Core 06BIC007........................................................................45<br />

vii


22 Modal Rock Types in Core 06BIC007.....................................................................46<br />

23 Modal Mineralogy <strong>of</strong> Core 06BIC007......................................................................47<br />

24 Mineral Habits in Core 06BIC007............................................................................48<br />

25 Photomicrograph <strong>of</strong> Chill Zone <strong>and</strong> Feldspathic Wehrlite Unit...............................49<br />

26 Photomicrograph <strong>of</strong> Feldspathic Olivine Clinopyroxenite Unit <strong>and</strong> Oxide Gabbro<br />

Zone..........................................................................................................................50<br />

27 Photomicrograph <strong>of</strong> Diabase Dike <strong>and</strong> Alteration Characteristics...........................51<br />

28 Photomicrograph <strong>of</strong> Amphibole <strong>and</strong> Apatite Habit..................................................52<br />

29 Cryptic Variation versus Stratigraphic Height.........................................................55<br />

30 <strong>Cu</strong>mulate Stratigraphy..............................................................................................61<br />

31 Differentiation Path <strong>of</strong> Possible Parent Magma........................................................64<br />

32 Cryptic Variation Diagram <strong>and</strong> <strong>Cu</strong>mulate Stratigraphy...........................................65<br />

33 Emplacement <strong>and</strong> Crystallization Model..................................................................70<br />

34 Trace Element Spider Diagram.................................................................................73<br />

35 Rare Earth Element Spider Diagram.........................................................................73<br />

36 20% Olivine PELE Fractional Crystallization Diagrams.........................................77<br />

37 15% Olivine PELE Fractional Crystallization Diagrams.........................................78<br />

38 Chalcophile Element Abundance versus Stratigraphic Height.................................81<br />

viii


1.0 Introduction<br />

The failed rifting <strong>of</strong> <strong>the</strong> North American craton approximately 1.1 billion years ago led<br />

to extensive igneous activity in <strong>the</strong> Lake Superior region <strong>and</strong> now forms <strong>the</strong> province called <strong>the</strong><br />

Midcontinent Rift (MCR). Various geologic, geophysical, geochemical, <strong>and</strong> geochronologic<br />

studies <strong>of</strong> MCR rocks in <strong>the</strong> Lake Superior region have revealed that <strong>the</strong> rift evolved by several<br />

stages <strong>of</strong> magmatism <strong>and</strong> tectonism. Mafic to felsic magmatism over a 23 plus Ma period led<br />

to <strong>the</strong> extrusion <strong>of</strong> subaerial lavas as well as <strong>the</strong> emplacement <strong>of</strong> multiple subvolcanic<br />

intrusions <strong>of</strong> various sizes. Four stages <strong>of</strong> magmatism are generally recognized (Miller <strong>and</strong><br />

Vervoort, 1996; <strong>Ni</strong>cholson et al. 1997; Miller <strong>and</strong> Severson, 2002; Vervoort et al., 2007;<br />

Heaman et al., 2007): an early magmatic stage <strong>of</strong> rapid <strong>and</strong> diverse volcanism <strong>and</strong> intrusion<br />

between 1112 <strong>and</strong> 1107 Ma, a latent magmatic stage <strong>of</strong> diminished felsic-only magmatism<br />

between 1107 <strong>and</strong> 1102 Ma, a main magmatic stage creating <strong>the</strong> largest volume <strong>of</strong> igneous<br />

rocks in <strong>the</strong> MCR between 1102 <strong>and</strong> 1094 Ma, <strong>and</strong> a late magmatic stage <strong>of</strong> waning volcanic<br />

activity intermixed with detrital sedimentation from 1094 to 1086 Ma.<br />

Many intrusions related to <strong>the</strong> early stage <strong>of</strong> magmatism tend to be small ultramafic<br />

bodies that show significant sulfide mineralization enriched in nickel, copper, <strong>and</strong> precious<br />

metals (Hollings et al., 2007). The <strong>Bovine</strong> <strong>Igneous</strong> Complex (BIC), <strong>the</strong> focus <strong>of</strong> this study, is<br />

such an intrusion.<br />

The BIC, located 8 kilometers sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> town <strong>of</strong> L’Anse, Michigan, was<br />

emplaced into Paleoproterozoic sulfidic, argillic sedimentary rocks <strong>of</strong> <strong>the</strong> Baraga Basin during<br />

<strong>the</strong> early magmatic stage <strong>of</strong> <strong>the</strong> MCR (Fig. 1). Based on reconnaissance bedrock mapping <strong>and</strong><br />

exploratory drilling by Kennecott, <strong>the</strong> BIC is a roughly bowl-shaped, layered mafic/ultramafic<br />

1


intrusion (Figs. 2 <strong>and</strong> 3). A smaller, unexposed ultramafic intrusion, called Little BIC, occurs<br />

to <strong>the</strong> northwest <strong>of</strong> <strong>the</strong> main intrusion (Fig. 2). Rossell (2008) subdivided <strong>the</strong> BIC intrusion<br />

into a thick lower unit <strong>of</strong> wehrlite (Ol+Cpx), a middle unit <strong>of</strong> clinopyroxenite to oxide<br />

clinopyroxenite, <strong>and</strong> an upper unit <strong>of</strong> coarse oxide gabbro to granophyric gabbro (Figs. 2).<br />

First drilled in 1995 <strong>and</strong> as recently as 2008 by Kennecott Eagle Exploration (a<br />

subsidiary <strong>of</strong> Rio Tinto) for its nickel, copper, <strong>and</strong> platinum group element (<strong>PGE</strong>) potential, <strong>the</strong><br />

petrology <strong>and</strong> metallogeny <strong>of</strong> <strong>the</strong> BIC has remained relatively poorly studied. As such, <strong>the</strong><br />

overall aim <strong>of</strong> this research is to gain a better underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> emplacement,<br />

crystallization, <strong>and</strong> mineralization history <strong>of</strong> <strong>the</strong> BIC intrusion.<br />

Figure 1. Geologic map <strong>of</strong> <strong>the</strong> southwestern Baraga Basin showing <strong>the</strong> setting <strong>of</strong> <strong>the</strong> BIC<br />

intrusion (from Rossell, 2008).<br />

2


08BIC044<br />

•<br />

Figure 2. Geology <strong>of</strong> <strong>the</strong> BIC <strong>and</strong> Little BIC intrusion (from Rossell, 2008). Cross-section<br />

line A-A’ (Fig. 3) is noted.<br />

1.1 Geologic Setting<br />

The geology <strong>of</strong> <strong>the</strong> central part <strong>of</strong> Michigan’s Upper Peninsula is composed <strong>of</strong> three<br />

major geologic provinces: 1) an Archean gneiss terrane known as <strong>the</strong> Nor<strong>the</strong>rn Complex; 2)<br />

Paleoproterozoic metasedimentary rocks <strong>of</strong> <strong>the</strong> Baraga Group, which comprises <strong>the</strong> upper<br />

group <strong>of</strong> <strong>the</strong> Marquette Range Supergroup; <strong>and</strong> 3) Mesoproterozoic rocks <strong>of</strong> <strong>the</strong> Midcontinent<br />

Rift system represented largely by mafic dikes <strong>and</strong> ultramafic/mafic intrusions such as BIC<br />

(Fig. 3) (Gregg, 1993). The geology <strong>of</strong> <strong>the</strong>se three provinces in <strong>the</strong> BIC area will be described<br />

below.<br />

3


Lake Superior<br />

Falls River Thrust Fault<br />

Figure 3. General geology <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn portion <strong>of</strong> <strong>the</strong> Upper Peninsula <strong>of</strong> Michigan<br />

showing <strong>the</strong> location <strong>of</strong> <strong>the</strong> BIC <strong>and</strong> Eagle intrusions (From Rossell, 2008, modified<br />

from Gregg, 1993). The area shown in Figure 1 is outlined. Inset map A shows <strong>the</strong><br />

location <strong>of</strong> <strong>the</strong> map area relative to <strong>the</strong> Midcontinent Rift.<br />

1.1.1 Nor<strong>the</strong>rn Complex<br />

Archean rocks <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Complex are made up <strong>of</strong> coarse-grained felsic gneisses,<br />

minor amphibolites, <strong>and</strong> small mafic to ultramafic intrusions. Dating <strong>of</strong> intrusions in o<strong>the</strong>r<br />

portions <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Complex have yielded age dates from 2703 to 2780 Ma (Sims, 1993),<br />

suggesting that <strong>the</strong> complex may be a continuation <strong>of</strong> <strong>the</strong> Marquette Greenstone Belt. The<br />

Nor<strong>the</strong>rn Complex is exposed at <strong>the</strong> surface immediately to <strong>the</strong> south <strong>of</strong> <strong>the</strong> BIC (Fig. 3), but<br />

also occurs in deeper parts <strong>of</strong> <strong>the</strong> footwall <strong>of</strong> <strong>the</strong> BIC intrusion.<br />

4


1.1.2 Baraga Group<br />

Collision <strong>of</strong> an oceanic isl<strong>and</strong> arc 1880 Ma, now known as <strong>the</strong> Pembine-Wausau<br />

terrane, marked <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> Penokean orogeny (Schulz <strong>and</strong> Cannon, 2007).<br />

Sedimentary <strong>and</strong> minor volcanic rocks <strong>of</strong> <strong>the</strong> Baraga Group were deposited in a forel<strong>and</strong> basin<br />

formed by <strong>the</strong> southward-verging subsidence <strong>of</strong> <strong>the</strong> Archean Nor<strong>the</strong>rn Complex basement<br />

rocks. Development <strong>of</strong> <strong>the</strong> forel<strong>and</strong> basin was initiated when <strong>the</strong> Pembine-Wausau terrane was<br />

thrust northward onto <strong>the</strong> edge <strong>of</strong> <strong>the</strong> Archean Superior craton. Sedimentation in <strong>the</strong> Baraga<br />

Basin occurred from approximately 1850 Ma to 1840 Ma.<br />

The rock units <strong>of</strong> <strong>the</strong> Baraga Group form a trangressive sequence that was deposited as<br />

<strong>the</strong> forel<strong>and</strong> basin deepened <strong>and</strong> migrated toward <strong>the</strong> Archean craton (Schulz <strong>and</strong> Cannon,<br />

2007). The basal unit <strong>of</strong> <strong>the</strong> Baraga Group is <strong>the</strong> Goodrich Quartzite representing shoreline <strong>and</strong><br />

fluvial deposits. Deposition <strong>of</strong> clastic material was followed by local deposition <strong>of</strong> iron<br />

formations (Bijiki Formation) <strong>and</strong> <strong>the</strong>n a very thick sequence <strong>of</strong> black shales that are locally<br />

pyritic (Lower Michigamme Formation). As <strong>the</strong> basin continued to subside it rapidly became<br />

host to a thick, deep-water turbidite sequence (Upper Michigamme Formation).<br />

Northward directed compressional forces during <strong>the</strong> Penokean orogeny caused <strong>the</strong><br />

newly deposited sediments <strong>of</strong> <strong>the</strong> Baraga basin to be deformed into a fold <strong>and</strong> thrust belt<br />

(Schulz <strong>and</strong> Cannon, 2007). The folds <strong>and</strong> thrust faults <strong>of</strong> this belt make up <strong>the</strong> major<br />

structural elements <strong>of</strong> <strong>the</strong> basin. Gregg (1993) has divided <strong>the</strong> basin into two terranes<br />

separated by <strong>the</strong> south dipping Falls River Thrust (Figs. 1 <strong>and</strong> 3). The nor<strong>the</strong>rn portion <strong>of</strong> <strong>the</strong><br />

Falls River Thrust, <strong>the</strong> Huron River slice, is characterized by slightly asymmetric, open folds<br />

with shallow axial plunges in <strong>the</strong> northwest-sou<strong>the</strong>ast direction. To <strong>the</strong> south <strong>of</strong> <strong>the</strong> Falls River<br />

5


Thrust, <strong>the</strong> basin is distinguished by isoclinal or tight folds which are <strong>of</strong>ten over turned or<br />

recumbent, <strong>and</strong> are commonly overprinted by a second generation <strong>of</strong> folding (Rossell, 2008).<br />

1.1.3 Midcontinent Rift<br />

The 1.1 Ga Midcontinent Rift (MCR) extends 2000 km across <strong>the</strong> North American<br />

craton in an arcuate path stretching from <strong>the</strong> Lake Superior region to Kansas to <strong>the</strong> sou<strong>the</strong>ast<br />

<strong>and</strong> lower Michigan to <strong>the</strong> southwest (Fig. 4). The MCR marks <strong>the</strong> failed attempt at<br />

continental rifting <strong>of</strong> <strong>the</strong> North American craton (Laurentia) <strong>and</strong> is thought to have been<br />

triggered by a starting mantle plume (<strong>Ni</strong>cholson et al., 1997). The compressive force <strong>of</strong> <strong>the</strong><br />

Grenville orogeny along <strong>the</strong> eastern margin <strong>of</strong> North America is thought to have prevented<br />

complete rifting which commonly leads to continental separation <strong>and</strong> ocean basin formation<br />

(Cannon, 1992). During <strong>the</strong> period <strong>of</strong> active rifting <strong>and</strong> magmatism, <strong>the</strong> MCR became a large<br />

igneous province, extruding <strong>and</strong> intruding massive quantities <strong>of</strong> mafic <strong>and</strong> felsic magmas into<br />

its nearly 30 km deep rift basin (Hinze et al, 1997).<br />

Magmatic activity in <strong>the</strong> MCR lasted for roughly 23 million years from 1109 to 1086<br />

Ma, though recent dating <strong>of</strong> intrusions in Ontario (Heaman et al., 2007) suggest that MCRrelated<br />

magmatism probably began at 1112, <strong>and</strong> possibly as early as 1120 Ma. As noted in <strong>the</strong><br />

introduction, <strong>the</strong>se 23+ million years <strong>of</strong> magmatic activity can be broken down into at least<br />

four stages.<br />

The early magmatic stage (1112-1107 Ma) consisted <strong>of</strong> rapid extrusion <strong>and</strong><br />

emplacement <strong>of</strong> primitive melts derived from high degrees <strong>of</strong> partial melting <strong>of</strong> an enriched<br />

mantle plume <strong>and</strong> at greater depths than later magmas. Early primitive mafic magmas rapidly<br />

gave way to more evolved mafic melts that show signs <strong>of</strong> contamination by <strong>the</strong> subcontinental<br />

6


lithosphere <strong>and</strong> <strong>the</strong> lower crust (<strong>Ni</strong>cholson et al., 1997). This transition is interpreted to<br />

indicate that mantle melts began to underplate <strong>the</strong> base <strong>of</strong> <strong>the</strong> crust resulting in contamination<br />

<strong>and</strong> fractionation <strong>of</strong> <strong>the</strong> primitive magmas. At this time, felsic magma begins to appear in <strong>the</strong><br />

volcanic stratigraphy along with contaminated, evolved mafic magmas. The felsic magmas are<br />

thought to represent anatectic melting <strong>of</strong> <strong>the</strong> lower crust triggered by <strong>the</strong> mafic underplating<br />

(<strong>Ni</strong>cholson et al., 1997, Vervoort <strong>and</strong> Green, 1997).<br />

An important component <strong>of</strong> <strong>the</strong> early magmatic stage <strong>of</strong> <strong>the</strong> MCR is <strong>the</strong> occurrence <strong>of</strong><br />

small mafic-ultramafic intrusions in <strong>the</strong> western Lake Superior region. These intrusions have<br />

received considerable attention in <strong>the</strong> past 10-15 years due to <strong>the</strong> common occurrence <strong>of</strong> <strong>Ni</strong>,<br />

<strong>Cu</strong>, <strong>and</strong> <strong>PGE</strong> mineralization. Although <strong>the</strong>y have been well known north <strong>of</strong> Lake Superior in<br />

<strong>the</strong> Thunder Bay <strong>and</strong> Lake <strong>Ni</strong>pigon<br />

regions for some time, <strong>the</strong>y have been<br />

discovered in Minnesota <strong>and</strong> <strong>the</strong> Upper<br />

Peninsula <strong>of</strong> Michigan within just <strong>the</strong> last<br />

10 years (Schulz <strong>and</strong> <strong>Ni</strong>cholson, 2009).<br />

<strong>Cu</strong>rrently recognized early magmatic<br />

phase mafic-ultramafic intrusions include;<br />

Kitto, Disraeli, Hele, <strong>and</strong> Seagull in <strong>the</strong><br />

Lake <strong>Ni</strong>pigon area, <strong>the</strong> <strong>Cu</strong>rrent Lake<br />

intrusion near Thunder Bay, <strong>the</strong> Tamarack<br />

Figure 4. Generalized map <strong>of</strong> <strong>the</strong> Midcontinent Rift,<br />

with associated Archean country rocks <strong>and</strong> intrusion west <strong>of</strong> Duluth, Minnesota, <strong>and</strong>,<br />

<strong>the</strong>ir ages (Hinze et al., 1997)<br />

<strong>the</strong> Eagle <strong>and</strong> Echo Lake intrusions in <strong>the</strong> Upper Peninsula <strong>of</strong> Michigan (Fig. 5). Although age<br />

7


dating <strong>of</strong> <strong>the</strong> BIC intrusion has, as <strong>of</strong> yet, not been successful, <strong>the</strong> lithologic <strong>and</strong> geochemical<br />

similarities between BIC <strong>and</strong> o<strong>the</strong>r early ultramafic intrusion (Schulz <strong>and</strong> <strong>Ni</strong>cholson, 2009)<br />

strongly implies that it is also part <strong>of</strong> <strong>the</strong> early magmatic stage <strong>of</strong> <strong>the</strong> MCR.<br />

Figure 5. Generalized map <strong>of</strong> <strong>the</strong> Lake Superior region with simplified geology <strong>and</strong> location<br />

<strong>of</strong> mafic <strong>and</strong> ultramafic intrusions. Location <strong>of</strong> small ultramafic intrusions shown with<br />

red dots (Modified from Paces <strong>and</strong> Miller, 1993).<br />

8


1.1.4 <strong>Bovine</strong> <strong>Igneous</strong> Complex<br />

The (BIC) is a small basin-shaped mafic/ultramafic intrusion emplaced in <strong>the</strong><br />

southwestern part <strong>of</strong> <strong>the</strong> Baraga Basin (Figs. 1 <strong>and</strong> 2). Approximately 1200 meters long <strong>and</strong><br />

450 meters wide, <strong>the</strong> BIC is well exposed along its margins but moderately to poorly exposed<br />

in its interior. Based on reconnaissance mapping <strong>and</strong> core logging, Rossell (2008) subdivided<br />

<strong>the</strong> intrusion into three basic rock units: wehrlite at <strong>the</strong> base, clinopyroxenite in <strong>the</strong> midsection,<br />

<strong>and</strong> oxide gabbro at <strong>the</strong> top (Fig. 6). The intrusion cross-cuts Paleoproterozoic rocks<br />

<strong>of</strong> <strong>the</strong> Michigamme Formation, beginning in <strong>the</strong> north with <strong>the</strong> upper slate, followed by <strong>the</strong><br />

sulfidic Bijiki Iron-formation member, <strong>and</strong> ending in <strong>the</strong> south with <strong>the</strong> lower slate. At depth,<br />

<strong>the</strong> intrusion is in contact with ei<strong>the</strong>r <strong>the</strong> lower slate or granitic gneiss <strong>of</strong> <strong>the</strong> Archean Nor<strong>the</strong>rn<br />

Complex. Rossell (2008) also speculated that <strong>the</strong> intrusion may cross-cut or be cut by an eastwest<br />

trending Keweenawan mafic dike. Rossell (2010, pers. comm.) also pointed out that<br />

aeromagnetic data seems to imply that <strong>the</strong> BIC may cross-cut a nor<strong>the</strong>ast trending dike that has<br />

a similar trend to Abitibi dike swarms in Ontario.<br />

The BIC intrusion has been found to be weakly to moderately mineralized with <strong>Cu</strong>-<strong>Ni</strong>-<br />

<strong>PGE</strong>-enriched sulfides. Metal tenors provided by initial drilling averaged less than .5% <strong>Cu</strong> <strong>and</strong><br />

<strong>Ni</strong>, <strong>and</strong> less than 350 ppb Pt <strong>and</strong> Pd (Fig. 6)(Rossell, 2008). Although metal tenors in most <strong>of</strong><br />

<strong>the</strong> intrusion are lower than o<strong>the</strong>r early stage ultramafic intrusions, a 16.5m-thick interval in<br />

<strong>the</strong> associated Little BIC intrusion (Fig. 2) contains 0.88% <strong>Cu</strong>, 1.0% <strong>Ni</strong>, 679 ppb Pt, <strong>and</strong> 104<br />

ppb Au. Within this interval, sulfide metal tenors increase even more in a 2.8 meter section<br />

below <strong>the</strong> contact in surrounding country rocks, which averaged 1.66% <strong>Cu</strong>, 4.23 % <strong>Ni</strong>, 1380<br />

ppb Pt, 2520 ppb Pd. Metal tenors when calculated to 100% sulfide are comparable to<br />

9


mineralization in many <strong>of</strong> <strong>the</strong> o<strong>the</strong>r mineralized mafic-ultramafic intrusions <strong>of</strong> <strong>the</strong> MCR<br />

(Rossell, 2008).<br />

Figure 6. Generalized cross-section <strong>of</strong> <strong>the</strong> BIC intrusion along section line A-A’ (Fig. 2). Blue<br />

bars denote sulfide concentration in drill cores BIC02-02, BIC01-01, <strong>and</strong> BIC-2 (from<br />

Rossell, 2008).<br />

1.2 Previous Studies<br />

Previous studies <strong>of</strong> <strong>the</strong> BIC have been limited to 1) reconnaissance mapping by Dean<br />

Rossell (1990-1996), 2) exploration drilling by Kennecott Mineral Company (1995 to present),<br />

3) brief company reports on <strong>the</strong> petrography <strong>of</strong> select samples by Barnett (1995), Hauck<br />

(2002), <strong>and</strong> Johnson (2007), <strong>and</strong> 4) a field trip guide for <strong>the</strong> 2008 Institute on Lake Superior<br />

Geology by Dean Rossell (2008). More recently, whole rock geochemistry <strong>and</strong> samples<br />

collected for geochronology have been collected by <strong>the</strong> USGS (Schulz <strong>and</strong> <strong>Ni</strong>cholson, 2009)<br />

10


<strong>and</strong> a sulfur isotope study is underway by a student at Indiana University under <strong>the</strong> supervision<br />

<strong>of</strong> Dr. Ed Ripley.<br />

No detailed geologic map <strong>of</strong> <strong>the</strong> BIC or its surrounding geology exists. Dean Rossell<br />

compiled a reconnaissance map <strong>of</strong> <strong>the</strong> intrusion between 1990 <strong>and</strong> 1996. He distinguished<br />

three units on <strong>the</strong> elongate hill that makes up <strong>the</strong> surface expression <strong>of</strong> <strong>the</strong> intrusion (Fig. 2).<br />

The best exposure <strong>of</strong> outcrops occurs around <strong>the</strong> flanks <strong>of</strong> <strong>the</strong> hill, where <strong>the</strong> topography is<br />

steepest.<br />

Since it was first drilled in 1995, over 66 holes have been drilled by Kennecott<br />

Exploration into <strong>the</strong> BIC intrusion <strong>and</strong> surrounding country rock. Every drill hole was logged<br />

for lithology, structure, <strong>and</strong> mineralization <strong>and</strong> measured for magnetic susceptibility. Sulfidebearing<br />

intervals were assayed for base <strong>and</strong> precious metals.<br />

Three petrographic reports have been prepared for Kennecott Mineral Company. These<br />

reports were written by Barnett (1995), Hauck (2002), <strong>and</strong> Johnson (2007) <strong>and</strong> consist <strong>of</strong><br />

descriptions <strong>of</strong> thin sections taken <strong>of</strong> intrusion rock types <strong>and</strong> footwall samples from several<br />

drill cores. Mineralogy <strong>and</strong> textural associations were noted in detail for both sulfide <strong>and</strong><br />

silicate minerals, <strong>and</strong> were used to characterize <strong>the</strong> three basic stratigraphic units <strong>of</strong> <strong>the</strong><br />

intrusion defined by Rossell (2008).<br />

In 2008, Dean Rossell compiled a field trip guide on <strong>the</strong> BIC for <strong>the</strong> 2008 Institute on<br />

Lake Superior Geology meeting held in Marquette, Michigan. In <strong>the</strong> guide, Rossell<br />

summarizes <strong>the</strong> current state <strong>of</strong> knowledge on <strong>the</strong> BIC, which includes his earlier field<br />

mapping, a cross-section based on core logging descriptions <strong>of</strong> three drill core, <strong>and</strong> <strong>the</strong><br />

company petrographic reports. Rossell concludes that <strong>the</strong> intrusion is made up <strong>of</strong> <strong>the</strong> three<br />

11


asic rock types noted above <strong>and</strong> contains several horizons <strong>of</strong> disseminated <strong>and</strong> net-textured<br />

sulfide minerals. He notes that metal grades are low through most <strong>of</strong> <strong>the</strong> intrusion, typically<br />

less than .5 % <strong>Cu</strong> <strong>and</strong> <strong>Ni</strong>, <strong>and</strong> less than 350 ppb Pt <strong>and</strong> Pd (Fig. 6). One interval in <strong>the</strong> Little<br />

BIC intrusion <strong>and</strong> extending into <strong>the</strong> country rock has been found which contains significantly<br />

higher metal tenors comparable to <strong>the</strong> Eagle intrusion <strong>and</strong> <strong>the</strong> o<strong>the</strong>r mineralized ultramafic<br />

intrusions <strong>of</strong> <strong>the</strong> MCR (Rossell, 2008).<br />

Two o<strong>the</strong>r studies on <strong>the</strong> intrusion are currently in progress, but have not yet been fully<br />

published. A sulfur isotope study <strong>of</strong> <strong>the</strong> BIC by an undergraduate student under <strong>the</strong> direction<br />

<strong>of</strong> Dr. Ed Ripley at Indiana University is to be released in <strong>the</strong> summer <strong>of</strong> 2011. Initial findings<br />

<strong>of</strong> said study published in a 2010 GSA abstract indicated a δ 34 S range <strong>of</strong> -.41 to 1.23‰. This<br />

sulfur isotope range is consistent with sulfur derived directly from <strong>the</strong> mantle. However <strong>the</strong><br />

quantity <strong>of</strong> sulfur present in <strong>the</strong> BIC suggests that some additional sulfur must have been<br />

added. Schulz <strong>and</strong> <strong>Ni</strong>cholson (2009) presented <strong>the</strong> whole rock data recently collected from<br />

about eight samples from <strong>the</strong> BIC <strong>and</strong> compared <strong>the</strong> data to o<strong>the</strong>r early mafic-ultramafic MCR<br />

intrusions <strong>and</strong> to diabase dikes in <strong>the</strong> Baraga Basin to see if <strong>the</strong>re is a possible genetic link.<br />

Schulz <strong>and</strong> <strong>Ni</strong>cholson found that <strong>the</strong> trace element geochemistry <strong>of</strong> <strong>the</strong> BIC was very similar to<br />

those <strong>of</strong> high titanium alkali basalt dikes found nearby in <strong>the</strong> Baraga basin suggesting a<br />

possible petrogenetic link. The USGS scientists also collected a sample for U-Pb dating <strong>of</strong><br />

zircon or baddelyite but were unsuccessful in acquiring datable material.<br />

1.3 Objectives<br />

The main goals <strong>of</strong> this study are to evaluate <strong>the</strong> emplacement, crystallization, <strong>and</strong><br />

mineralization history <strong>of</strong> <strong>the</strong> BIC. The principle objectives that will be pursued to accomplish<br />

12


those goals will be to characterize <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> intrusion in terms <strong>of</strong> its<br />

cumulate phase layering, sulfide mineralization, cryptic mineral variation, <strong>and</strong> bulk<br />

geochemical variations. Specific questions to be addressed by this study include:<br />

• How many stages <strong>of</strong> magma emplacement were involved in <strong>the</strong> formation <strong>of</strong> <strong>the</strong> BIC<br />

intrusion?<br />

• To what extent did fractional crystallization produce <strong>the</strong> observed cumulate<br />

stratigraphy (feldspathic dunite to granophyric gabbro) <strong>and</strong> cryptic variation?<br />

• What was <strong>the</strong> composition <strong>of</strong> <strong>the</strong> parental magma(s) <strong>of</strong> <strong>the</strong> BIC?<br />

• How does <strong>the</strong> parental magma <strong>of</strong> <strong>the</strong> BIC compare to estimates <strong>of</strong> parental magma for<br />

o<strong>the</strong>r early MCR mafic/ultramafic intrusions?<br />

• What was <strong>the</strong> history <strong>of</strong> sulfide mineralization during <strong>the</strong> emplacement <strong>and</strong><br />

crystallization <strong>of</strong> <strong>the</strong> BIC system?<br />

<strong>Cu</strong>rrent information on <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> BIC intrusion indicates a<br />

unidirectional (bottom-up) progression <strong>of</strong> cumulus phases (Ol→Cpx→Feox→Pl). While this<br />

would appear to indicate progressive fractional crystallization <strong>of</strong> a single batch <strong>of</strong> ultramafic<br />

magma, multiple small injections <strong>of</strong> magma may occur without obviously affecting <strong>the</strong> phase<br />

layering. If multiple cycles <strong>of</strong> magma emplacement occurred, however, this should be evident<br />

in <strong>the</strong> cryptic layering <strong>of</strong> solid solution phases, as well as trace element geochemistry <strong>of</strong> <strong>the</strong><br />

cumulates.<br />

Ano<strong>the</strong>r important goal <strong>of</strong> this research will be to estimate <strong>the</strong> composition <strong>of</strong> <strong>the</strong><br />

parental magma that formed <strong>the</strong> BIC. This composition will <strong>the</strong>n be compared with estimates<br />

<strong>of</strong> parental magma composition from o<strong>the</strong>r early magmatic stage mafic/ultramafic intrusions<br />

such as <strong>the</strong> Eagle (Nor<strong>the</strong>rn Michigan), Tamarack (Minnesota), <strong>and</strong> Seagull (Ontario)<br />

intrusions. Determination <strong>of</strong> <strong>the</strong> parental magma will be very important in modeling <strong>the</strong><br />

13


differentiation history <strong>of</strong> <strong>the</strong> BIC <strong>and</strong> will help to place it in <strong>the</strong> greater context <strong>of</strong> <strong>the</strong> MCR as<br />

a whole.<br />

Like o<strong>the</strong>r early stage ultramafic intrusions associated with <strong>the</strong> MCR, <strong>the</strong> BIC intrusion<br />

has significant <strong>Ni</strong>-<strong>Cu</strong>-<strong>PGE</strong> mineralization. Because copper, nickel, <strong>and</strong> platinum group<br />

elements preferentially partition into a sulfide phase, <strong>the</strong> history <strong>and</strong> timing <strong>of</strong> sulfide<br />

saturation becomes extremely important in underst<strong>and</strong>ing <strong>the</strong> metallogenesis <strong>of</strong> <strong>the</strong> BIC<br />

intrusion. It is <strong>the</strong> goal <strong>of</strong> this study to examine <strong>the</strong> evolution <strong>of</strong> sulfide <strong>and</strong> chalcophile<br />

elements throughout <strong>the</strong> crystallization process, determine over what interval <strong>of</strong> crystallization<br />

sulfide became saturated, <strong>and</strong> finally what triggered sulfide saturation in <strong>the</strong> intrusion.<br />

2.0 Methods<br />

To accomplish <strong>the</strong> goals <strong>and</strong> objectives listed above, several methods <strong>of</strong> study have<br />

been used. The igneous stratigraphy will be studied macroscopically by detailed core logging<br />

<strong>of</strong> Kennecott drill core <strong>and</strong> by field mapping <strong>of</strong> BIC exposures. Petrographic studies in<br />

transmitted light will be used to discern <strong>the</strong> stratigraphic variation in mineralogy <strong>and</strong> textures<br />

<strong>of</strong> <strong>the</strong> silicate phases. Compositions <strong>of</strong> solid solution phases will be measured by EDS-SEM<br />

analyses to characterize <strong>the</strong> cryptic variations <strong>of</strong> silicates (Ol, Cpx, & Pl) through <strong>the</strong> igneous<br />

stratigraphy <strong>of</strong> <strong>the</strong> BIC. Whole rock geochemical analyses will be acquired in order to<br />

evaluate <strong>the</strong> composition <strong>of</strong> <strong>the</strong> parent magma <strong>and</strong> its geochemical evolution during<br />

crystallization. Finally, geochemical data <strong>of</strong> chalcophile elements <strong>and</strong> sulfur will be used to<br />

evaluate <strong>the</strong> history <strong>of</strong> sulfide saturation <strong>and</strong> mineralization.<br />

14


2.1 Core Logging <strong>and</strong> Sampling<br />

Three drill cores were chosen to provide samples for petrographic study, mineral<br />

chemical analysis, <strong>and</strong> whole rock geochemical analysis. The three drill cores were chosen<br />

based on <strong>the</strong>ir completeness <strong>of</strong> pr<strong>of</strong>iling <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> intrusion. Two <strong>of</strong> <strong>the</strong><br />

cores, BIC01-01 <strong>and</strong> 08BIC044 (Fig. 2) were chosen from <strong>the</strong> main BIC intrusion, while<br />

06BIC007 comes from <strong>the</strong> well-mineralized Little BIC intrusion. Although <strong>the</strong> BIC is <strong>the</strong><br />

primary focus <strong>of</strong> this study, <strong>the</strong> Little BIC core was sampled to compare its lithology <strong>and</strong><br />

chemistry to <strong>the</strong> main intrusion.<br />

At <strong>the</strong> time <strong>of</strong> this study, 65 holes had been drilled into <strong>the</strong> BIC intrusion <strong>and</strong><br />

surrounding areas by Kennecott Eagle Minerals Company (KEMC). Of <strong>the</strong>se, <strong>the</strong> three holes<br />

used in this study were chosen for specific reasons. Drill hole BIC01-01 was chosen because<br />

<strong>of</strong> its stratigraphic completeness, having all three major lithologies, its central location, its<br />

ending in Paleoproterozoic shale, <strong>and</strong> its being <strong>the</strong> only drill core to have been scanned by<br />

NITON XRF. Hole 08BIC044 was chosen due to its slightly different orientation, increased<br />

length, its seemingly more complicated stratigraphy, <strong>and</strong> its termination in Archean gneiss<br />

footwall. Hole 06BIC007 was chosen because it best represents <strong>the</strong> stratigraphy <strong>of</strong> <strong>the</strong><br />

adjacent Little BIC intrusion.<br />

All holes relating to <strong>the</strong> BIC intrusion had been previously logged <strong>and</strong> obviously<br />

mineralized areas were assayed by KEMC geologists. All three cores were relogged for this<br />

study with special emphasis on modal mineralogy, texture, alteration, <strong>and</strong> basic sulfide<br />

mineralization. Previous logs, assays, <strong>and</strong> NITON XRF data, where available, were used as<br />

guides to aid in <strong>the</strong> relogging process. Samples were taken every 5 to 10 meters within<br />

15


ecognizable lithologies <strong>and</strong> at strategic points such as straddling contacts <strong>and</strong> areas <strong>of</strong><br />

contrasting grain size. For <strong>the</strong> 3 cores, 139 samples were collected, cut into billets, <strong>and</strong> sent to<br />

Spectrum Petrographics (Vancouver, WA) to be made into polished thin sections for<br />

petrographic study <strong>and</strong> mineral chemical analysis.<br />

2.2 Detailed Field Mapping<br />

Detailed outcrop mapping <strong>of</strong> <strong>the</strong> BIC intrusion was completed at a 1:5000 scale over a<br />

seven day period in September 2010. The GPS location <strong>of</strong> each outcrop was recorded along<br />

with <strong>the</strong> size <strong>and</strong> shape <strong>of</strong> <strong>the</strong> outcrop, lithologic attributes (modal mineralogy, mineral habits,<br />

grain size <strong>and</strong> magnetism), structural attributes (foliation, layering, <strong>and</strong> geological contacts)<br />

<strong>and</strong> o<strong>the</strong>r features <strong>of</strong> interest. The size, shape, <strong>and</strong> location <strong>of</strong> <strong>the</strong> outcrop were sketched onto<br />

<strong>the</strong> topographic base map <strong>and</strong> a preliminary map unit was assigned to <strong>the</strong> outcrop based on<br />

characteristics previously noted in drill core. A total <strong>of</strong> 18 samples were collected that best<br />

represented <strong>the</strong> stratigraphic <strong>and</strong> areal distribution <strong>of</strong> map units observed in <strong>the</strong> field.<br />

Field data were digitally compiled using ESRI’s ArcGIS® version 9. Field maps,<br />

which showed outcrop locations, station IDs, <strong>and</strong> traverse paths on mylar overlays <strong>of</strong> a<br />

topographic base map, were scanned <strong>and</strong> imported into ArcMAP. The field maps were<br />

registered to a NAD83 UTM coordinate base <strong>and</strong> <strong>the</strong> outcrops were digitized by tracing from<br />

<strong>the</strong> scanned field maps. Attribute data for <strong>the</strong> outcrop layer included outcrop ID, date visited,<br />

major rock type, secondary rock type, <strong>and</strong> o<strong>the</strong>r notable features. Structural measurements<br />

(layering, foliation, joints, …) were compiled onto a separate data layer. Map units <strong>and</strong><br />

contacts were interpreted from <strong>the</strong> digitized outcrop <strong>and</strong> structure data <strong>and</strong> compiled onto<br />

polygon <strong>and</strong> line layers, respectively. The final map (Plate 1 or Fig. 12) was created by<br />

16


exporting data layers from ArcMap <strong>and</strong> importing <strong>the</strong>m into Adobe Illustrator (v.CS2). Units<br />

were assigned <strong>and</strong> colors added to signify each map unit.<br />

2.3 Petrographic Study<br />

A total 157 thin sections were described in transmitted light for this study. Of <strong>the</strong> 157<br />

thin sections, 139 were collected from <strong>the</strong> three aforementioned drill holes while ano<strong>the</strong>r 18<br />

were collected from outcrop during field mapping. The features described in <strong>the</strong> transmitted<br />

light study include bulk rock texture, grain size, mineral habit, mineral mode, foliation<br />

development, <strong>and</strong> alteration. Petrographic observations are tabulated in Appendix A.<br />

Modal rock types were determined using <strong>the</strong> classification schemes proposed by Miller<br />

et al. (2002) for use with <strong>the</strong> Duluth Complex (Fig. 7). Modal percentages <strong>of</strong> minerals were<br />

visually estimated <strong>and</strong> normalized to <strong>the</strong> appropriate classification scheme.<br />

17


A. General Scheme<br />

18


Figure 7. Modal rock type classification schemes used in this study. Scheme A is used for <strong>the</strong><br />

general classification <strong>of</strong> mafic <strong>and</strong> ultramafic rocks composed <strong>of</strong> plagioclase, olivine,<br />

<strong>and</strong> clinopyroxene. Scheme B applies to <strong>the</strong> ultramafic rock group with modal<br />

plagioclase less than 30% <strong>and</strong> is based on all four principal mafic minerals (olivine, low<br />

Ca pyroxene, high-Ca pyroxene, <strong>and</strong> Fe-Ti oxide). Scheme C applies to <strong>the</strong> mafic rock<br />

group with 30 to 85% plagioclase <strong>and</strong> <strong>the</strong> four principal mafic phases. From Miller et<br />

al. (2002).<br />

2.4 Mineral Chemical Analysis<br />

Mineral chemical analysis was carried out to assess <strong>the</strong> cryptic variation <strong>of</strong> <strong>the</strong> major<br />

solid solution minerals (olivine, augite) throughout <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> intrusion.<br />

The analyses were acquired at <strong>the</strong> University <strong>of</strong> Minnesota Duluth using a JEOL JSM-6490LV<br />

19


scanning electron microscope equipped with an energy dispersive spectrometer system (EDS).<br />

The EDS was used to acquire st<strong>and</strong>ardless analyses, which yielded semi-quantitative (~.5%<br />

error) major element compositions <strong>of</strong> <strong>the</strong> olivine <strong>and</strong> augite. Thirty one out <strong>of</strong> <strong>the</strong> 79 total<br />

polished thin sections collected from drill core 08BIC044 were selected for analysis.<br />

The samples chosen for mineral chemical analysis occur at regular intervals within each<br />

stratigraphic unit. Within each unit, samples were taken that best represented <strong>the</strong> unit <strong>and</strong> that<br />

contained <strong>the</strong> least altered olivine grains. The selected polished thin sections were coated with<br />

approximately 20 nanometers <strong>of</strong> carbon using a Denton vacuum carbon coater. Applying a<br />

conductive carbon coat to <strong>the</strong> sample surface allows for <strong>the</strong> dissipation <strong>of</strong> electrons, which will<br />

o<strong>the</strong>rwise build up on <strong>the</strong> surface <strong>and</strong> result in sample charging <strong>and</strong> beam deflection.<br />

The analyses were carried out in seven 3-4 hour sessions, which allowed for analysis <strong>of</strong><br />

multiple olivine <strong>and</strong> augite grains in three to five samples. An accelerating voltage <strong>of</strong> 15kv<br />

was used for <strong>the</strong> electron beam throughout each session. During each session, <strong>the</strong> EDS<br />

spectrum was calibrated to a thin piece <strong>of</strong> copper tape attached to <strong>the</strong> sample holder. After<br />

calibration, five to eight analyses were acquired <strong>of</strong> olivine <strong>and</strong> augite grains from three<br />

different areas on each thin section. Five were acquired in each <strong>of</strong> <strong>the</strong> three areas if only augite<br />

was present, whereas eight analyses were acquired if olivine was also present. Each analysis<br />

was carried out for a 20 second count time. The system was recalibrated on <strong>the</strong> copper tape<br />

between <strong>the</strong> analyses <strong>of</strong> each sample.<br />

2.5 Lithogeochemical Analysis<br />

Twenty seven samples from drill cores BIC01-01, 08BIC044, <strong>and</strong> one field sample<br />

from <strong>the</strong> marginal zone, were chosen for lithogeochemical analyses. One or more samples<br />

20


were chosen from each rock type which best represents that lithology. Samples weighing<br />

between one <strong>and</strong> one half kilograms were submitted to ALS Chemex in Thunder Bay, Ontario.<br />

Samples were crushed <strong>and</strong> pulverized using mild steel. Splits <strong>of</strong> each sample were analyzed for<br />

major, minor, 38 trace elements using ICP-MS <strong>and</strong> ICP-AES methods. In addition, 30 gram<br />

splits <strong>of</strong> <strong>the</strong> ground samples were analyzed for platinum, palladium, <strong>and</strong> gold by fire assay with<br />

an ICP-MS finish.<br />

3.0 Results<br />

The results garnered from field mapping, core logging, petrographic study, mineral<br />

chemical analyses, <strong>and</strong> whole rock geochemistry are reported here. The results <strong>of</strong> core logging<br />

<strong>and</strong> petrographic observations have been combined to provide a detailed summary <strong>of</strong> <strong>the</strong><br />

lithostratigraphy <strong>of</strong> <strong>the</strong> intrusion <strong>and</strong> its petrographic attributes. Results <strong>of</strong> mineral chemical<br />

analyses <strong>and</strong> whole rock geochemistry will be described in <strong>the</strong> context <strong>of</strong> <strong>the</strong> resulting<br />

lithostratigraphy.<br />

3.1 Field Mapping<br />

Previous bedrock mapping by Rossell (2008) (Fig. 2) interpreted <strong>the</strong> BIC intrusion to<br />

be made up <strong>of</strong> three units, a thick basal wehrlite/olivine melagabbro, a medial<br />

clinopyroxenite/gabbro unit, <strong>and</strong> an upper gabbro. Field mapping undertaken for this study<br />

generally agrees with this three units stratigraphy, though <strong>the</strong> dominant lithologies differ<br />

somewhat. In <strong>the</strong> bedrock geologic map produced from this study, <strong>the</strong> three major<br />

stratigraphic units are a basal feldspathic wehrlite, a middle feldspathic clinopyroxenite/oxide<br />

feldspathic clinopyroxenite, <strong>and</strong> an upper oxide gabbro (Fig. 12). In addition, a marginal unit<br />

21


composed <strong>of</strong> heterogeneous granophyric pyroxenite <strong>and</strong> gabbro has been identified on <strong>the</strong><br />

nor<strong>the</strong>rn flank <strong>of</strong> <strong>the</strong> BIC intrusion.<br />

The feldspathic wehrlite unit is composed <strong>of</strong> medium- to medium coarse-grained, nonfoliated<br />

feldspathic wehrlite with poikilitic plagioclase. This unit is best exposed on <strong>the</strong><br />

western <strong>and</strong> sou<strong>the</strong>rn margins <strong>of</strong> <strong>the</strong> intrusion at <strong>the</strong> base <strong>of</strong> <strong>the</strong> hill but is inferred to underlie<br />

<strong>the</strong> till <strong>and</strong> form a ring around <strong>the</strong> entire base <strong>of</strong> <strong>the</strong> intrusion. Outcrops <strong>of</strong> this unit are<br />

exposed in two- to three-meter-high ledges that show a prominent joint pattern (joint<br />

measurements are depicted in Fig. 12, field photos <strong>of</strong> <strong>the</strong> occurrence can be seen in Fig. 8).<br />

This map unit is equivalent to <strong>the</strong> wehrlite/olivine melagabbro unit defined by Rossell (2008).<br />

The feldspathic clinopyroxenite unit is made up <strong>of</strong> medium fine-grained, non-foliated,<br />

plagioclase-poikilitic, feldspathic olivine clinopyroxenite <strong>and</strong> feldspathic oxide clinopyroxenite<br />

(Fig. 9). Oxide abundance dramatically increases drom less than 5% to greater than 15% in <strong>the</strong><br />

upper 10 to 20m <strong>of</strong> this unit. Situated between <strong>the</strong> feldspathic wehrlite <strong>and</strong> <strong>the</strong> oxide gabbro<br />

<strong>and</strong> adjacent to <strong>the</strong> marginal zone, <strong>the</strong> feldspathic clinopyroxenite unit correlates with <strong>the</strong><br />

clinopyroxenite/gabbro unit described by Rossell (2008). The best exposed unit <strong>of</strong> <strong>the</strong><br />

intrusion, <strong>the</strong> feldspathic clinopyroxenite outcrops along <strong>the</strong> steep hillsides <strong>of</strong> <strong>the</strong> intrusion in<br />

five- to ten-meter-tall ledges <strong>and</strong> in sloping pavement surfaces.<br />

The oxide gabbro unit, which caps <strong>the</strong> intrusion, is made up <strong>of</strong> medium-grained,<br />

moderately to well-foliated, intergranular oxide gabbro. This unit is made up <strong>of</strong> small one to<br />

two meter high ledges <strong>and</strong> pavement outcrops located on or near <strong>the</strong> top <strong>of</strong> <strong>the</strong> hill. Outcrops<br />

exposed closer to <strong>the</strong> feldspathic clinopyroxenite <strong>and</strong> marginal zones are finer grained <strong>and</strong> less<br />

altered than <strong>the</strong> low-lying pavement outcrops found on <strong>the</strong> crest <strong>of</strong> <strong>the</strong> hill. The pavement<br />

22


outcrops are very coarse-grained <strong>and</strong> display decimeter to meter-sized, irregularly-shaped<br />

patches <strong>of</strong> epidote-sericite-calcite alteration (Fig. 11). The gabbro unit directly correlates with<br />

Rossell’s (2008) gabbro unit.<br />

Exposures along <strong>the</strong> nor<strong>the</strong>rn side <strong>of</strong> <strong>the</strong> intrusion at stratigraphic positions<br />

corresponding to <strong>the</strong> feldspathic clinopyroxenite <strong>and</strong> oxide gabbro units are significantly<br />

enriched in granophyre at a variety <strong>of</strong> scales (Fig. 10). This distinctive lithology is termed <strong>the</strong><br />

marginal zone. The granophyre occurs as evenly to irregularly disseminated blebs to patches<br />

up to half a meter in size. The marginal zone is exposed in several 20- to 100-meter-long <strong>and</strong><br />

5- to 10-meter-high ledges <strong>and</strong> cliffs. Interestingly, <strong>the</strong> mineralogy, textures, <strong>and</strong> stratigraphic<br />

relationships <strong>of</strong> <strong>the</strong> feldspathic clinopyroxenite <strong>and</strong> oxide gabbro units can be recognized in <strong>the</strong><br />

non-granophyre components <strong>of</strong> <strong>the</strong> rock. Rossell (2008) did not break <strong>the</strong>se granophyric rock<br />

types out as a separate unit, though he did admit to being puzzled by <strong>the</strong>ir occurrence (Rossell,<br />

pers. comm., 2010).<br />

A<br />

B<br />

Figure 8. A, B.) Field photos <strong>of</strong> <strong>the</strong> feldspathic wehrlite unit seen in outcrop. Prominent joint<br />

pattern can be seen in both photos.<br />

23


A<br />

Figure 9. Field photos <strong>of</strong> <strong>the</strong> feldspathic olivine clinopyroxenite in outcrop. A.) Outcrop scale<br />

photo. B.) Photo <strong>of</strong> common texture <strong>and</strong> grain size.<br />

B<br />

A<br />

Figure 10. Field photos <strong>of</strong> <strong>the</strong> marginal zone in outcrop. A.) Outcrop with discrete<br />

granophyre in inclusions. B.) Photo displaying disseminated granophyre in outcrop.<br />

B<br />

A<br />

B<br />

Figure 11. Field photos <strong>of</strong> <strong>the</strong> oxide gabbro unit in outcrop. A.) irregular pods <strong>of</strong> epidote<br />

alteration. B.) Coarse grained oxide gabbro with hematite stained plagioclase.<br />

24


Figure 12. Bedrock geologic map <strong>of</strong> <strong>the</strong> BIC <strong>and</strong> little BIC intrusions. See Plate 1 for <strong>the</strong> full<br />

1:6,000 scale map.<br />

3.2 Lithostratigraphy determined from Logging <strong>and</strong> Petrography <strong>of</strong> Drill Core<br />

The three stratigraphic units <strong>of</strong> <strong>the</strong> BIC intrusion defined from field mapping, here <strong>and</strong><br />

previously by Rossell (2008), are generally recognized in <strong>the</strong> two drill cores investigated for<br />

this study (BIC01-01 <strong>and</strong> 08BIC044). However, <strong>the</strong> continuous stratigraphic pr<strong>of</strong>iling<br />

afforded by drill core, coupled with petrographic observations from strategically collected<br />

samples, allows for more details about <strong>the</strong> lithostratigraphy <strong>of</strong> <strong>the</strong> BIC to be ascertained.<br />

Summarized below are <strong>the</strong> modal <strong>and</strong> textural attributes <strong>of</strong> rock types determined in BIC01-01<br />

<strong>and</strong> 08BIC044 from core logging <strong>and</strong> petrographic observations, which develop a more robust<br />

documentation <strong>of</strong> <strong>the</strong> lithostratigraphy <strong>of</strong> <strong>the</strong> BIC intrusion. In addition, <strong>the</strong> lithologic<br />

attributes <strong>of</strong> samples collected from, 06BIC007 core from <strong>the</strong> Little BIC intrusion will be<br />

described so as to compare <strong>and</strong> contrast with lithostratigraphy <strong>of</strong> <strong>the</strong> BIC intrusion.<br />

3.2.1 BIC01-01<br />

Drill core BIC01-01 is a 457m long hole drilled vertically into <strong>the</strong> sou<strong>the</strong>astern portion<br />

<strong>of</strong> <strong>the</strong> intrusion (Figs. 2 <strong>and</strong> 5). The hole consists <strong>of</strong> 310 meters <strong>of</strong> uninterrupted intrusive<br />

rocks that bottom out in Michigamme slate. A small interval <strong>of</strong> mafic intrusive rock is also<br />

present between 330m <strong>and</strong> 340m, but was not investigated for this study. Based on a syn<strong>the</strong>sis<br />

<strong>of</strong> macroscopic <strong>and</strong> microscopic observations, <strong>the</strong> BIC01-01 core can be subdivided into four<br />

primary lithostratigraphic units (Fig. 13). Upward from <strong>the</strong> basal contact, <strong>the</strong>se units are 1)<br />

feldspathic wehrlite, 2) feldspathic olivine clinopyroxenite, 3) feldspathic oxide<br />

26


clinopyroxenite, <strong>and</strong> 4) oxide gabbro. The modal mineralogic compositions (Figs. 14 <strong>and</strong> 15)<br />

<strong>and</strong> textural attributes (Fig. 16) <strong>of</strong> <strong>the</strong>se units are described below.<br />

The feldspathic wehrlite unit occupies <strong>the</strong> lower 150 meters <strong>of</strong> this drill core (fWER<br />

unit, Fig. 13). The base <strong>of</strong> <strong>the</strong> intrusion (310m depth) is in sharp contact with slate <strong>and</strong><br />

siltstone <strong>of</strong> <strong>the</strong> Michigamme Formation. The average modal rock type <strong>of</strong> <strong>the</strong> unit is a<br />

feldspathic wehrlite, but ranges in rock type from wehrlite to augite melatroctolite (Fig. 14).<br />

The lower 60 meters <strong>of</strong> <strong>the</strong> unit is considerably more heterogeneous in mode, texture, <strong>and</strong><br />

alteration than <strong>the</strong> upper portion <strong>of</strong> <strong>the</strong> unit. In this lower section, plag content ranges from 5<br />

to 30%, augite ranges from 10 to 45%, <strong>and</strong> olivine ranges between 30 <strong>and</strong> 60% (Fig. 15).<br />

Amphibole content ranges from 2 to 12% (Fig. 28A) while biotite ranges from trace to 5%.<br />

Textures in this interval are equally heterogeneous (Fig. 16) with plagioclase habit<br />

ranging from subpoikilitic to poikilitic with 3 to 12 millimeter oikocrysts. Augite generally<br />

exhibits a subhedral granular habit at <strong>the</strong> base <strong>of</strong> <strong>the</strong> interval but grades to a more subpoikolitic<br />

at <strong>the</strong> top. Although augite is only weakly altered to amphibole throughout <strong>the</strong> feldspathic<br />

wehrlite unit, plagioclase shows low to strong sericitic alteration in <strong>the</strong> lower 60 meters <strong>of</strong> <strong>the</strong><br />

unit (Fig. 16). Olivine is moderately altered to serpentine throughout <strong>the</strong> unit. Amphibole is<br />

present as anhedral granular masses <strong>and</strong> overgrowths on oxides <strong>and</strong> sulfides in <strong>the</strong> lower half<br />

<strong>of</strong> <strong>the</strong> unit but becomes poikolitic in <strong>the</strong> upper half <strong>of</strong> <strong>the</strong> unit. The rest <strong>of</strong> <strong>the</strong> feldspathic<br />

wehrlite is modally <strong>and</strong> texturally very homogenous containing approximately 20% poikilitic<br />

plagioclase, 20% anhedral granular augite, <strong>and</strong> 60% subhedral granular olivine. Although<br />

augite is anhedral granular in <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> feldspathic wehrlite unit, it is texturally<br />

interstitial to olivine <strong>and</strong> modally in non-cotectic proportions to olivine (Fig. 25B).<br />

27


The feldspathic wehrlite is in turn overlain by 100 meters <strong>of</strong> medium fine-grained,<br />

feldspathic olivine clinopyroxenite (fOCP unit, Figs. 14, 26A). Transition from feldspathic<br />

wehrlite to feldspathic olivine clinopyroxenite occurs over a gradational contact one to three<br />

meters in thickness. Modally, <strong>the</strong> unit includes olivine clinopyroxenites, feldspathic olivine<br />

clinopyroxenites, <strong>and</strong> feldspathic clinopyroxenites (Fig. 14). A fairly homogenous unit<br />

mineralogically, <strong>the</strong> modal abundance <strong>of</strong> augite, olivine, <strong>and</strong> plagioclase are approximately<br />

70%, 20%, <strong>and</strong> 10% respectively (Fig. 15). Modal abundance <strong>of</strong> amphibole ranges from 2 to<br />

5% in <strong>the</strong> lower half but <strong>the</strong>n falls to trace amounts in <strong>the</strong> upper half. Biotite is scarce in this<br />

unit ranging from trace to 1% throughout. Mineral habits also remain very consistent with<br />

subhedral granular augite <strong>and</strong> olivine, anhedral granular amphibole <strong>and</strong> biotite, <strong>and</strong> poikilitic<br />

plagioclase, with 3 to 12 millimeter oikocrysts, throughout (Fig. 16). Although augite is only<br />

weakly altered through <strong>the</strong> unit, both plagioclase <strong>and</strong> olivine display strong to complete<br />

alteration (Fig. 16)<br />

Above <strong>the</strong> feldspathic olivine clinopyroxenite lies approximately 10 meters <strong>of</strong> medium<br />

fine-grained feldspathic oxide clinopyroxenite with minor amounts <strong>of</strong> olivine (fOxCP unit, Fig.<br />

9). Not only is this unit not recognized in outcrop, it is difficult to pick out in <strong>the</strong> dark<br />

clinopyroxenite drill core. Indeed, what drew attention to <strong>the</strong> rapid increase in oxide was<br />

magnetic susceptibility data collected from <strong>the</strong> core by Kennecott (Fig. 15). As observed in<br />

thin section, <strong>the</strong> contact between <strong>the</strong> feldspathic olivine clinopyroxenite <strong>and</strong> <strong>the</strong> feldspathic<br />

oxide clinopyroxenite is marked by an abrupt increase in oxide content from less than 3 modal<br />

percent to as much as 20 percent over approximately one meter. Modally, this unit contains<br />

feldspathic olivine oxide clinopyroxenite <strong>and</strong> feldspathic oxide clinopyroxenite rock types<br />

28


(Fig. 14). Systematic changes in mode are evident across this thin unit, including a gradual<br />

increase in plagioclase content from 10 to 30% coupled with a decrease in augite content from<br />

55 to 40% (Fig. 15). Amphibole content drops from 8 to less than 1% while biotite drops to<br />

trace levels. Olivine disappears in <strong>the</strong> upper portions <strong>of</strong> this rock type but is present in<br />

amounts <strong>of</strong> up to 20% near <strong>the</strong> base. Texturally, augite <strong>and</strong> plagioclase remain subhedral<br />

granular <strong>and</strong> poikilitic, respectively, <strong>and</strong> alteration is similar to that observed in <strong>the</strong> underlying<br />

feldspathic olivine clinopyroxenite unit (Fig. 16).<br />

The oxide gabbro unit comprises <strong>the</strong> upper 50 meters <strong>of</strong> <strong>the</strong> drill core (OxGb unit, Figs.<br />

13, 26B). It is generally composed <strong>of</strong> medium-grained, moderately to well foliated<br />

intergranular oxide gabbro, which locally contains up to 1% apatite. The transition between<br />

feldspathic oxide clinopyroxenite <strong>and</strong> oxide gabbro is gradational over two to four meters <strong>and</strong><br />

is marked by a gradual increase in plagioclase content to greater than 40 modal percent, a<br />

decrease in augite, <strong>the</strong> disappearance <strong>of</strong> olivine (or its altered pseudomorph) , <strong>and</strong> a change in<br />

plagioclase habit from poikilitic to subhedral granular (lath-shaped). Modal rock types in this<br />

unit include oxide melagabbro, oxide gabbro, <strong>and</strong> oxide leucogabbro (Fig. 14). Modal changes<br />

upward through this unit include an irregular increase in plagioclase from 30 to 75% <strong>and</strong> a<br />

similarly irregular decrease in augite from 45% to 20% (Fig. 15). Modal abundances <strong>of</strong><br />

amphiboles <strong>and</strong> biotite in <strong>the</strong> oxide gabbro unit are very erratic ranging from trace amounts in<br />

some samples up to 3% combined in o<strong>the</strong>rs. Localized intervals rich in plagioclase tend to be<br />

related to zones <strong>of</strong> intense alteration. Texturally, plagioclase ranges from poikilitic at <strong>the</strong> base<br />

to subprismatic near <strong>the</strong> top, while augite transitions from subhedral granular at <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

29


unit to subprismatic at <strong>the</strong> top (Fig. 16). Uralitic alteration <strong>of</strong> augite <strong>and</strong> sausseritic<br />

(epid+ser+calc) alteration <strong>of</strong> plagioclase tends to be moderate to strong throughout <strong>the</strong> unit.<br />

30


Figure 13. Lithostratigraphy <strong>of</strong> drill hole BIC01-01 with photos <strong>of</strong> core from <strong>the</strong> major units.<br />

A) Medium-grained, moderately foliated, intergranular apatitic oxide gabbro.<br />

B) Medium fine-grained, feldspathic olivine clinopyroxenite with poikilitic plagioclase.<br />

C) Medium-grained feldspathic wehrlite with poikilitic plagioclase.<br />

Figure 14. Modal rock types <strong>of</strong> samples taken from drill core BIC01-01 based on relative<br />

proportions <strong>of</strong> olivine, clinopyroxene, <strong>and</strong> plagioclase. Samples are color coded to<br />

lithostratigraphic unit shown in Figure 13 <strong>and</strong> to <strong>the</strong>ir oxide mode (> or < 15%). Base<br />

modified from Miller et al. 2002.<br />

31


Figure 15. Stratigraphic variation in modal abundance <strong>of</strong> plagioclase, clinopyroxene <strong>and</strong><br />

olivine through BIC01-01. Modal mineralogy visually estimated from 48 thin sections.<br />

Magnetic susceptibility measured by KEMC is taken to be a proxy for Fe-Ti oxide<br />

content.<br />

32


Figure 16. Stratigraphic variation in grain size, mineral habit, <strong>and</strong> alteration <strong>of</strong> olivine,<br />

clinopyroxene, <strong>and</strong> plagioclase through drill core BIC01-01.<br />

33


3.2.2 08BIC044<br />

This 731m long hole drilled at a 65 degree angle to <strong>the</strong> north (Figs. 2 <strong>and</strong> 5) provides<br />

<strong>the</strong> most complete pr<strong>of</strong>ile through <strong>the</strong> igneous stratigraphy <strong>of</strong> <strong>the</strong> intrusion. In addition to <strong>the</strong><br />

four major lithostratigraphic units observed in BIC01-01, 08BIC044 also contains two more<br />

lithostratigraphic units in <strong>the</strong> lower 170 meters <strong>of</strong> <strong>the</strong> core. The additional lithostratigraphic<br />

units include a basal feldspathic wehrlite, which is in intrusive contact with granitic gneiss, <strong>and</strong><br />

an overlying feldspathic olivine clinopyroxenite (Fig. 17). The olivine clinopyroxenite unit is<br />

<strong>the</strong>n overlain by <strong>the</strong> four units documented in BIC01-01: feldspathic wehrlite, which near its<br />

base is cut by several diabase dikes <strong>of</strong> various thicknesses, feldspathic olivine clinopyroxenite,<br />

feldspathic oxide clinopyroxenite, <strong>and</strong> finally oxide gabbro.<br />

The possibility that <strong>the</strong> lower feldspathic wehrlite <strong>and</strong> olivine clinopyroxenite are fault<br />

repeated units <strong>of</strong> <strong>the</strong>ir upper equivalents is discounted by <strong>the</strong> contact between <strong>the</strong> lower olivine<br />

clinopyroxenite <strong>and</strong> <strong>the</strong> upper feldspathic wehrlite being clearly an igneous contact.<br />

Moreover, <strong>the</strong> variations in texture, mineralogy <strong>and</strong> chemistry are distinctive between <strong>the</strong><br />

lower four units, as will be described below. Hereafter, <strong>the</strong> lower four units identified in<br />

08BIC044 (Fig. 17) will be referred to as <strong>the</strong> lower feldspathic wehrlite, <strong>the</strong> lower olivine<br />

clinopyroxenite, <strong>the</strong> upper feldspathic wehrlite, <strong>and</strong> <strong>the</strong> upper olivine clinopyroxenite.<br />

The lower feldspathic wehrlite unit sits in sharp contact above granitic gneisses <strong>of</strong> <strong>the</strong><br />

Nor<strong>the</strong>rn Complex <strong>and</strong> is made up 125 meters <strong>of</strong> medium to medium coarse-grained wehrlite<br />

<strong>and</strong> feldspathic wehrlite with varying concentrations <strong>of</strong> <strong>Cu</strong>-<strong>Ni</strong> sulfide. The unit is<br />

predominantly made up <strong>of</strong> feldspathic wehrlite but locally ranges to an olivine melagabbro or<br />

wehrlite (Fig. 18). Like <strong>the</strong> basal section <strong>of</strong> <strong>the</strong> feldspathic wehrlite exposed, in BIC01-01, <strong>the</strong><br />

34


lower feldspathic wehrlite unit in 08BIC044 is distinctly variable in modal mineralogy <strong>and</strong><br />

texture <strong>and</strong> alteration in <strong>the</strong> 30 meters above <strong>the</strong> basal contact (Fig. 25A). However, ra<strong>the</strong>r<br />

than being heterogeneous, <strong>the</strong> basal zone in 08BIC044 shows systematic changes in mode <strong>and</strong><br />

texture up from <strong>the</strong> basal contact. In <strong>the</strong> basal zone, <strong>the</strong> following changes are observed up<br />

section:<br />

• Olivine mode increases while plagioclase <strong>and</strong> augite decrease (Fig. 19);<br />

• Grain size (defined by olivine) grades from medium fine to medium coarse (Fig. 20);<br />

• Plagioclase habit changes from subpoikilitic to poikilitic, with oikocrysts reaching a<br />

maximum diameter <strong>of</strong> 12 millimeters (Fig. 20);<br />

• Augite habit changes from subprismatic granular to poikilitic with oikocrysts reaching<br />

7 millimeters across (Fig. 20); <strong>and</strong><br />

• Alteration <strong>of</strong> olivine to serpentine grades from strong to moderate while plagioclase<br />

alteration increases from moderate to complete (Fig. 20).<br />

The upper three quarters <strong>of</strong> <strong>the</strong> lower feldspathic wehrlite unit shows a reversal <strong>of</strong><br />

many trend observed in <strong>the</strong> basal contact zone. These include a gradual increase in modal<br />

augite <strong>and</strong> amphibole from 20 to 35% <strong>and</strong> 5 to 20% (Fig. 28A) respectively, <strong>and</strong> a decrease in<br />

olivine mode from 60% to 40% (Fig. 19). Biotite is present in <strong>the</strong> unit in modal percentages<br />

from trace to 4%. Mineral textures in <strong>the</strong> upper 90 meters <strong>of</strong> <strong>the</strong> lower feldspathic wehrlite are<br />

generally constant <strong>and</strong> consist <strong>of</strong> anhedral granular biotite, poikilitic plagioclase, poikilitic to<br />

subpoikilitic augite <strong>and</strong> amphibole, <strong>and</strong> subhedral granular olivine (Fig. 20). Alteration is also<br />

uniform in <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> lower wehrlite unit with weakly altered augite, strongly to<br />

completely altered plagioclase, <strong>and</strong> moderately altered olivine (Fig. 25B).<br />

35


The lower feldspathic wehrlite unit is overlain by 30-meter-thick unit <strong>of</strong> mediumgrained,<br />

intergranular feldspathic olivine clinopyroxenite (Fig. 26A). The contact between <strong>the</strong><br />

wehrlite <strong>and</strong> clinopyroxenite units is gradational over one to three meters <strong>and</strong> is marked by an<br />

increase in augite mode to greater than 40%, a decrease in olivine mode to less than 40%, a<br />

reduction in grain size from medium coarse to medium-grained, <strong>and</strong> a change in augite habit<br />

from subpoikilitic to subhedral granular (Figs. 19 <strong>and</strong> 20). Amphibole <strong>and</strong> biotite contents are<br />

2 to 5% <strong>and</strong> 1 to 2% respectively <strong>and</strong> are both anhedral granular. The modal composition <strong>of</strong><br />

this thin unit is quite variable, with modes <strong>of</strong> augite varying by as much as 25% (Fig. 19).<br />

The transition from <strong>the</strong> lower feldspathic clinopyroxenite to <strong>and</strong> <strong>the</strong> upper feldspathic<br />

wehrlite unit is complicated by <strong>the</strong> occurrence <strong>of</strong> three diabase dikes ranging from three to ten<br />

meters thick emplaced into <strong>the</strong> basal part <strong>of</strong> <strong>the</strong> upper feldspathic wehrlite unit (Fig. 17). The<br />

lowermost dike sits directly in contact with a complex layer <strong>of</strong> chert <strong>and</strong> carbonate inclusions.<br />

The dike contains frequent, several centimeter wide, gneiss inclusions throughout. The three<br />

dikes are aphinitic at <strong>the</strong> margins where <strong>the</strong>y are in sharp contact with <strong>the</strong> surrounding wehrlite<br />

or chert carbonate. The coarser grained centers are made up <strong>of</strong> fine to medium fine-grained<br />

intergranular oxide melagabbro <strong>and</strong> oxide gabbro (Fig. 27A).<br />

Excluding <strong>the</strong> diabase dikes <strong>and</strong> inclusions <strong>of</strong> chert carbonate <strong>and</strong> gneiss, <strong>the</strong> upper<br />

feldspathic wehrlite unit below 400 meters depth in <strong>the</strong> core is modally variable, ranging from<br />

feldspathic wehrlite, wehrlite, <strong>and</strong> melatroctolite in modal rock type (Fig. 18). Plagioclase,<br />

augite, <strong>and</strong> olivine contents range from 15 to 35%, 25 to 35%, <strong>and</strong> 30 to 55%, respectively.<br />

Within this basal interval plagioclase <strong>and</strong> olivine habits remain consistently subpoikilitic <strong>and</strong><br />

subhedral granular, respectively. Augite exhibits subhedral granular habit through most <strong>of</strong> <strong>the</strong><br />

36


interval but grades to a subpoikilitic habit near <strong>the</strong> top.<br />

Above 400 meters depth in 08BIC044, <strong>the</strong> upper feldspathic wehrlite unit composed <strong>of</strong><br />

relatively homogenous wehrlites <strong>and</strong> feldspathic wehrlites (Fig. 25B). This upper interval is<br />

characterized by generally constant plagioclase, augite, olivine, amphibole, <strong>and</strong> biotite modes<br />

<strong>of</strong> 15 to 20%, 10 to 15%, <strong>and</strong> 50 to 65%, 3 to 5%, trace to 2% respectively (Fig. 19). Grain<br />

size gradually decreases from medium coarse to medium fine-grained (Fig. 20). Augite habit<br />

changes sympa<strong>the</strong>tically with <strong>the</strong> grain size from subpoikilitic to subhedral granular upsection<br />

(Fig. 20). Plagioclase <strong>and</strong> olivine habits are consistently poikilitic <strong>and</strong> subhedral granular,<br />

respectively (Fig. 20). Amphibole habit is generally poikolitic to subpoikilitic but ranges to<br />

anhedral granular in some instances. Alteration is consistently weak for augite, strong for<br />

plagioclase, <strong>and</strong> grades from strong to moderate up section for olivine (Figs. 20, 27B).<br />

Comparing <strong>the</strong> upper <strong>and</strong> lower feldspathic wehrlites, <strong>the</strong>re are several noticeable<br />

distinctions in modal mineralogy <strong>and</strong> texture. Excluding <strong>the</strong> heterogeneous basal sections <strong>of</strong><br />

both units, <strong>the</strong> upper feldspathic wehrlite unit is more consistently olivine-rich (>60 modal %),<br />

plagioclase-rich (>15%), <strong>and</strong> augite-poor (


<strong>the</strong> dramatic increase in clinopyroxene abundance from 18 to 75%. This very homogenous<br />

unit is made up <strong>of</strong> olivine clinopyroxenite <strong>and</strong> feldspathic olivine clinopyroxenite (Fig. 18).<br />

Poikilitic plagioclase content is consistently low in <strong>the</strong> unit, ranging in modal abundance from<br />

5 to 10%. Olivine mode remains constant at 15%. Augite is consistently anhedral granular,<br />

but its abrupt increase in abundance changes its textural occurrence from interstitial in <strong>the</strong><br />

upper feldspathic wehrlite unit to intergranular in <strong>the</strong> upper feldspathic clinopyroxenite unit.<br />

Amphibole <strong>and</strong> biotite are present in <strong>the</strong> unit but only in trace amounts.<br />

Above <strong>the</strong> upper feldspathic olivine clinopyroxenite unit is a 17-meter-thick interval <strong>of</strong><br />

medium- to medium fine-grained feldspathic oxide clinopyroxenite with or without olivine.<br />

The contact between this unit <strong>and</strong> <strong>the</strong> previous is marked by a dramatic increase in oxide<br />

content up to 20 to 30% over one to two meters. The abrupt increase in oxide is most obvious<br />

from <strong>the</strong> magnetic susceptibility measurements (Fig. 19). Modally, <strong>the</strong> rock types comprising<br />

this thin unit range from feldspathic olivine oxide clinopyroxenites to feldspathic oxide<br />

clinopyroxenites (Fig. 18). Poikilitic plagioclase content increases slightly up-section from 10<br />

to 20%, whilst anhedral granular augite content slightly decreases (70-50%). Olivine ranges<br />

from a maximum mode <strong>of</strong> 15% to being absent. Amphibole <strong>and</strong> biotite content ranges from<br />

trace to a combined 2% <strong>and</strong> are consistently <strong>of</strong> anhedral granular habit. The top <strong>of</strong> this unit<br />

shows some significant textural changes including a subtle coarsening, a transition from<br />

poikilitic to subpoikilitic plagioclase <strong>and</strong> a range <strong>of</strong> augite habits from subpoikilitic to<br />

subprismatic (Fig. 20).<br />

Finally, <strong>the</strong> upper 45 meters <strong>of</strong> <strong>the</strong> 08BIC044 core is composed <strong>of</strong> a medium-grained,<br />

well-foliated, intergranular oxide gabbro. This final unit consists <strong>of</strong> oxide gabbros <strong>and</strong><br />

38


localized gabbroic oxide anorthosites (Fig. 18). As observed in core BIC01-01, localized<br />

intervals <strong>of</strong> gabbroic anorthosite seem to be intimately associated with zones <strong>of</strong> extreme<br />

epidote-sericite-carbonate alteration. The oxide gabbro unit contains 50 to 70% lath-shaped<br />

plagioclase <strong>and</strong> 15 to 25% subhedral granular augite (Fig. 26B). Olivine is no longer present at<br />

this level in <strong>the</strong> intrusion. Amphibole <strong>and</strong> biotite are only present in trace amounts. Plagioclase<br />

<strong>and</strong> augite range from moderately to strongly altered to sericite <strong>and</strong> uralite, respectively.<br />

The mineralogic, textural <strong>and</strong> alteration attributes <strong>of</strong> <strong>the</strong> oxide gabbro, feldspathic oxide<br />

clinopyroxenite, upper feldspathic olivine clinopyroxenite, <strong>and</strong> upper feldspathic wehrlite<br />

stratigraphic units from drill core 08BIC044 are generally similar to <strong>the</strong> same units identified<br />

in drill core BIC01-01 <strong>and</strong> <strong>the</strong> units described in field mapping. Based on <strong>the</strong>se similarities, it<br />

is reasonable to conclude that <strong>the</strong>se four units directly correlate with one ano<strong>the</strong>r. The<br />

feldspathic olivine clinopyroxenite <strong>and</strong> feldspathic wehrlite that occur in <strong>the</strong> lower part <strong>of</strong> drill<br />

core 08BIC044, although sharing generally comparable lithologies with <strong>the</strong> upper units <strong>of</strong> <strong>the</strong><br />

same name, clearly constitute a distinct package <strong>of</strong> ultramafic rocks. Therefore, to formalize<br />

<strong>the</strong> distinction between <strong>the</strong> two sequences <strong>of</strong> ultramafic rocks <strong>and</strong> to distinguish <strong>the</strong> ultramafic<br />

<strong>and</strong> gabbroic rocks observed in drill core <strong>and</strong> in outcrop, <strong>the</strong> BIC will be hereafter subdivided<br />

into three major zones: <strong>the</strong> Lower Ultramafic Zone (LUZ), <strong>the</strong> Upper Ultramafic zone (UUZ),<br />

<strong>and</strong> <strong>the</strong> Gabbro Zone (GZ) (Figs. 17, 19, <strong>and</strong> 20). The Lower Ultramafic Zone is composed <strong>of</strong><br />

<strong>the</strong> lower wehrlite unit <strong>and</strong> <strong>the</strong> lower clinopyroxenite unit. The Upper Ultramafic Zone is<br />

made up <strong>of</strong> <strong>the</strong> upper wehrlite, upper clinopyroxenite, <strong>and</strong> oxide clinopyroxenite units. Finally<br />

<strong>the</strong> Gabbro Zone is comprised <strong>of</strong> <strong>the</strong> oxide gabbro unit.<br />

39


Figure 17. Generalized lithostratigraphy <strong>of</strong> drill hole 08BIC044 with photos <strong>of</strong> major<br />

lithologies. A) Medium-grained, intergranular, apatitic oxide gabbro. B) Mediumgrained,<br />

feldspathic olivine oxide clinopyroxenite. C) Medium fine-grained,<br />

feldspathic olivine clinopyroxenite. D) Medium to medium coarse-grained feldspathic<br />

wehrlite. E) Very fine to fine-grained diabase dike. F) Medium-grained, feldspathic<br />

olivine clinopyroxenite. G) Medium coarse-grained, feldspathic wehrlite.<br />

Figure 18. Modal rock types <strong>of</strong> samples taken from drill core 08BIC044 based on proportions<br />

<strong>of</strong> olivine, clinopyroxene, <strong>and</strong> plagioclase estimated from petrographic observations.<br />

Samples are color coded to lithostratigraphic unit shown in Figure 17 <strong>and</strong> to <strong>the</strong>ir oxide<br />

mode (> or < 15%). Base Modified from Miller et al. 2002.<br />

41


Figure 19. Stratigraphic variation in modal abundance <strong>of</strong> plagioclase, clinopyroxene <strong>and</strong><br />

olivine through 08BIC044. Modal mineralogy visually estimated from 79 thin sections.<br />

Magnetic susceptibility measured by KEMC is taken to be a proxy for Fe-Ti oxide<br />

content.<br />

42


Figure 20. Stratigraphic variation in grain size, mineral habit, <strong>and</strong> alteration <strong>of</strong> olivine,<br />

clinopyroxene, <strong>and</strong> plagioclase through drill core 08BIC044.<br />

43


3.2.3 06BIC007<br />

Drill core 06BIC007 is a 79-meter-long hole drilled vertically into <strong>the</strong> Little BIC<br />

intrusion (Fig. 2). The hole encountered approximately 36 meters <strong>of</strong> heterogeneous ultramafic<br />

rock with a narrow interval <strong>of</strong> semi-massive sulfide mineralization at <strong>the</strong> base (Fig. 21). The<br />

basal contact <strong>of</strong> <strong>the</strong> Little BIC occurs at 36 meters where semi-massive to massive sulfide<br />

comes into contact with hornfels siltstone <strong>of</strong> <strong>the</strong> Michigamme Formation. The 06BIC007 core<br />

is composed <strong>of</strong> vari-textured olivine melagabbro, feldspathic wehrlite, or feldspathic<br />

clinopyroxenite (Fig. 22). Modal abundances <strong>of</strong> <strong>the</strong> three major minerals plagioclase, augite,<br />

<strong>and</strong> olivine are heterogeneous throughout (Fig. 23). Plagioclase content ranges from 10 to<br />

35%, augite from 20 to 45%, <strong>and</strong> olivine from 15 to 45%. Amphibole <strong>and</strong> biotite contents<br />

range from 2 to 10% <strong>and</strong> 1 to 3% respectively. Grain size varies from medium fine to medium<br />

(Fig. 24). Plagioclase habit is generally poikilitic except for one sample at <strong>the</strong> base which<br />

exhibits a subhedral granular habit. Augite habit is anhedral granular in <strong>the</strong> bottom half <strong>of</strong> <strong>the</strong><br />

core <strong>and</strong> poikilitic in <strong>the</strong> upper half. Olivine is subhedral granular throughout (Fig. 24). Both<br />

amphibole <strong>and</strong> biotite display anhedral granular habits in <strong>the</strong> lower half, but amphibole<br />

becomes subpoikolitic near <strong>the</strong> top while biotite remains anhedral (Fig. 28A).<br />

06BIC007 has yielded <strong>the</strong> highest <strong>Cu</strong>, <strong>Ni</strong>, <strong>and</strong> <strong>PGE</strong> values present in <strong>the</strong> Little BIC<br />

intrusion. Sulfide content increases down core until semi-massive sulfides are intersected at<br />

<strong>the</strong> base <strong>of</strong> <strong>the</strong> ultramafic intrusive rocks. Semi-massive <strong>and</strong> massive sulfides persist a few<br />

meters into <strong>the</strong> surrounding slates <strong>of</strong> <strong>the</strong> Michigamme formation.<br />

44


Figure 21. Lithostratigraphy <strong>of</strong> drill hole 06BIC006 with photos showing heterogeneity <strong>of</strong> <strong>the</strong><br />

major lithology. A) Medium-grained feldspathic wehrlite. B) Medium-grained,<br />

sulfide-bearing, feldspathic olivine clinopyroxenite. C) Fine- to medium fine-grained,<br />

sulfide-bearing, olivine melagabbro.<br />

45


Figure 22. Modal rock type <strong>of</strong> samples taken from drill core 06BIC007 plotted on an olivine,<br />

CPX, plagioclase ternary diagram. Base modified from Miller et al. 2002.<br />

46


Figure 23. Modal mineralogy <strong>of</strong> plagioclase, CPX, <strong>and</strong> olivine, as well as magnetic<br />

susceptibility through drill core 06BIC007. Modal mineralogy visually estimated from<br />

petrographic observations. Magnetic susceptibility measured by KEMC.<br />

47


Figure 24. Grain size, mineral habit, <strong>and</strong> alteration <strong>of</strong> plagioclase, augite (CPX), <strong>and</strong> olivine<br />

from samples collected through drill core 06BIC007.<br />

48


A<br />

B<br />

Figure 25. A.) Photomicrograph <strong>of</strong> <strong>the</strong> chill zone in ppl showing alteration <strong>of</strong> olivine <strong>and</strong><br />

subhedral granular texture <strong>of</strong> augite. B.) Photomicrograph <strong>of</strong> <strong>the</strong> feldspathic wehrlite<br />

unit in ppl showing <strong>the</strong> common habit <strong>and</strong> appearance <strong>of</strong> olivine, augite, <strong>and</strong> plag.<br />

49


A<br />

B<br />

Figure 26. A) Photomicrograph <strong>of</strong> <strong>the</strong> feldspathic olivine clinopyroxenite unit in plain<br />

polarized light (ppl) showing its common textures <strong>and</strong> habits. B.) Photomicrograph <strong>of</strong><br />

<strong>the</strong> Oxide gabbro unit in ppl.<br />

50


A<br />

B<br />

Figure 27. A.) Photomicrograph <strong>of</strong> <strong>the</strong> interior <strong>of</strong> an associated diabase dike with common<br />

textures <strong>and</strong> mineral habits in cross polarized light. B.) Photomicrograph showing <strong>the</strong><br />

common fine grain bluish alteration <strong>of</strong> plagioclase <strong>and</strong> <strong>the</strong> robust nature <strong>of</strong> CPX (ppl).<br />

51


A<br />

B<br />

Figure 28. A.) Photomicrograph displaying <strong>the</strong> uncommonly high amphibole content <strong>and</strong> its<br />

subpoikolitic habit (ppl). B.) Occurrence <strong>of</strong> apatite in <strong>the</strong> oxide gabbro zone (ppl).<br />

52


3.3 Mineral Chemistry <strong>and</strong> Cryptic Layering<br />

Most layered mafic intrusions display an initially high Mg# (=Mg/(Mg+Fe), cation %)<br />

in mafic minerals (olivine <strong>and</strong> pyroxenes) that progressively decreases (becomes more ironrich)<br />

as fractional crystallization progresses. In addition, abrupt increases in Mg# can indicate<br />

episodes <strong>of</strong> magma recharge. To evaluate <strong>the</strong>se processes, SEM-EDS analyses <strong>of</strong> olivine <strong>and</strong><br />

augite were measured for 31 samples through <strong>the</strong> stratigraphy <strong>of</strong> <strong>the</strong> BIC intrusion pr<strong>of</strong>iled by<br />

drill core 08BIC044 (see Appendix B for complete mineral chemical data). Stratigraphic<br />

variations in mg# (= Mg/(Mg+Fe +2 ) * 100, cation %) in olivine (Fo) <strong>and</strong> augite (En’) from drill<br />

core 08BIC044 show two cycles <strong>of</strong> decreasing Mg#. The lower cycle corresponds to <strong>the</strong> lower<br />

ultramafic zone <strong>and</strong> upper cycle is defined by <strong>the</strong> upper ultramafic zone <strong>and</strong> <strong>the</strong> gabbro zone<br />

(Fig. 29). This double trend is particularly obvious in <strong>the</strong> En’ content <strong>of</strong> augite due in part to<br />

its being relatively unaltered compared to olivine. Indeed, olivine in <strong>the</strong> upper 200m <strong>and</strong> <strong>the</strong><br />

lowest 15m <strong>of</strong> <strong>the</strong> core is completely altered.<br />

Starting from <strong>the</strong> base <strong>of</strong> <strong>the</strong> drill core, <strong>the</strong> lower feldspathic wehrlite unit has an<br />

average En content <strong>of</strong> 83.1 <strong>and</strong> an average Fo <strong>of</strong> 81.5 (Fig. 29). The Fo <strong>and</strong> En contents<br />

remain roughly constant throughout <strong>the</strong> wehrlite unit, though one notable trend is a decrease in<br />

En’ from about En 84 to En 80 at <strong>the</strong> basal contact. The trend <strong>of</strong> Fo content at <strong>the</strong> basal<br />

contact is not clear because <strong>of</strong> complete alteration <strong>of</strong> olivine in <strong>the</strong> lowest two samples.<br />

Passing into <strong>the</strong> overlying feldspathic olivine clinopyroxenite, both En’ <strong>and</strong> Fo contents<br />

decrease significantly. En’ content <strong>of</strong> decreases from 83.8 to 78.7. Fo content decreases even<br />

more dramatically from 79.5 at <strong>the</strong> lower wehrlite-clinopyroxenite contact to 72.0 in <strong>the</strong><br />

middle <strong>of</strong> <strong>the</strong> 25m-thick, lower feldspathic olivine clinopyroxenite unit.<br />

53


At <strong>the</strong> contact between <strong>the</strong> lower <strong>and</strong> upper ultramafic zones, augite composition<br />

increases from En’78 to En’81.8 <strong>and</strong> <strong>the</strong>n increases to En’85 about 20 meters above <strong>the</strong><br />

contact. Upward through <strong>the</strong> rest <strong>of</strong> <strong>the</strong> 263-thick, upper feldspathic wehrlite unit, <strong>the</strong> En’<br />

content is fairly constant between 83 <strong>and</strong> 86. The Fo content <strong>of</strong> olivine also gradually<br />

increases in <strong>the</strong> lower 50 meters <strong>of</strong> <strong>the</strong> upper feldspathic wehrlite unit (from Fo77.9 to Fo81.2)<br />

<strong>and</strong> <strong>the</strong>n remains constant throughout <strong>the</strong> remainder <strong>of</strong> <strong>the</strong> unit at about Fo81. Beginning with<br />

<strong>the</strong> abrupt increase in augite mode in <strong>the</strong> upper feldspathic olivine clinopyroxenite <strong>and</strong> up into<br />

<strong>the</strong> oxide gabbro unit, <strong>the</strong> En’ content gradually <strong>and</strong> systematically decreases from 85 to 75.<br />

Unfortunately, fresh olivine was found only at <strong>the</strong> base <strong>of</strong> <strong>the</strong> clinopyroxenite units <strong>and</strong> is<br />

altered or not present in <strong>the</strong> upper units. The one olivine analysis at <strong>the</strong> base <strong>of</strong> <strong>the</strong> olivine<br />

clinopyroxenite unit does show a significant decrease in average Fo, suggesting <strong>the</strong> beginning<br />

<strong>of</strong> an iron-enrichment trend similar to that shown by En’ in augite.<br />

54


Figure 29. Stratigraphic variation in Fo <strong>and</strong> En’ contents <strong>of</strong> olivine <strong>and</strong> augite, respectively,<br />

through drill core 08BIC044. See Appendix B for complete mineral chemical data.<br />

55


3.4 Whole rock geochemistry<br />

Geochemical analyses <strong>and</strong> assays were obtained for twenty seven samples collected<br />

throughout <strong>the</strong> stratigraphy <strong>of</strong> <strong>the</strong> BIC intrusion. Data was acquired for five samples from drill<br />

core BIC01-01, twenty one samples from drill hole 08BIC044 including two st<strong>and</strong>ards, <strong>and</strong><br />

one field sample from <strong>the</strong> marginal zone. All samples were analyzed for major <strong>and</strong> trace<br />

geochemistry <strong>and</strong> assayed for precious metals (Pt, Pd, <strong>and</strong> Au). Geochemical analyses are<br />

tabulated by major elements, trace elements, <strong>and</strong> chalcophile elements <strong>and</strong> by drill hole <strong>and</strong><br />

field sample in Tables 1 through 9.<br />

All values in weight percent<br />

56


All values in parts per million (ppm)<br />

57


All values in parts per million (ppm)<br />

58


4.0 Discussion<br />

The petrographic, mineral chemical <strong>and</strong> lithogeochemical data presented in <strong>the</strong> results<br />

section can be used to constrain <strong>and</strong> interpret several aspects regarding <strong>the</strong> petrogenesis <strong>of</strong> <strong>the</strong><br />

BIC intrusion. First to be discussed is paragenetic sequence <strong>of</strong> phase crystallization <strong>of</strong> <strong>the</strong><br />

intrusion implied from its cumulate stratigraphy, which is in <strong>and</strong> <strong>of</strong> itself inferred from<br />

interpretations <strong>of</strong> mineral textures <strong>and</strong> modes. Next, <strong>the</strong> cryptic layering <strong>of</strong> solid solution<br />

minerals will be evaluated in light <strong>of</strong> <strong>the</strong> mineral paragenesis. The cumulus stratigraphy <strong>and</strong><br />

cryptic layering data will <strong>the</strong>n be used to build a two-stage model <strong>of</strong> magma emplacement <strong>and</strong><br />

fractional crystallization. The next discussion will consider <strong>the</strong> composition <strong>of</strong> <strong>the</strong> magma that<br />

was evidently parental to both magma emplacement events. In <strong>the</strong> final discussion section,<br />

sulfide mineralization will be discussed in <strong>the</strong> context <strong>of</strong> <strong>the</strong> magmatic history <strong>of</strong> <strong>the</strong> BIC<br />

intrusion <strong>and</strong> will include speculation as to <strong>the</strong> petrogenetic relationship between <strong>the</strong> BIC <strong>and</strong><br />

Little BIC intrusions.<br />

4.1 <strong>Cu</strong>mulus Stratigraphy <strong>and</strong> Mineral Paragenesis<br />

A common attribute <strong>of</strong> mafic layered intrusions is that <strong>the</strong>y show evidence <strong>of</strong> magmatic<br />

differentiation by phase layering <strong>and</strong> cryptic mineral layering. Although considerable debate<br />

persists about what produces this differentiation, crystal fractionation driven by crystal settling<br />

(Wager <strong>and</strong> Brown, 1967) or liquid fractionation driven by liquid expelled from magma<br />

crystallizing in boundary layers (McBirney, 1997), it is clear that separation <strong>of</strong> primocrystic<br />

crystals from <strong>the</strong> mo<strong>the</strong>r liquid is key. Evidence <strong>of</strong> this separation is given by <strong>the</strong> textures <strong>of</strong><br />

rocks in differentiated intrusions wherein well-formed minerals (primocrysts) predominate<br />

over interstitially textured minerals that evidently crystallized later from magma entrapped<br />

59


etween <strong>the</strong> primocrysts. Additional evidence <strong>of</strong> fractionation is provided by <strong>the</strong> cryptic<br />

variation in solid solution primocrysts (mg# in olivine <strong>and</strong> pyroxene, An content <strong>of</strong><br />

plagioclase).<br />

In <strong>the</strong> classic cumulate nomenclature, first proposed by Wager et al. (1960) <strong>and</strong><br />

redefined by Irvine (1982) to accommodate both styles <strong>of</strong> fractionation, early-formed, wellshaped<br />

primocrysts are termed cumulus minerals, whereas minerals exhibiting subpoikilitic to<br />

poikilitic textures are termed intercumulus minerals. In addition to mineral habit, multiply<br />

saturated cumulus phases must occur in approximately <strong>the</strong> cotectic proportions predicted from<br />

experimental data (e.g., McCallum et al., 1980). Applying this interpretation <strong>of</strong> <strong>the</strong> cumulate<br />

nomenclature to <strong>the</strong> BIC rock types reveals a two-stage cumulus mineral paragenesis resulting<br />

from bottom-up fractional crystallization (Fig. 30).<br />

The first stage <strong>of</strong> fractional crystallization corresponds to <strong>the</strong> development <strong>of</strong> <strong>the</strong> lower<br />

ultramafic zone observed in core 08BIC044 (Fig. 30). The lower wehrlite unit would be<br />

interpreted as an olivine cumulate with postcumulus augite <strong>and</strong> plagioclase. Although augite<br />

develops an anhedral to subhedral granular texture in <strong>the</strong> lower 30 meters <strong>of</strong> <strong>the</strong> unit above <strong>the</strong><br />

basal contact (Fig. 30), augite is not in cotectic proportions with olivine (Aug:Ol ≈ 3:1;<br />

McCallum et al., 1980) <strong>and</strong> <strong>the</strong>refore is not a primocrystic/cumulus phase. Ra<strong>the</strong>r, this more<br />

granular habit <strong>of</strong> augite in <strong>the</strong> basal interval, as well as a change in plagioclase texture from<br />

poikilitic to subpoikilitic <strong>and</strong> a fining in olivine grain size, is likely <strong>the</strong> result <strong>of</strong> more rapid<br />

cooling at <strong>the</strong> basal contact resulting in early saturation <strong>of</strong> augite <strong>and</strong> plagioclase from <strong>the</strong><br />

intercumulus magma. The increase in augite <strong>and</strong> plagioclase mode in <strong>the</strong> lower 30 meters <strong>of</strong><br />

60


<strong>the</strong> lower feldspathic wehrlite unit (Fig. 30) is also evidence <strong>of</strong> rapid cooling producing an<br />

olivine orthocumulate at <strong>the</strong> basal contact which grades upward into a olivine mesocumulate.<br />

Gabbro<br />

Zone<br />

<strong>Cu</strong>mulate<br />

Stratigraphy<br />

Pl+Cpx+Ox<br />

Cpx+Ox±Ol<br />

Cpx+Ol<br />

Lower Ultramafic Zone Upper Ultramafic Zone<br />

Ol<br />

Orthocumulate<br />

Contact Zone<br />

Cpx+Ol<br />

Ol<br />

Orthocumulate<br />

Contact Zone<br />

Figure 30. <strong>Cu</strong>mulate stratigraphy in core 08BIC044 interpreted from mineral habit <strong>and</strong> modal<br />

mineralogy.<br />

Above this “orthocumulate contact zone” in <strong>the</strong> lower feldspathic wehrlite unit (Fig.<br />

30), <strong>the</strong> olivine mesocumulate grades upward back to an olivine orthocumulate as cumulus<br />

olivine decreases in mode <strong>and</strong> postcumulus augite increases. The abrupt transition from<br />

subpoikilitic to anhedral granular augite <strong>and</strong> <strong>the</strong> increase in Aug/Ol ratio to greater than unity<br />

at 530 meters depth in core 08BIC044 is taken to mark <strong>the</strong> cumulus arrival <strong>of</strong> augite. In<br />

cumulate nomenclature, <strong>the</strong> feldspathic olivine clinopyroxenite unit produced by this change in<br />

61


texture <strong>and</strong> mode classifies this rock as an augite-olivine mesocumulate with postcumulus<br />

plagioclase.<br />

Before plagioclase reached saturation, a second larger magma pulse reset <strong>the</strong> cumulus<br />

paragenesis to olivine-only crystallization at about 500 meter depth in core 08BIC044. Initial<br />

solidification <strong>of</strong> <strong>the</strong> second pulse led to <strong>the</strong> formation <strong>of</strong> ano<strong>the</strong>r orthocumulate contact zone<br />

up to about 445 meters depth in core 08BIC04 (Fig. 30). The mineralogical <strong>and</strong> textural<br />

attributes <strong>of</strong> this upper orthocumulate contact zone are similar to <strong>the</strong> chill at <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

lower ultramafic zone. Above <strong>the</strong> upper orthocumulate contact zone, an olivine mesocumulate<br />

becomes well developed over a thickness <strong>of</strong> over 200 meters. Although augite is subhedral to<br />

anhedral granular throughout much <strong>of</strong> this interval, its mode is consistently less than 20% <strong>and</strong><br />

far from cotectic relative to olivine mode (~60%). However, at approximately 210 meters in<br />

depth in core 08BIC044, augite mode abruptly increases to over 60% <strong>and</strong> olivine mode drops<br />

below 20% thus indicating that augite saturation was achieved to form an augite-olivine<br />

cumulate with intercumulus plagioclase. The abrupt increase in magnetic susceptibility at<br />

about 70 meters depth in <strong>the</strong> core (Fig. 30) implies that Fe-Ti oxide becomes a cumulus phase<br />

here to create a Cpx + Ox ± Ol cumulate. Finally, at approximately 50 meters depth in core<br />

08BIC044, <strong>the</strong> abrupt increase in plagioclase mode above 50% <strong>and</strong> its change in habit from<br />

subpoikilitic to subhedral granular laths implies that <strong>the</strong> magma reached plagioclase saturation.<br />

The loss <strong>of</strong> olivine at <strong>the</strong> cumulus arrival <strong>of</strong> plagioclase produces a Pl+Cpx+Ox cumulate (Fig.<br />

30).<br />

The cumulate stratigraphy defined by <strong>the</strong> upper ultramafic <strong>and</strong> gabbro zones in both<br />

cores, namely Ol Aug+Ol Aug+Ol+Ox Pl+Aug+Ox, is <strong>the</strong> paragenetic sequence one<br />

62


would expect from <strong>the</strong> fractional crystallization <strong>of</strong> a low-Al tholeiitic ultramafic magma.<br />

While an estimate <strong>of</strong> <strong>the</strong> composition <strong>of</strong> that magma will be made below, a qualitative<br />

assessment <strong>of</strong> a possible parent magma could be made using <strong>the</strong> fosterite-diopside-anorthite<br />

ternary phase diagram shown in Figure 31 (Winter, 2010). The paragenetic sequence <strong>of</strong><br />

crystallization observed in <strong>the</strong> BIC intrusions could be generated by a starting magma<br />

composition corresponding to point PM. Crystallization <strong>of</strong> olivine from such a composition<br />

drives it to <strong>the</strong> olivine-clinopyroxene cotectic line at point C. Crystallization <strong>of</strong> augite <strong>and</strong><br />

olivine in roughly a 3:1 ratio drives <strong>the</strong> magma down <strong>the</strong> cotectic to <strong>the</strong> eutectic point E, where<br />

plagioclase joins in a crystallizing phase. In more complex natural systems, <strong>the</strong> appearance <strong>of</strong><br />

Fe-Ti oxide as a crystallizing phase causes a depletion in silica activity <strong>and</strong> <strong>the</strong> disappearance<br />

<strong>of</strong> olivine (Wager <strong>and</strong> Brown, 1967). This would explain why olivine is lost as a cumulus<br />

phase in <strong>the</strong> BIC paragenetic sequence soon after <strong>the</strong> cumulus appearance <strong>of</strong> oxide.<br />

63


C<br />

E<br />

PM<br />

Figure 31. Fosterite-Anorthite-Diopside ternary phase diagram (from Winter 2010) showing a<br />

a differentiation path <strong>of</strong> a possible parent magma composition (PM) to <strong>the</strong> BIC<br />

intrusion.<br />

4.2 Cryptic Mineral Layering<br />

Complimenting <strong>the</strong> cumulate stratigraphy interpreted above in indicating two stages <strong>of</strong><br />

magma emplacement followed by bottom-up-directed fractional crystallization is <strong>the</strong> cryptic<br />

layering evident in olivine <strong>and</strong> augite (Fig. 32). Stratigraphic variation in <strong>the</strong> En’ content <strong>of</strong><br />

augite <strong>and</strong> Fo content <strong>of</strong> olivine in <strong>the</strong> lower ultramafic zone vary similarly, except in <strong>the</strong> lower<br />

64


<strong>Cu</strong>mulate<br />

Stratigraphy<br />

Pl+Cpx+Ox<br />

Cpx+Ox±Ol<br />

Cpx+Ol<br />

Ol<br />

Orthocumulate<br />

Contact Zone<br />

Cpx+Ol<br />

Ol<br />

Orthocumulate<br />

Contact Zone<br />

Figure 32. Stratigraphic variation <strong>of</strong> En’ content in Augite <strong>and</strong> Fo content <strong>of</strong> olivine in<br />

samples from core 08BIC004. Inferred cryptic layering in En’ <strong>and</strong> Fo shown by dashed<br />

lines. <strong>Cu</strong>mulate stratigraphy interpreted from modal <strong>and</strong> textural data (Fig. 30) is shown<br />

in column to right.<br />

65


orthocumulate contact zone. Here, while <strong>the</strong> En content decreases toward <strong>the</strong> basal contact, <strong>the</strong><br />

Fo content <strong>of</strong> olivine appears to increase (<strong>the</strong> lowest samples are lacking unaltered olivine). A<br />

similar cryptic trend was observed in <strong>the</strong> basal contact zone <strong>of</strong> <strong>the</strong> Tamarack intrusion, which<br />

Goldner (2010) interpreted to be a consequence <strong>of</strong> quenching an olivine porphyritic parent<br />

magma. The high Fo content <strong>of</strong> primocrystic olivine phenocrysts is generally preserved in <strong>the</strong><br />

chill zone by a minimum <strong>of</strong> postcumulus overgrowth <strong>and</strong> subsequent reequilibration. In<br />

contrast, augite in <strong>the</strong> contact zone is not a primocryst, but instead crystallized from <strong>the</strong> magma<br />

transporting <strong>the</strong> olivine phenocrysts. As will be discussed in Section 3.3 below, <strong>the</strong> mg# <strong>of</strong> <strong>the</strong><br />

parental magma is estimated to be in <strong>the</strong> range <strong>of</strong> 68-70.<br />

The cryptic layering <strong>of</strong> mg# in augite <strong>and</strong> olivine above <strong>the</strong> lower orthocumulate<br />

contact zone shows similar trends (Fig. 32). En’ <strong>and</strong> Fo vary little through <strong>the</strong> feldspathic<br />

wehrlite unit while cumulus olivine is crystallizing but decreases dramatically after augite<br />

becomes a cumulus phase. This likely reflects <strong>the</strong> increased depletion <strong>of</strong> MgO from <strong>the</strong><br />

magma due to <strong>the</strong> fractional crystallization <strong>of</strong> mafic silicates <strong>and</strong> <strong>the</strong> fact that augite<br />

incorporates a greater Mg/Fe ratio from <strong>the</strong> magma than olivine (note that En’ contents are<br />

about 5% greater than Fo contents in a given sample). This decrease in mg# <strong>of</strong> olivine <strong>and</strong><br />

augite is abruptly reversed crossing from <strong>the</strong> olivine clinopyroxenite cumulate <strong>of</strong> <strong>the</strong> lower<br />

ultramafic zone into <strong>the</strong> feldspathic wehrlite orthocumulate at <strong>the</strong> base <strong>of</strong> <strong>the</strong> upper ultramafic<br />

zone (Fig. 32).<br />

Clearly this contact represents <strong>the</strong> input <strong>of</strong> a new primitive pulse <strong>of</strong> magma above <strong>the</strong><br />

lower ultramafic zone. In contrast to <strong>the</strong> diverging variation <strong>of</strong> En <strong>and</strong> Fo content in <strong>the</strong> lower<br />

orthocumulate zone, however, <strong>the</strong> variation <strong>of</strong> augite <strong>and</strong> olivine composition in <strong>the</strong> upper<br />

66


orthocumulate zone similarly increase in mg# upsection. This coparallel cryptic variation may<br />

have resulted from <strong>the</strong> crystallization <strong>of</strong> postcumulus olivine on primocrystic olivine due to<br />

less rapid cooling <strong>of</strong> <strong>the</strong> new pulse. Subsolidus reequilibration <strong>of</strong> <strong>the</strong> cumulus <strong>and</strong><br />

postcumulus olivine would have produced a significant trapped liquid shift (Barnes et al.,<br />

1978) to lower Fo contents in orthocumulates closer to <strong>the</strong> basal contact. An alternative or<br />

additional explanation is that <strong>the</strong> gradation in compositions in <strong>the</strong> upper contact zone reflects a<br />

mixing between evolved resident magma <strong>and</strong> <strong>the</strong> new pulse <strong>of</strong> more primitive magma.<br />

As observed in <strong>the</strong> lower ultramafic zone, cryptic variation in Fo <strong>and</strong> En through <strong>the</strong><br />

crystallization <strong>of</strong> cumulus olivine in <strong>the</strong> upper feldspathic wehrlite unit is negligible (Fig. 32).<br />

With <strong>the</strong> onset <strong>of</strong> cumulus augite crystallization, however, <strong>the</strong> En’ content systematically<br />

decreases. The Fo content <strong>of</strong> olivine also begins to decrease, but complete alteration in <strong>the</strong><br />

upper olivine clinopyroxenite unit prevents knowing if this trend continues. Still, a smooth<br />

cryptic layering <strong>of</strong> cumulus augite composition through <strong>the</strong> upper ultramafic zone <strong>and</strong> into <strong>the</strong><br />

gabbro zone, coupled with a cumulus phase paragenesis consistent with <strong>the</strong> progressive<br />

differentiation <strong>of</strong> a low-Al, ultramafic magma (Fig. 31), implies that <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> BIC<br />

intrusion experience bottom-up fractional crystallization under closed conditions.<br />

4.3 Emplacement <strong>and</strong> Crystallization Model<br />

With <strong>the</strong> cumulus stratigraphy <strong>and</strong> cryptic layering through core 08BIC004 clearly<br />

showing formation <strong>of</strong> <strong>the</strong> BIC intrusion by two stages <strong>of</strong> magma emplacement followed by<br />

fractional crystallization from <strong>the</strong> floor up, a model is proposed in Figure 33 that integrates<br />

<strong>the</strong>se results with field mapping <strong>and</strong> o<strong>the</strong>r drill core information provided by Kennecott.<br />

67


The BIC intrusion was emplaced as a lens-shaped body in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong><br />

unconformity between Archean gneisses <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Complex <strong>and</strong> overlying<br />

Paleoproterozoic metasedimentary rocks <strong>of</strong> <strong>the</strong> Baraga Group. The Paleoproterozoic sequence<br />

has a moderate dip to <strong>the</strong> north due to occupying <strong>the</strong> nor<strong>the</strong>rn limb <strong>of</strong> a broad anticline (Fig. 1).<br />

The Baraga Group in this area is composed <strong>of</strong> <strong>the</strong> Goodrich Quartzite <strong>and</strong> <strong>the</strong> ,Michigamme<br />

Formation, which is composed <strong>of</strong> four members - a lower chert carbonate, a lower slate, <strong>the</strong><br />

Bijiki sulfide iron formation, <strong>and</strong> an upper slate. At <strong>the</strong> time that <strong>the</strong> BIC intrusion was<br />

emplaced, an unknown thickness <strong>of</strong> Midcontinent Rift volcanics rested unconformably on <strong>the</strong><br />

Baraga Group sedimentary rocks (Fig. 33).<br />

Given <strong>the</strong> more severe chilling effects <strong>of</strong> its contact zone, <strong>the</strong> lower ultramafic zone<br />

magma was <strong>the</strong> first to intrude in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Complex gneiss <strong>and</strong> Goodrich<br />

quartzite unconformity. The presence <strong>of</strong> chert carbonate inclusions near <strong>the</strong> lower <strong>and</strong> upper<br />

ultramafic zone contact imply that this unit formed <strong>the</strong> hanging wall <strong>of</strong> <strong>the</strong> lower ultramafic<br />

zone intrusion (Fig. 33A). Once emplaced <strong>the</strong> lower ultramafic zone magmas began to<br />

fractionally crystallize from <strong>the</strong> base up. Fractional crystallization progressed from cumulus<br />

olivine creating <strong>the</strong> feldspathic wehrlite through cumulus augite <strong>and</strong> olivine creating <strong>the</strong><br />

olivine clinopyroxenite unit. The conduit was <strong>the</strong>n reopened <strong>and</strong> a second pulse <strong>of</strong> ultramafic<br />

magma <strong>of</strong> substantially greater volume was injected above it (Fig. 33B).<br />

The second pulse <strong>of</strong> magma injected above <strong>the</strong> crystallized portions <strong>of</strong> <strong>the</strong> lower<br />

ultramafic zone <strong>and</strong> mixed with <strong>the</strong> remaining uncrystallized magma <strong>of</strong> <strong>the</strong> first pulse. The<br />

second pulse <strong>of</strong> magma ballooned outwards creating a much larger magma chamber which<br />

came to rest with its base just above <strong>the</strong> Goodrich quartzite <strong>and</strong> its top in <strong>the</strong> middle <strong>of</strong> <strong>the</strong><br />

68


upper slate <strong>of</strong> <strong>the</strong> Michigamme formation (Fig. 33C). That <strong>the</strong> second pulse was substantially<br />

larger than <strong>the</strong> first is evidenced by <strong>the</strong> fact that <strong>the</strong> lower ultramafic zone is encountered in<br />

only a few drill cores that penetrate deep beneath <strong>the</strong> nor<strong>the</strong>rn flank <strong>of</strong> <strong>the</strong> intrusion.<br />

Like <strong>the</strong> first pulse, <strong>the</strong> second pulse fractionally crystallized from <strong>the</strong> base up <strong>and</strong><br />

presumably <strong>the</strong> walls <strong>and</strong> ro<strong>of</strong> inward. The first unit to crystallize in <strong>the</strong> upper ultramafic zone<br />

was <strong>the</strong> feldspathic wehrlite which due to mixing with <strong>the</strong> first pulse <strong>of</strong> magma includes a<br />

more heterogeneous <strong>and</strong> evolved basal interval. The magma <strong>the</strong>n became saturated in augite to<br />

form <strong>the</strong> feldspathic olivine clinopyroxenite unit, followed by Fe-Ti oxide to form <strong>the</strong><br />

feldspathic oxide clinopyroxenite unit, <strong>and</strong> finally plagioclase to form <strong>the</strong> oxide gabbro unit<br />

(Fig. 33D). The end stage <strong>of</strong> fractional crystallization-driven differentiation is not clear, but if<br />

similar to <strong>the</strong> Tamarack intrusion, it likely included saturation in apatite <strong>and</strong> enrichment in<br />

granophyre (Goldner, 2010).<br />

After fractional crystallization led to <strong>the</strong> solidification <strong>of</strong> <strong>the</strong> intrusion, <strong>the</strong> lower<br />

ultramafic zone was intruded by several small mafic dikes or sheets <strong>of</strong> intergranular olivine<br />

diabase, which appear to be part <strong>of</strong> <strong>the</strong> Baraga dike swarm (Rossell, 2008). Finally <strong>the</strong><br />

overlying rocks <strong>and</strong> <strong>the</strong> upper most portions <strong>of</strong> <strong>the</strong> BIC were eroded leading to <strong>the</strong> BIC’s<br />

present-day exposure (Fig. 33E). The pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> two drill core studied here are shown in<br />

Figure 33E.<br />

69


Figure 33. Two-stage model for <strong>the</strong> emplacement <strong>and</strong> fractional crystallization <strong>of</strong> <strong>the</strong> lower<br />

ultramafic, upper ultramafic, <strong>and</strong> gabbro zones <strong>of</strong> <strong>the</strong> BIC intrusion. BIC units are as<br />

shown elsewhere in this report: Violet - feldspathic wehrlite; Blue - olivine<br />

clinopyroxenite <strong>and</strong> oxide clinopyroxenite; Purple - oxide gabbro.<br />

A. Initial emplacement <strong>of</strong> lower ultramafic zone magmas<br />

B. Fractional crystallization <strong>of</strong> lower ultramafic zone<br />

70


C. Emplacement <strong>of</strong> upper ultramafic <strong>and</strong> gabbro zone magma<br />

D. Fractional crystallization <strong>of</strong> upper ultramafic <strong>and</strong> gabbro zone magma<br />

E. Erosion to present level<br />

71


4.4 Parental Magma Composition<br />

Based on <strong>the</strong> cryptic mineral variation <strong>and</strong> cumulate stratigraphy <strong>of</strong> <strong>the</strong> intrusion, it can<br />

clearly be seen that <strong>the</strong> BIC was formed by <strong>the</strong> emplacement <strong>of</strong> two successive pulses <strong>of</strong><br />

magma. Given <strong>the</strong> similar cumulate sequences <strong>and</strong> mineral chemistries between <strong>the</strong> two<br />

ultramafic zones, it seems plausible that <strong>the</strong> two crystallization sequences were formed from a<br />

similar parent magma. To more rigorously evaluate this possibility, however, requires<br />

comparing <strong>the</strong> trace element compositions <strong>of</strong> <strong>the</strong> two ultramafic sequences.<br />

Whole rock incompatible trace element data normalized to primitive mantle <strong>and</strong> rare<br />

earth element data normalized to chondrites from both drill cores (Tables 4 <strong>and</strong> 5) are plotted<br />

in Figures 34 <strong>and</strong> 35, respectively. The parallel patterns <strong>of</strong> <strong>the</strong> normalized trace element<br />

analyses from <strong>the</strong> lower ultramafic zone, upper ultramafic zone, <strong>and</strong> gabbro zone is obvious in<br />

<strong>the</strong>se plots, especially among <strong>the</strong> REE data (Fig. 35). Because fractional crystallization can<br />

only change <strong>the</strong> relative abundance <strong>of</strong> <strong>the</strong>se elements <strong>and</strong> not <strong>the</strong> overall shape <strong>and</strong> slope <strong>of</strong> <strong>the</strong><br />

plot, one must conclude that each <strong>of</strong> <strong>the</strong> three zones came from <strong>the</strong> same parental magma<br />

source. The differences in absolute normalized abundances in <strong>the</strong>se plots can be attributed to<br />

variations in <strong>the</strong> proportion <strong>of</strong> cumulus minerals (poor in incompatible trace elements) to<br />

postcumulus minerals (representing <strong>the</strong> incompatible element rich intercumulus liquid. For<br />

example, orthocumulates will plot higher on <strong>the</strong> diagrams than mesocumulates. The bottom<br />

line is that <strong>the</strong> two pulses <strong>of</strong> magma which created <strong>the</strong> three zones must have had <strong>the</strong> same<br />

parental magma composition.<br />

72


Figure 34. Normalization spider diagram plotting <strong>the</strong> relative abundances <strong>of</strong> incompatible<br />

trace elements for <strong>the</strong> three zones normalized to primitive mantle values. Primitive<br />

mantle values taken from Sun <strong>and</strong> McDonough, 1989.<br />

Lower chill sample<br />

Figure 35. Normalization spider diagram plotting <strong>the</strong> relative abundances <strong>of</strong> rare earth<br />

elements for <strong>the</strong> three zones normalized to chondrite values. Chondrite values taken<br />

from Sun <strong>and</strong> McDonough, 1989.<br />

73


Estimating <strong>the</strong> composition <strong>of</strong> this common parental magma composition can take<br />

advantage <strong>of</strong> <strong>the</strong> recognition that <strong>the</strong> basal contact <strong>of</strong> <strong>the</strong> lower ultramafic zone has<br />

compositional <strong>and</strong> textural attributes that indicate that it formed by quenching an olivine<br />

porphyritic magma against Archean gneiss with negligible obvious contamination. The<br />

lowermost sample (08BIC004-666) has a medium fine-grained texture with subhedral olivine<br />

pseudomorphs in a matrix <strong>of</strong> subpoikilitic plagioclase <strong>and</strong> subprismatic to subhedral granular<br />

augite (Fig. 25A). Compositionally, this chill sample has <strong>the</strong> highest concentration <strong>of</strong><br />

incompatible trace elements <strong>of</strong> all samples collected from <strong>the</strong> BIC intrusion (Fig. 35). This is<br />

fur<strong>the</strong>r evidence that this sample has a high proportion <strong>of</strong> trapped liquid to cumulus minerals in<br />

its bulk composition <strong>and</strong> can be useful in estimating <strong>the</strong> parental magma <strong>of</strong> <strong>the</strong> BIC.<br />

The texture <strong>of</strong> <strong>the</strong> basal chill sample indicates that it was not entirely formed by <strong>the</strong><br />

quenching <strong>of</strong> <strong>the</strong> magma, but has accumulated some primocrystic olivine. The mode <strong>of</strong> olivine<br />

in <strong>the</strong> basal chill is approximately 35%. The amount <strong>of</strong> that olivine which is in excess <strong>of</strong> a<br />

liquid composition is difficult to directly estimate since <strong>the</strong> total amount <strong>of</strong> olivine is likely a<br />

combination <strong>of</strong> primocrystic phenocrysts <strong>and</strong> postcumulus overgrowth. As a first<br />

approximation, it will be assumed that about half <strong>of</strong> that mode is primocrystic, in o<strong>the</strong>r words,<br />

15 to 20%. The most magnesian olivine in <strong>the</strong> lower ultramafic zone has a composition <strong>of</strong> Fo 83<br />

(Fig. 32). Although this is likely not a primocrystic composition, it is useful for a first<br />

approximation. Removal <strong>of</strong> 15 <strong>and</strong> 20% Fo 83 olivine from <strong>the</strong> chill composition yields<br />

possible parent magma compositions listed in Table 10.<br />

Comparing <strong>the</strong> two parent magma estimates for BIC with similarly performed estimates<br />

for <strong>the</strong> Tamarack intrusion (Goldner, 2010) shows that <strong>the</strong> BIC estimates have lower silica <strong>and</strong><br />

74


aluminum but higher titanium, iron, <strong>and</strong> calcium contents. The lower Al concentration is<br />

consistent with <strong>the</strong> delayed appearance <strong>of</strong> plagioclase in BIC compared with its cumulus<br />

arrival soon after augite in <strong>the</strong> Tamarack intrusion. Interestingly, <strong>the</strong> mg#s <strong>of</strong> <strong>the</strong> two parent<br />

magma estimates for <strong>the</strong> BIC bracket <strong>the</strong> mg# estimated for <strong>the</strong> Tamarack by Goldner (2010).<br />

The mg# number for <strong>the</strong> two parent magma estimates <strong>of</strong> between 67.7 to 70.3 should produce<br />

primocrystic olivine more in <strong>the</strong> range <strong>of</strong> Fo 88 . This proves <strong>the</strong> point that <strong>the</strong> Fo 83 composition<br />

used in <strong>the</strong> calculation is somewhat evolved from <strong>the</strong> primocrystic composition, though it<br />

would not significantly change <strong>the</strong> results shown in Table 10.<br />

Table 10. Major element compositions <strong>of</strong> olivine <strong>and</strong> BIC chill zone sample 08BIC004.###<br />

used to calculate possible parent magma compositions based on extracting 20% <strong>and</strong><br />

15% primocrystic olivine from <strong>the</strong> chilled composition. The parent magma estimated<br />

for <strong>the</strong> Tamarack intrusion by a similar method (Goldner, 2010) is shown for<br />

comparison.<br />

75


As an independent test <strong>of</strong> <strong>the</strong> plausibility <strong>of</strong> <strong>the</strong> calculated parent magma composition<br />

given in Table 10, <strong>the</strong> estimates were applied to <strong>the</strong> PELE program developed by Boudreau<br />

(1999). This program adapts <strong>the</strong> <strong>the</strong>rmodynamically-based phase equilibrium algorithm <strong>of</strong><br />

MELTS Ghiorso <strong>and</strong> Sack (1995) to a PC platform with an interface that allows for <strong>the</strong><br />

simulation <strong>of</strong> crystallization <strong>of</strong> an input magma at various pressures <strong>and</strong> oxygen fugacities.<br />

Three fractional crystallization models were run for each <strong>of</strong> <strong>the</strong> two parent magma estimates<br />

(Table 10) with oxygen fugacity buffered at QMF-2, QFM, <strong>and</strong> QFM+2, where QFM st<strong>and</strong>s<br />

for <strong>the</strong> quartz-fayalite-magnetite buffer <strong>and</strong> <strong>the</strong> numbers are <strong>the</strong> log units above <strong>and</strong> below <strong>the</strong><br />

QFM buffer .<br />

Five out <strong>of</strong> <strong>the</strong> six fractional crystallization models (Fig. 36) produced a mineral<br />

paragenesis that matched <strong>the</strong> observed cumulate arrival order <strong>of</strong> Ol Cpx Ox Plag.<br />

The only model which gives a slightly incorrect cumulus arrival order is <strong>the</strong> 20% extracted<br />

olivine compositions at <strong>the</strong> QFM buffer which gives a cumulus arrival order <strong>of</strong> Ol Cpx <br />

Plag Ox (Fig. 36B) <strong>and</strong> this is only <strong>of</strong>f by a very small amount with plagioclase becoming<br />

cumulus at nearly <strong>the</strong> same time as oxide.<br />

A. QFM+2<br />

76


B. QFM<br />

C. QFM-2<br />

Figure 36. Mineral paragenesis calculated from fractional crystallization <strong>of</strong> parental magma<br />

estimated by <strong>the</strong> removal <strong>of</strong> 20% Fo 83 olivine modeled using PELE with three different<br />

oxygen fugacities: QFM+2 (A), QFM (B), QFM-2(C).<br />

77


A. QFM+2<br />

B. QFM<br />

C. QFM-2<br />

78


Figure 37. Mineral paragenesis calculated from fractional crystallization <strong>of</strong> parental magma<br />

estimated by <strong>the</strong> removal <strong>of</strong> 15% Fo 83 olivine modeled using PELE with three different<br />

oxygen fugacities: QFM+2 (A), QFM (B), QFM-2(C).<br />

The success <strong>of</strong> <strong>the</strong>se models to calculate <strong>the</strong> observed cumulate paragenesis <strong>of</strong> major<br />

minerals is an independent test on <strong>the</strong> plausibility <strong>of</strong> <strong>the</strong> parent magma estimates. Because all<br />

three <strong>of</strong> <strong>the</strong> models were run using <strong>the</strong> parent magma estimate that removed 15% primocrystic<br />

olivine gave not only <strong>the</strong> correct sequence <strong>of</strong> cumulus mineral arrivals, but also gave a better<br />

approximation <strong>of</strong> <strong>the</strong> timing <strong>of</strong> each arrival, it is seen as <strong>the</strong> best possible estimate <strong>of</strong> <strong>the</strong> parent<br />

magma that formed <strong>the</strong> two magmatic stages <strong>of</strong> <strong>the</strong> BIC intrusion.<br />

4.5 History <strong>of</strong> sulfide saturation during crystallization<br />

The abundance <strong>of</strong> chalcophile elements in core 08BIC004 (Fig. 38) provides some<br />

insight into <strong>the</strong> history <strong>of</strong> sulfide saturation during <strong>the</strong> emplacement <strong>and</strong> crystallization history<br />

<strong>of</strong> <strong>the</strong> BIC intrusion. These data suggest that <strong>the</strong> BIC underwent three stages <strong>of</strong> sulfide<br />

saturation. The first saturation event occurred with <strong>the</strong> first pulse <strong>of</strong> magma that formed <strong>the</strong><br />

lower ultramafic zone when it was injected into cold country rock. The magma was most<br />

likely oversaturated due to a basal silica contamination event which caused a decrease in <strong>the</strong><br />

sulfide carrying capacity which caused <strong>the</strong> sulfide to rain out <strong>of</strong> <strong>the</strong> melt <strong>and</strong> collect at <strong>the</strong><br />

bottom <strong>of</strong> <strong>the</strong> magma chamber. All <strong>of</strong> <strong>the</strong> metals however seem to have been scavenged out <strong>of</strong><br />

<strong>the</strong> magma by <strong>the</strong> time <strong>the</strong> lower feldspathic olivine clinopyroxenite crystallized. This<br />

saturation event can be clearly seen in <strong>the</strong> relatively high metal tenors present in <strong>the</strong> basal<br />

feldspathic wehrlite unit (Fig. 38).<br />

79


The second event occurs just above <strong>the</strong> boundary between <strong>the</strong> lower ultramafic zone<br />

<strong>and</strong> upper ultramafic zone. As was previously discussed <strong>the</strong> second pulse <strong>of</strong> magma rushed in<br />

<strong>and</strong> ballooned <strong>the</strong> chamber outward <strong>and</strong> mixed with <strong>the</strong> residual magma <strong>of</strong> <strong>the</strong> first pulse. The<br />

leading edge <strong>of</strong> <strong>the</strong> second pulse could have become oversaturated by mixing with sulfide in<br />

<strong>the</strong> feeder <strong>of</strong> <strong>the</strong> BIC intrusion or by mixing with <strong>the</strong> already saturated first pulse. Continued<br />

input <strong>of</strong> sulfur-poor (uncontaminated) magma during <strong>the</strong> second emplacement event ultimately<br />

caused <strong>the</strong> magma system to become undersaturated.<br />

The third sulfur saturation event occurred more passively due to progressive fractional<br />

crystallization <strong>of</strong> <strong>the</strong> upper ultramafic zone. Figure 30 shows that as silicate crystallization<br />

continued in <strong>the</strong> upper ultramafic zone, that sulfur saturation was reestablished just above <strong>the</strong><br />

cumulus arrival <strong>of</strong> augite as can be seen in <strong>the</strong> slight boost in Pd <strong>and</strong> Pt contents <strong>and</strong> <strong>the</strong> slight<br />

fall in <strong>the</strong> Pd/<strong>Cu</strong> ratio. The peak in copper concentration occurs above those <strong>of</strong> Pd <strong>and</strong> Pt<br />

suggesting possible remobilization. <strong>Ni</strong>ckel on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> appears to have been already<br />

depleted due to <strong>the</strong> prior crystallization <strong>of</strong> olivine prior to resaturation.<br />

80


Figure 38. Plot <strong>of</strong> <strong>Cu</strong>, <strong>Ni</strong>, Pd, <strong>and</strong> Pt content as well as Pd/<strong>Cu</strong> values vs stratigraphic height in<br />

core 08BIC004. Red dots denote assays taken by KEMC, blue dots denote assays taken<br />

for this study.<br />

4.6 Miscellaneous Intrusions<br />

4.6.1 Little BIC<br />

The Little BIC intrusion is a small bowl shaped ultramafic intrusion with an unknown<br />

relationship to <strong>the</strong> main BIC intrusions. The little BIC is considerably more mineralized than<br />

<strong>the</strong> main BIC intrusions, contains net textured <strong>and</strong> massive sulfides ra<strong>the</strong>r <strong>the</strong> disseminated<br />

81


sulfides seen in <strong>the</strong> main intrusions. The stratigraphy <strong>of</strong> <strong>the</strong> intrusion is made up <strong>of</strong> feldspathic<br />

wehrlites, feldspathic olivine clinopyroxenites, <strong>and</strong> olivine melagabbros. The stratigraphy <strong>of</strong><br />

Little BIC is slightly more plagioclase rich than similar ultramafic rocks in <strong>the</strong> lower <strong>and</strong> upper<br />

ultramafic zones <strong>of</strong> <strong>the</strong> main intrusion. Due to <strong>the</strong> heterogeneity <strong>of</strong> <strong>the</strong> stratigraphy no<br />

correlation or relationship can be made between <strong>the</strong> main BIC intrusions <strong>and</strong> Little BIC.<br />

4.6.2 Miscellaneous Dikes<br />

Dikes cross cutting <strong>the</strong> BIC stratigraphy have been observed in drill core <strong>and</strong> in <strong>the</strong><br />

field. Drill core 08BIC044 contains three mafic dikes in <strong>the</strong> base <strong>of</strong> <strong>the</strong> upper ultramafic<br />

zones. The three dikes range from three to ten meters in thickness <strong>and</strong> have geochemical<br />

attributes very similar to high titanium Baraga diabase dikes (Wilb<strong>and</strong> <strong>and</strong> Wasuwanich,<br />

1980). The geochemical similarities suggest that <strong>the</strong>se dikes are also part <strong>of</strong> <strong>the</strong> Baraga Dike<br />

Swarm.<br />

A small dike consisting <strong>of</strong> coarse grained oxide bearing hornblende clinopyroxenite<br />

was observed on <strong>the</strong> eastern margin <strong>of</strong> <strong>the</strong> intrusion. The dike was in sharp contact with<br />

feldspathic oxide clinopyroxenite <strong>of</strong> <strong>the</strong> upper ultramafic zone. The true thickness <strong>and</strong><br />

orientation <strong>of</strong> this dike as well as its relationship to <strong>the</strong> BIC is unknown.<br />

5.0 Conclusions<br />

The major observations <strong>and</strong> conclusions <strong>of</strong> this study are as follows:<br />

• BIC is a small basin shaped intrusion roughly 1200 meters long <strong>and</strong> 450 meters wide.<br />

• Core logging, field mapping, <strong>and</strong> petrographic observations suggest <strong>the</strong> BIC intrusion<br />

consists <strong>of</strong> three zones. The lower ultramafic zone, which consists <strong>of</strong> a basal feldspathic<br />

82


wehrlite followed by a feldspathic olivine clinopyroxenite. The upper ultramafic zone,<br />

which is comprised <strong>of</strong> a feldspathic wehrlite overlain in turn by feldspathic olivine<br />

clinopyroxenite, <strong>and</strong> feldspathic oxide clinopyroxenite. Finally at <strong>the</strong> top <strong>the</strong> gabbro<br />

zone is made up <strong>of</strong> an oxide gabbro.<br />

• Cryptic mineral layering <strong>and</strong> cumulate stratigraphy suggest that <strong>the</strong> BIC was formed by<br />

fractional crystallization under closed system conditions.<br />

• The BIC was formed by two episodes <strong>of</strong> magmatic emplacement <strong>of</strong> a high-magnesium<br />

olivine tholeiitic parent magma with an Mg# between 68 <strong>and</strong> 71.<br />

• Both injections <strong>of</strong> magma came from <strong>the</strong> same parental magma source.<br />

• The Parent magmas <strong>of</strong> <strong>the</strong> lower ultramafic, upper ultramafic, <strong>and</strong> gabbro zones were<br />

generated by a deep mantle plume source.<br />

• The lower ultramafic zone was emplaced first, followed by <strong>the</strong> upper ultramafic zone<br />

<strong>and</strong> gabbro zone.<br />

• The intrusion experienced three sulfide saturation events. The first due to basal<br />

contamination. The second oversaturation event was most likely cause by<br />

contamination <strong>of</strong> <strong>the</strong> magma by sulfide in <strong>the</strong> feeder <strong>and</strong> <strong>the</strong> third event was due to<br />

progressive fractional crystallization.<br />

83


References<br />

Barnett, R.L., 1995, BIC Gabbro: Kennecott internal company report.<br />

Boudreau, A., E., 1999, PELE - A version <strong>of</strong> <strong>the</strong> MELTS s<strong>of</strong>tware program for <strong>the</strong> PC<br />

platform, Computers <strong>and</strong> Geosciences, vol. 25, pp. 21-203<br />

Cannon, W.F., Hinze, W.J., 1992, Speculations on <strong>the</strong> origin <strong>of</strong> <strong>the</strong> North American<br />

Midcontinent Rift. Tectonophysics, 213, pp. 49-55.<br />

Donoghue, K., Ripley, E., M., 2010, Sulfide mineralogy <strong>of</strong> <strong>the</strong> BIC layered intrusion, Barage<br />

Basin, Nor<strong>the</strong>rn Michigan. Geological Society <strong>of</strong> America Abstracts with Programs,<br />

42, 226.<br />

Ghiorso, Mark S., <strong>and</strong> Sack, Richard O.,1995, Chemical Mass Transfer in Magmatic<br />

Processes. IV. A Revised <strong>and</strong> Internally Consistent Thermodynamic Model for <strong>the</strong><br />

Interpolation <strong>and</strong> Extrapolation <strong>of</strong> Liquid-Solid Equilibria in Magmatic Systems at<br />

Elevated Temperatures <strong>and</strong> Pressures. Contributions to Mineralogy <strong>and</strong> <strong>Petrology</strong>, 119,<br />

197-212<br />

Gregg, W.G., 1993, Structural geology <strong>of</strong> parautochthonous <strong>and</strong> allochthonous terranes <strong>of</strong> <strong>the</strong><br />

Penokean Orogeny in Upper Michigan-comparisons with nor<strong>the</strong>rn Appalachian<br />

tectonics: U.S. Geologic Survey Bulletin, 1904-Q, 28p.<br />

Goldner, B.D., 2010, <strong>Petrology</strong> <strong>of</strong> <strong>the</strong> <strong>Ni</strong>-<strong>Cu</strong>-<strong>PGE</strong> mineralized tamarack intrusion, Aitkin <strong>and</strong><br />

Carleton counties, Minnesota, University <strong>of</strong> Minnesota Duluth Masters Thesis.<br />

Hauck, S.A., 2002, Petrographic descriptions <strong>of</strong> samples from drill holes BIC-2 <strong>and</strong> RLP-95-1,<br />

Nor<strong>the</strong>rn Michigan: Kennecott internal company report.<br />

Heaman, L.M., Easton, R.M., Hart, T.R., Hollings, P., MacDonald, C.A. <strong>and</strong> Smyk, M., 2007,<br />

Fur<strong>the</strong>r Refinement to <strong>the</strong> timing <strong>of</strong> Mesoproterozoic magmatism, Lake <strong>Ni</strong>pigon<br />

region, Ontario. Canadian Journal <strong>of</strong> Earth Sciences, 44, pp.1055-1186.<br />

Hollings, P., Hart, T., Richardson, A., MacDonald, C., A., 2007, Geochemistry <strong>of</strong> <strong>the</strong><br />

Mesproterozoic intrusive rocks <strong>of</strong> <strong>the</strong> <strong>Ni</strong>pigon Embayment, northwestern Ontario:<br />

evaluating <strong>the</strong> earliest phases <strong>of</strong> rift development. Canadian Journal <strong>of</strong> Earth Science,<br />

44, pp. 1087-1110.<br />

Hinze, W.J., Allen, D.J., Braile, L. W., Mariano, J., 1997, The Midcontinent rift system: a<br />

major Proterozoic continental rift. Geological Society <strong>of</strong> America SpecialPaper 312,<br />

pp. 7-35.<br />

Irvine, T. N.,1982, Terminology for layered intrusions. Journal <strong>of</strong> <strong>Petrology</strong> 23, 127^162.<br />

84


Johnson, R.C., 2007, Petrography <strong>and</strong> petrology <strong>of</strong> selected igneous <strong>and</strong> meta-sedimentary drill<br />

core samples: Kennecott internal company report.<br />

McBirney, A. R. & <strong>Ni</strong>colas, A. 1997, The Skaergaard Layered Series. Part II. Magmatic flow<br />

<strong>and</strong> dynamic layering. Journal <strong>of</strong> <strong>Petrology</strong> 38, 569^580.<br />

McCallum, I. S., Raedeke, L. D. & Ma<strong>the</strong>z, E. A. 1980, Investigations <strong>of</strong> <strong>the</strong> Stillwater<br />

Complex. Part I. Stratigraphy <strong>and</strong> structure <strong>of</strong> <strong>the</strong> B<strong>and</strong>ed zone. American Journal<br />

<strong>of</strong> Science 280A, 59–87.<br />

Miller, J.D., Jr., Green, J.C., Severson, M.J., Ch<strong>and</strong>ler, V.M., Hauck, S.A., Peterson,<br />

D.M., Wahl, T.E. 2002, Geology <strong>and</strong> mineral potential <strong>of</strong> <strong>the</strong> Duluth Complex <strong>and</strong><br />

related rocks <strong>of</strong> nor<strong>the</strong>astern Minnesota. Minnesota Geologic Survey, Report <strong>of</strong><br />

investigation 58.<br />

<strong>Ni</strong>cholson, S.W., Schulz, K.J., Shirey, S.B., Green, J.C., 1997, Rift-wide correlation <strong>of</strong> 1.1<br />

Ga Midcontinent Rift system basalts: Implications for multiple mantle sources<br />

during rift development. Canadian Journal <strong>of</strong> Earth Sciences, 34, pp. 504-520.<br />

Paces, J.B., <strong>and</strong> Miller, J.D., 1993, Precise U-Pb ages <strong>of</strong> Duluth Complex <strong>and</strong> related mafic<br />

intrusions, nor<strong>the</strong>astern Minnesota: geochronological insights to physical, petrogentic,<br />

paleomagnetic, <strong>and</strong> tectonomagmatic processes associated <strong>the</strong> 1.1 Ga Midcontinent Rift<br />

System. Journal <strong>of</strong> Geophysical Research, 98, pp. 13,997- 14,013.<br />

Rossell, D., 2008, Geology <strong>of</strong> <strong>the</strong> Keweenawan BIC Intrusion. Institute on Lake Superior<br />

Geology field Trip Guide Book, 54, pp. 181-193.<br />

Schulz, K.J., Cannon, W.F., 2007, The Penokean orogeny in <strong>the</strong> Lake Superior region.<br />

Precambrian Research, 157, pp. 4-25.<br />

Schulz, K.J., <strong>Ni</strong>cholson.S.W., 2009, Geochemistry <strong>of</strong> Midcontinent Rift-related mafic dikes<br />

<strong>and</strong> mafic-ultramafic intrusions in <strong>the</strong> Baraga basin, nor<strong>the</strong>rn Michigan: Implications<br />

for <strong>the</strong> nature <strong>of</strong> rift magmatism <strong>and</strong> <strong>Ni</strong>-<strong>Cu</strong>-<strong>PGE</strong> mineralization. Institute on Lake<br />

Superior Geology proceeding, 55, pp. 68, 69.<br />

Sims, P.K., 1996, Early Proterozoic Penokean orogen, in Sims, P.K. <strong>and</strong> Carter, L.M.H., eds.<br />

Archean <strong>and</strong> Proterozoic geology <strong>of</strong> <strong>the</strong> Lake Superior Region, U.S.A., 1993, U.S.<br />

Geological Survey Pr<strong>of</strong>essional Paper 1556, pp.28-51.<br />

Sun, S-s., McDonough, W.F., 1989, Chemical <strong>and</strong> isotopic systematics <strong>of</strong> oceanic basalts:<br />

implications for mantle compositions <strong>and</strong> processes. In: A. D. Saunders <strong>and</strong> M. J.<br />

Norry (editors). Magmatism in <strong>the</strong> ocean basins. Geological Society. London. p. 313-<br />

345.<br />

85


Vervoort, J. D. <strong>and</strong> Green, J. C., 1997, Origin <strong>of</strong> evolved magmas in <strong>the</strong> Midcontinent Rift<br />

System, nor<strong>the</strong>ast Minnesota: Nd-isotope evidence for melting <strong>of</strong> Archean crust.<br />

Canadian Journal <strong>of</strong> Earth Sciences, v. 34, p. 521-535.<br />

Vervoort, J.D., Wirth, K., Kennedy, B., S<strong>and</strong>l<strong>and</strong>, T., Harpp, K.S., 2007, The Magmatic<br />

evolution <strong>of</strong> <strong>the</strong> Midcontinent rift: New geochronologic <strong>and</strong> geochemical evidence<br />

from felsic magmatism. Precambrian Research, 157, pp. 235-268.<br />

Wager, L. R. & Brown, G. M. 1968, Layered <strong>Igneous</strong> Rocks. London: Oliver & Boyd.<br />

Wager, L. R., Brown, G. M. & Wadsworth, W. J., 1960, Types <strong>of</strong> igneous cumulates. Journal<br />

<strong>of</strong> <strong>Petrology</strong> 1, 73^85.<br />

Wilb<strong>and</strong>, J.T., Wasuwanich, P., 1980, Models <strong>of</strong> <strong>the</strong> basalt petrogenesis: Lower Keweenawan<br />

diabase dikes <strong>and</strong> middle Keeweenawan Portage Lake lavas, Upper Michigan.<br />

Contrubution to Mineralogy <strong>and</strong> <strong>Petrology</strong>, 75, p. 395-406.<br />

Winter, John D., 2010, Principles <strong>of</strong> <strong>Igneous</strong> <strong>and</strong> Metamorphic <strong>Petrology</strong> Second Edition.<br />

Prentice Hall, New Jersey.<br />

86


Appendix A<br />

Petrographic Description<br />

<strong>Cu</strong>mulate Type<br />

Summary description including grain size, primary textures, mineral modifiers, <strong>and</strong> modal rock type NC-not a cumulate<br />

common abbreviations:<br />

?-possible cumulate<br />

decus, plam, mlam, wlam - decussate, poorly, moderately <strong>and</strong> well laminated<br />

P/p-plagioclase<br />

mfine, med, mcrs, crs, vcrs - medium fine-, medium-, medium coarse-, coarse-, very coarse-grained O/o-olivine<br />

poik, subpoik - poikilitic, subpoikilitic<br />

C/c-clinopyroxene<br />

igran- intergranular<br />

F/f-Fe-Ti oxide<br />

oliv, ol -olivine<br />

I/i-inverted pigeonite<br />

aug-augite<br />

H/h-hypers<strong>the</strong>ne<br />

plag, pl-plagioclase<br />

B/b-biotite<br />

hyp-hypers<strong>the</strong>ne<br />

H/h -hornblende<br />

ipig-inverted pigeonite<br />

A/a-apatite<br />

feox- Fe-Ti oxide<br />

g-granophyre<br />

apat-apatite<br />

k-K-feldspar<br />

bio-biotite<br />

q-quartz<br />

amph-amphibolite<br />

s-sulfide<br />

gp-granophyre<br />

brg-bearing<br />

Relative<br />

Grain Size<br />

Absolute<br />

Distribution <strong>of</strong> primocryst grain sizes in rock<br />

Grain Size<br />

EG-equigranular<br />

Average width <strong>of</strong> granular phases; for rectangular phases, width <strong>of</strong> short dimension<br />

SR-seriate (gradation in GS)<br />

VF-very fine (30 mm)<br />

SO-small Ol (submm sized)compared to PL<br />

FM-variable fine to medium<br />

21-small gran oxide dispered in lg PL <strong>and</strong> Ol<br />

FC-variable fine to coarse<br />

CM-variable coarse to medium<br />

CPX-based<br />

PM-variable pegmatitic to medium<br />

Bulk Rock Texture<br />

Cpx-based texture when >2%<br />

Non-granular CNA-Cpx


OS-olivine symplectite (opx+feox)<br />

PS-plag symplectite (opx+an)<br />

SM-both oliv & plag symplectite abundant<br />

PK-perthitic exsol <strong>of</strong> plag from alk feldspar<br />

KP-antiperthitic exsol <strong>of</strong> alk feldspar from plag<br />

AM-late stage pockets rich in accessory mins<br />

GB-granoblastic recrystallization<br />

SD-fine sulfide dispersed in silicates around larger mass<br />

OF-olivine rims on oxide<br />

HF-hypers<strong>the</strong>ne rims on oxide<br />

UA- uralite --> crs amphibole in Cpx<br />

Mineral<br />

Alignment<br />

Based on alignment <strong>of</strong> plagioclase <strong>and</strong> o<strong>the</strong>r prismatic primary phases<br />

NA- not applicable, no prismatic phases<br />

DC-decussate<br />

NF-non-foliated<br />

PF-poorly foliated<br />

MF-moderately foliated<br />

WF-well foliated<br />

FT-felty<br />

RD-radiate<br />

PL-plumose<br />

SP-spherulitic<br />

VR-variolitic (fan)<br />

ALB-albitization<br />

URL-uralitization (actinolite)<br />

AMP-amphibolitization (act/hb)<br />

CHL-chloritization<br />

CAB-chlorite+amph+biotite alteration<br />

KAO-kaolinitization<br />

BIO-biotite alteration<br />

SRP-serpentinization (serp+mt)<br />

IDD-iddingsite alteration<br />

TLC-talc alteration<br />

PRP-prehnite/pumpellyite alteration<br />

CRB-carbonate<br />

KAO-kaolinitization<br />

QTZ-quartz veining<br />

ZEO-zeolitization<br />

LXN-leucoxene after ilmenite<br />

88


Appendix A-1 Bulk Rock Petrography<br />

By: Dan Foley<br />

Date: Modal <strong>Cu</strong>muate<br />

Sample ID Strat Unit Field/Core Log Description Petrographic Description Rock Type Type<br />

<br />

01-01-9.1 oxgb Med wfol gabbro str alt med wfol sprism gran ox gabbro w/ spoik calcite OXGB PCF<br />

01-01-15.5 oxgb Med wfol gabbro str epidote alt med wfol sprism gran apatitic ox gabbro OXGB PCFA<br />

01-01-19.9 oxgb Med wfol gabbro mod to str alt med wfol sprism apatitic ox gabbro OXGB PCFA<br />

01-01-31.2 oxgb Med wfol gabbro mod to str alt med wfol sprism apatitic ox gabbro OXGB PCFA<br />

01-01-32.0 oxgb med crs w fol gabbro str alt med wfol sprism apatitic ox gabbro OXGB PCFA<br />

01-01-36.6 oxgb Med wfol gabbro mod to str alt med wfol apatitic ox gabbro OXGB PCF(O?)A<br />

01-01-43.2 oxgb Med wfol gabbro mod to str alt med nfol apatitic ox gabbro w/ apoik plag OXGB pCFA<br />

01-01-44.5 oxgb poikolitic gabbroic anorthosite str epidote alt med wfol apatitic ox leuco gabbro w/ spoik cal LCGB PC?FA<br />

01-01-46.1 oxgb Med wfol gabbro mod to str alt med pfol apatitic ox gab w/ spoik plag <strong>and</strong> cal OXGB pCFA<br />

01-01-47.2 oxgb pyroxene oxide cummulate mod to str alt med pfol apatitic ox gab w/ poik plag <strong>and</strong> spoik cal OXGB pCFA<br />

01-01-50.6 oxgb pyroxene oxide cummulate mod to str alt med pfol ox melagab w/ poik plag MLGB CpF<br />

01-01-54.7 foxcp pyroxene oxide cummulate mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX CFpOa<br />

01-01-58.4 foxcp pyroxene oxide cummulate mod alt med to med crs nfol feldspathic ox clinopyroxenite FLPX Cfp<br />

01-01-60.5 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-75.5 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-89.45 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-104.3 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-117.2 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf<br />

01-01-130.5 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf<br />

01-01-143.5 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf<br />

01-01-151.6 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-155.9 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf<br />

01-01-160.5 focp med fine clinopyroxenite mod alt med to med crs nfol feldspathic ox olivine clinopyroxenite FLPX CpOF<br />

01-01-162.4 fwer med wehrlite mod alt med fn nfol oxide bearing feldspathic wehrlite w/ poik plag FLWH OCpf<br />

01-01-163.4 fwer med wehrlite mod alt med fn nfol oxide bearing feldspathic wehrlite w/ poik plag FLWH OCpf<br />

01-01-166.0 fwer med wehrlite str alt med fn nfol oxide bearing sub wehrlite w/poik plag, intersticial gran CPX WRLT Ocpf<br />

01-01-173.7 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-183.0 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-196.0 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Opch f<br />

01-01-207.9 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-221.7 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-235.9 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-244.65 fwer med wehrlite mod alt med fn to med oxide bearing honblende feldspathic wehrlite w/poik hornblende FLWH Ocph f<br />

01-01-248.8 fwer crs sulfidic wehrlite mod alt med to med crs oxide bearing sub ophitic hornblende feldspathic wehrlite w/poik hb FLWH Ocph f<br />

01-01-253.4 fwer crs sulfidic wehrlite mod alt med to med crs oxide bearing sub ophitic hornblende feldspathic wehrlite w/poik hb FLWH Ocph f<br />

01-01-257.3 fwer crs sulfidic wehrlite mod alt med crs oxide bearing sub poik hornblende feldspathic wehrlite w/poik hb FLWH Ocph Sf<br />

01-01-261.7 fwer crs sulfidic wehrlite str alt med crs oxide bearing sulfidic sub poik hornblende wehrlite w/poik hb WRLT Ocph f<br />

01-01-265.5 fwer crs sulfidic wehrlite mod alt med crs oxide bearing sub poik hornblende wehrlite w/poik plag WRLT Ocph f<br />

01-01-268.7 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing sulfidic feldspathic wehrlite w/poik plag FLWH OCph f<br />

01-01-271.1 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf<br />

01-01-273.4 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf<br />

01-01-278.5 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf<br />

01-01-286.2 fwer crs sulfidic feldspathic wehrlite mod alt oxide bearing augite mela troctolite w/poik plag MLTR OpCf<br />

01-01-295.8 fwer crs sulfidic feldspathic wehrlite mod alt med to med crs oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf<br />

01-01-303.0 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing feldspathic wehrlite w/spoik plag FLWH Ocpf<br />

01-01-306.1 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing sulfidic feldspathic wehrlite w/spoik plag FLWH OpcSf<br />

01-01-308.85 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSf<br />

01-01-310.6 fwer crs sulfidic feldspathic wehrlite comp alt med oxide bearIng sulfidic feldspathic wehrlite FLWH OCpSf?<br />

044-11.0 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA<br />

044-19.5 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA<br />

044-29.75 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA<br />

044-38.0 oxgb med crs w fol oxide gabbro str alt med w fol apatitic oxide gabbro w-spoik calcite OXGB PCFA<br />

044-44.8 oxgb med crs w fol oxide gabbro str alt med w fol apatitic oxide gabbro w-spoik calcite OXGB PCFA<br />

044-50.5 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA<br />

044-52.0 oxgb med crs w fol oxide gabbro str alt med wfol apatitic sub ophitic oxide leucogabbro LCGB PFca<br />

044-54.5 foxcp med oxide pyroxenite wk alt med nfol apatitic feldspathic oxide clinopyroxenite w/spoik plag FLPX CpFa<br />

044-57.3 foxcp med oxide pyroxenite mod alt med nfol feldspathic olivine oxide clinopyroxenite w/spoik plag FLPX CFpO<br />

044-62.4 foxcp med oxide pyroxenite mod alt med nfol apititic feldspathic olivine oxide clinopyroxenite w/spoik plag,cal FLPX CFpO<br />

044-66.4 foxcp med olivine oxide pyroxenite mod alt med fn nfol feldspathic olivine oxide clinopyroxenite w/poik plag FLPX CFpO<br />

044-67.4 foxcp med olivine oxide pyroxenite mod alt med fn nfol feldspathic olivine oxide clinopyroxenite w/poik plag FLPX CFpO<br />

044-68.5 focp med fn pyroxenite mod alt med fn nfol apatitic feldspathic olivine pyroxenite w/poik plag FLPX CpOfa<br />

044-69.3 focp med fn pyroxenite mod alt med fn nfol apatitic feldspathic olivine pyroxenite w/poik plag FLPX CpOfa<br />

044-71.5 focp med fn pyroxenite mod alt med fn nfol feldspathic olivine pyroxenite w/poik plag FLPX COpf<br />

044-74.8 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf<br />

044-88.5 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf<br />

044-104.1 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf<br />

044-116.4 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp<br />

044-129.4 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp<br />

044-147 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp<br />

044-163.2 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp<br />

044-180 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp<br />

044-188.5 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp<br />

044-194.3 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp<br />

044-201.2 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp<br />

044-207.1 focp med fn to med crs ol pyroxenite wk alt med fn nfol sulfidic feldspathic olivine clinopyroxenite w/poik plag FLPX COpS<br />

044-212.5 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag FLWH Ocp<br />

044-229.5 fwer med fn to med crs ol pyroxenite mod alt med fn to med nfol feldspathic wehrlite w/poik plag FLWH Opc<br />

044-246.0 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch<br />

044-257.1 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc<br />

044-274.3 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc<br />

044-284.8 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc<br />

044-307.3 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch<br />

044-323.6 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch<br />

044-332.0 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch<br />

044-340.2 fwer med crs to crs wehrlite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch<br />

044-351.5 fwer med crs to crs wehrlite str alt med fn nfol oxide bearing felspathic wehrlite w/poik plag FLWH Opch<br />

044-362.4 fwer med crs to crs wehrlite str alt med fn nfol felspathic wehrlite w/poik plag FLWH Opch<br />

044-373.4 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehrlite w/poik plag, CPX FLWH Opch a<br />

044-385.0 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehrlite w/poik plag, CPX FLWH Opch a<br />

044-401.1 fwer med crs to crs wehrlite str alt med crs nfol apatitic melatroctolite w/poik plag, CPX MLTR Opch a<br />

89


BULK MAFIC INTRUSIVE ROCK DESCRIPTION<br />

Absolute Relative CPX-based Non-granular Non-granular Mineral Deuteric Alteration<br />

Grain Size Grain Size Texture Texture 1 Texture 2 Alignment Layering Late Magmatic Features Intensity Distribution Assemblage<br />

<br />

MM EG IGR CSP WF S ED SSR SER CHL<br />

MM EG IGR CSP WF S PD SSR CHL<br />

MM EG IGR CSP WF M-S ED SSR CHL SER<br />

MM EG IGR WF M-S ED SSR CHL SER<br />

MM EG IGR WF S ED SSR CHL SER<br />

MM EG IGR WF M-S ED SSR CHL SER<br />

MM SP IGR PSP NF M-S ED SSR CHL SER<br />

MM EG IGR CSP WF S PD SSR CHL<br />

MM SP IGR PSP CSP PF M-S ED SSR CHL SER<br />

MM PK IGR PPK CSP PF M-S ED SER CHL<br />

MM PK IGR PPK PF M-S ED SER CHL<br />

MF PK IGR PPK NF M-S ED SER CHL SRP<br />

MM-MC PK IGR PPK NF AP AF BF M PO-PD CHL SSR AMP<br />

MF PK IGR PPK NF M PO-PD TLC SRP SER<br />

MF PK IGR PPK NF M PO-PD TLC SRP SER<br />

MF PK IGR PPK NF M PO-PD TLC SRP SER<br />

MF PK IGR PPK NF W-M PO-PD TLC SRP SER<br />

MF PK IGR PPK NF W-M PO-PD SRP SER TLC<br />

MF PK IGR PPK NF BF W-M PO-PD TLC SRP SER<br />

MF PK IGR PPK NF M PO-PD CHL SRP AMP<br />

MF PK IGR PPK NF M PO-PD CHL SRP AMP<br />

MF PK IGR PPK NF M PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF M PO-PD CHL SER AMP<br />

MF PK IGR PPK NF M PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF M PO-PD SRP TLC CHL<br />

MF PK ING PPK NF S PO-PD SRP CHL TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MF-MM PK ING PPK APK NF M PO-PD CHL SRP TLC<br />

MM-MC PK SPK PPK APK NF AP M PO-PD CHL SRP AMP<br />

MC PK SPK PPK APK NF AP M PO-PD CHL SRP AMP<br />

MC PK SPK PPK APK NF M PO-PD CHL SRP AMP<br />

MC PK SPK PPK APK NF AP S PO-PD SRP CHL SER<br />

MC PK SPK PPK NF AP AF BF M PO-PD SRP CHL SER<br />

MM PK IGR PPK NF AP AF BF W ED SRP SER AMP<br />

MM PK IGR PPK NF W ED SRP TLC SER<br />

MM PK IGR PPK NF W ED SRP TLC SER<br />

MM PK IGR PPK NF BF W ED SRP TLC SER<br />

MM PK IGR PPK APK NF AF BF M ED SRP TLC SER<br />

MM-MC PK IGR PPK NF BF M ED SRP TLC SER<br />

MM SP SPK PSP NF AP BF M ED SRP TLC SER<br />

MM SP ING PSP NF AP BP M ED SRP TLC SER<br />

MM SP IGR PSP NF M ED SRP TLC SER<br />

MM SP IGR? PSP? NF BP C ED SRP SER AMP<br />

MM EG IGR CSP WF M ED SER CHL SSR<br />

MM EG IGR CSP WF M ED SER CHL<br />

MM EG IGR CSP WF M ED SER CHL<br />

MM EG IGR CSP WF S ED SER SSR CHL<br />

MM EG IGR CSP WF S ED SER SSR CHL<br />

MM EG IGR CSP WF M ED SER SSR CHL<br />

MM SP SOP WF S ED SER SSR CHL<br />

MM SP IGR PSP CSP NF W ED SER SSR CHL<br />

MM SP IGR PSP NF M PO-PD SER CHL SRP<br />

MM PK IGR PSP CSP NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF W PO-PD TLC SRP CHL<br />

MF PK IGR PPK NF BF W PO-PD TLC SRP SER<br />

MF PK IGR PPK NF W PO-PD TLC SRP SER<br />

MF PK IGR PPK NF W PO-PD TLC SRP SER<br />

MF PK IGR PPK NF W PO-PD TLC SRP SER<br />

MF PK IGR PPK NF BF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF BF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF BF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF BF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF BF AF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF BF W PO-PD CHL SRP TLC<br />

MF PK IGR PPK NF W PO-PD CHL SRP TLC<br />

MF PK ING PPK NF M PO-PD CHL SRP<br />

MF-MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF BF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF M PO-PD CHL SRP<br />

MM PK ING PPK NF S PO-PD CHL SRP SSR<br />

MM PK ING PPK NF S PO-PD CHL SRP SSR<br />

MC PK SPK PPK NF S PO-PD CHL SRP SSR<br />

MC PK SPK PPK NF AP S PO-PD CHL SRP SSR<br />

MC PK SPK PPK NF S PO-PD CHL SRP SSR<br />

90


044-414.7 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehrlite w/poik plag, CPX FLWH Opch a<br />

044-429.5 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehrlite w/poik plag, CPX FLWH Opch a<br />

044-435.9 db diabase wk alt fn nfol oxide olivne? gabbro OXGB CPFO?<br />

044-440.75 db diabase mod alt med fn nfol oxide olivne gabbro OXGB CPFO<br />

044-444.7 db diabase wk alt very fine plagioclase <strong>and</strong> olivine phyric diabse DB ?<br />

044-445.3 fwer med crs to crs wehrlite mod alt med crs n fol wehrlite w/poik plag WRLT OCph<br />

044-454.9 fwer med crs to crs wehrlite mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag FLWH OCph a<br />

044-462.5 fwer med crs to crs wehrlite mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag FLWH OCph a<br />

044-465.5 db diabase wk alt fn nfol oxide olivne gabbro OXGB CPFO?<br />

044-470.2 fwer med crs sulficic wehrlite mod alt med crs nfol apatitic sulfidic feldspathic wehrlite w/poik plag, CPX FLWH OpcSa<br />

044-472.3 fwer med crs sulficic wehrlite str alt med crs nfol sulfidic apatitic feldspathic mela troctolite w poik plag, CPX MLTR OpcSa<br />

044-480.0 cc layered carbonatae chert inclusion chert inclusion with carbonate veins CHERT QCAL<br />

044-485.2 db diabase with granite inclusions fine contaminated sulfidic granophyric diabase with meta sed inclusions GRPH gCFS<br />

044-486.7 db diabase with granite inclusions fine sulfidic diabase w/calcite veining DB CPS<br />

044-489.7 db diabase with granite inclusions inclusion <strong>of</strong> med crs n fol augite melatroctolite w/poik plag in diabase MLTR pOC<br />

044-494.5 db diabase with granite inclusions fine contaminated sulfidic granophyric diabase with meta sed mela aug troc inclusions MLTR pOC<br />

044-497.5 fwer med to med crs calcite veined wehrlite mod alt med n fol apatitic feldspathic wehrlite w/poikplag FLWH OpC<br />

044-502.7 focp ??? mod alt med n fol apatitic feldspathic clinopyroxenite w/spoik plag FLPX Cph a<br />

044-511.7 focp ??? mod alt med n fol apatitic feldspathic olivine clinopyroxenite w/spoik plag FLPX CpOa<br />

044-519.7 focp ??? mod alt med n fol apatitic feldspathic olivine clinopyroxenite w/poik plag FLPX COpa<br />

044-530.5 focp ??? mod alt med to med crs n fol apatitic feldspathic olivine clinopyroxenite w/poik plag, spoik CPX FLPX COpa<br />

044-545 fwer ??? mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag, spoik CPX FLWH Ocph a<br />

044-555 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocpa<br />

044-570 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocph a<br />

044-585 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocph a<br />

044-600 fwer ??? str alt med crs n fol apatitic feldspathic wehrlite wpoik plag, spoik CPX FLWH Ocph a<br />

044-615 fwer ??? mod alt med crs n fol apatitic feldspathic wehrlite wpoik plag, spoik CPX FLWH Ocpa<br />

044-630 fwer ??? mod alt med crs n fol apatitic hornblende wehrlite wpoik plag, spoik CPX WRLT Oh cpa<br />

044-635 fwer ??? mod alt med crs n fol apatitic feldspathic hornblende wehrlite wpoik plag FLWH Oh cpa<br />

044-640 fwer ??? mod alt med crs n fol apatitic feldspathic hornblende wehrlite wpoik plag, spoik CPX FLWH Ocph a<br />

044-645 fwer ??? str alt med n fol apatitic sulfidic feldspathic hornblende wehrlite w/spoik plag FLWH OpCSh a<br />

044-650 fwer ??? str alt med n fol apatitic sulfidic hornblende olivine melagabbro w/spoik plag MLOG COpSh a<br />

044-655 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa<br />

044-660 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa<br />

044-666 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa<br />

044-670 grnt ??? str alt med n fol partially melted sulfidic granite GRNT QPKS?<br />

044-672 grnt ??? mod alt med nfol granite GRNT QPKS?<br />

007-7.1 med fine olivine rich ultramafic mod alt med fn nfol apatitic feldspathic hornblende wehrlite w/poik plag, CPX FLWH Ocph a<br />

007-11.1 med sulfidic olivine rich ultramafic mod alt med nfol apatitic sulfide bearing feldspathic hornblende wehrlite w/poik plag, CPX FLWH Ocph a<br />

007-17.0 med sulfidic olivine rich ultramafic mod alt med nfol apatitic sulfide bearing feldspathic hornblende wehrlite w/poik plag, CPX FLWH Ocph a<br />

007-20.4 med mottled sulfidic unit mod alt med fn nfol apatitic sulfidic hornblende olivine melagabbro w/poik plag MLGB pCOSh a<br />

007-21.4 heterogenious fine to course sufidic ultramafic ????? Granophyre OPX rim on CPX<br />

007-22.57 heterogenious fine to course sufidic ultramafic mod alt med fn nfol apatitic sulfidic feldspathic olivine clinopyroxenite w/poik plag FLPX COpSa<br />

007-25.3 med sulfidic olivine CPX rich ultramafic mod alt med nfol apatitic sulfidic feldspathic hornblende wehrlite w/poik plag, spoik FLWH OcpSh a<br />

CPX<br />

007-27.6 med sulfidic olivine CPX rich ultramafic wk alt med nfol apatitic sulfidic augite troctolite w/poik plag, spoik CPX MLTR OcpSa<br />

007-30.6 med sulfidic olivine CPX rich ultramafic mod alt med nfol apatitic sulfidic feldspathic hornblende wehrlite w/poik plag, spoik CPX FLWH OcpSa<br />

007-33.0 diss sulfide in med ultramafic mod alt fn to med fn n fol granular apatitic olivine mela gabbro MLGB CPOSa<br />

007-33.7 semi massive sulfide <strong>and</strong> hornfels str alt med fn semi massive sulfide <strong>and</strong> mela gabbroic melt in very fn metased MSLF CPOSga<br />

Field Samples<br />

BIC-43 crs to vcrs oxide monzodiorite mod alt med crs pfol sub ophitic oxide gabbro OXGB PCF<br />

BIC-23 crs oxide gabbro mod alt med crs pfol gran apatitic oxide gabbro OXGB PCFa<br />

BIC-11 mod foliated oxide gabbro mod alt med fn m fol gran apatitic oxide gabbro OXGB PCFa<br />

BIC-3A Oxide gabbro mod alt med fn nfol gran apatitic oxide gabbro OXGB PCFa<br />

BIC-14 med oxide gabbro wk alt med fn p fol gran oxide gabbro OXGB PCF<br />

BIC-12B granophyric oxide gabbro str alt med to med fn pfol gran apatitic granophyric oxide gabbro GPGB PCFga<br />

BIC-45 granophyric oxide gabbro mod alt med fn n fol cpx, hb, qtz, ferro monzodiorite QFMD CpFQKa<br />

BIC-26 med oxide gabbro mod alt med fn pfol oxide mela gabbro MLGB CpF<br />

BIC-12A med granophyric felds pyrox mod alt med nfol apatitic feldspathic oxide clinpyroxenite w/spoik plag, felsic patches FLPX CpFa<br />

BIC-22 upper felds oxide pyrox wk alt med pfol oxide mela gabbro w/spoik plag MLGB CpF<br />

BIC-3B upper feldspathic oxide pyroxenite mod alt med fn nfol apatitic feldspathic oxide clinopyroxenite w/poik plag FLPX CFpa<br />

BIC-3C middle feldspathic oxide pyroxenite mod alt med fn nfol apatitic oxide clinopyroxenite w/poik plag CLPX CFpa<br />

BIC-21 oxide feldspathic pyroxenite mod alt med fn nfol apatitic feldspathic clinopyroxenite w/poik plag FLPX Cpfa<br />

BIC-16 feldspathic pyroxenite mod alt med fn nfol apatitic feldspathic olivine clinopyroxenite w/poik plag FLPX CpOfa<br />

BIC-3D lower feldspathic pyroxenite str alt med fn nfol quartz bearing apatitic feldspathic clinopyroxenie w/poik plag FLPX CpfQa<br />

BIC-2A upper ultramafic mod alt med nfol apatitic feldspathic hornblende wehrlite w/poikplag, spoik CPX FLWH Opch a<br />

BIC-2B lower ultramafic mod alt med nfol apatitic feldspathic hornblende wehrlite w/poikplag, spoik CPX FLWH Ocph a<br />

Dike<br />

BIC-19 crs granophyric clinopyroxenite dike wk alt med crs nfol apatitic oxide bearing hornblende clinopyroxenite w/poik plag CLPX Ch pfa<br />

91


MC PK SPK PPK NF AP S PO-PD CHL SRP TLC<br />

MC PK SPK PPK NF AP S PO-PD CHL SRP TLC<br />

FF EG IGR NF W ED SSR TLC SRP?<br />

MF EG IGR NF M ED SSR TLC SRP<br />

VF MP IGR? NF WK ED SRP SSR<br />

MC PK IGR PPK NF AP M PO-PD SSR AMP SRP<br />

MC PK IGR PPK NF AP M PO-PD CHL AMP SRP<br />

MC PK IGR PPK NF AP M PO-PD CHL AMP SRP<br />

FF EG IGR NF W ED SSR TLC SRP?<br />

MC PK SPK PPK NF M PO-PD CHL SRP TLC<br />

MC PK SPK PSP NF BF S ED AMP SRP CRB<br />

VF-FF EG NA NF N NA<br />

FF EG IGR MGP NF S ED AMP SSR CHL<br />

FF PK IGR PPK NF M ED AMP SSR CHL<br />

MC PK IGR PPK NF M ED TLC CHL SER<br />

MM PK IGR PPK NF M ED TLC CHL SER<br />

MM PK IGR PPK NF AP M ED SRP ULR SER<br />

MM PK IGR PSP NF M ED AMP SER CHL<br />

MM PK IGR PSP NF BF M ED AMP SER CHL<br />

MM PK IGR PPK NF M ED AMP SER SRP<br />

MM-MC PK SPK PPK NF AF M ED CHL AMP SRP<br />

MC PK SPK PPK NF BF AP M ED CHL AMP SRP<br />

MC PK PK PPK NF BF M ED CHL AMP SRP<br />

MC PK PK PPK NF AF M ED CHL AMP SRP<br />

MC PK PK PPK NF AP M ED CHL AMP SRP<br />

MC PK SPK PPK NF AP S ED TLC AMP SRP<br />

MC PK SPK PPK NF AP M ED CHL SER SRP<br />

MC PK SPK PPK APK NF M ED CHL SER SRP<br />

MC PK ING PPK APK NF M ED CHL SER SRP<br />

MC PK SPK PPK APK NF AP M ED AMP SER SRP<br />

MM SP IGR PSP APK NF S ED TLC SER SRP<br />

MM SP IGR PSP NF S ED TLC AMP SRP<br />

MM SP IGR PSP NF S ED TLC AMP SRP<br />

MM SP IGR PSP NF S ED TLC SER SRP<br />

MF SP IGR PSP NF S ED TLC SER SRP<br />

MM EG NA NA NF S PO-PD SER CHL<br />

MM EG NA NA NF M PO-PD SER CHL<br />

MF PK PK PPK APK NF M PO-PD CHL SRP AMP<br />

MM PK PK PPK APK NF M PO-PD CHL SRP AMP<br />

MM PK PK PPK APK NF M PO-PD CHL SRP AMP<br />

MF PK IGR PPK NF M ED TLC CHL AMP<br />

MF PK IGR PPK NF M ED SRP CHL AMP<br />

MM PK SPK PPK APK NF AP M ED SRP CHL AMP<br />

MM PK SPK PPK NF W ED SRP CHL AMP<br />

MM PK SPK PPK NF M ED TLC CHL AMP<br />

FF-MF EG IGR NF M ED SPR CHL AMP<br />

VF-MF EG IGR NF S ED SPR CHL AMP<br />

MC SP SOP PF AF M PO-PD SER CHL AMP<br />

MC EG IGR PF M PO-PD SER CHL AMP<br />

MF EG IGR NF M PO-PD SER SSR CHL<br />

CSP<br />

MF EG IGR NF M PO-PD SER AMP CHL<br />

MF EG IGR NF W PO-PD SER CHL AMP<br />

MF-MM EG IGR MGP PF M PO-PD SER AMP CHL<br />

MF SP IGR PPK NF M PO-PD SER AMP CHL<br />

MF SP IGR SPK PF M PO-PD SER CHL AMP<br />

MM SP IGR SPK NF AF M PO-PD SER CHL AMP<br />

MM SP IGR SPK PF AP WK PO-PD SER AMP<br />

MF PK IGR PPK NF AF M PO-PD SER CHL SSR?<br />

MF PK IGR PPK NF M PO-PD SER CHL SSR?<br />

MF PK IGR PPK NF M PO-PD CHL SER AMP<br />

MF PK IGR PPK NF M PO-PD SER SRP CHL<br />

MF PK IGR PPK NF S PO-PD CHL SER AMP<br />

MM PK SPK PPK NF M PO-PD SRP CHL AMP<br />

APK<br />

MM PK SPK PPK APK NF M PO-PD SRP CHL AMP<br />

MC PK IGR PPK NF AP W ED CHL AMP SER<br />

92


Appendix A-2<br />

SILICATE MINERAL PETROGRAPHY<br />

By: Dan Foley<br />

Date: Modal <strong>Cu</strong>mulate PLAGIOCLASE OLIVINE CLINOPYROXENE<br />

Strat Unit Field/Core Rock Type Type Mode Habit Mode Mode Habit Exsol Sample ID Log Description Petrographic Description Exsol Zoning Alteration Habit Corona Alteration Corona Alteration<br />

## XX XX XX X-XXX ## XX XX X-XXX ## XX XX XX X-XXX<br />

01-01-9.1 oxgb Med wfol gabbro str alt med wfol sprism gran ox gabbro w/ spoik calcite OXGB PCF 55 SR CS S-SER 25 SG S-CHL<br />

01-01-15.5 oxgb Med wfol gabbro str epidote alt med wfol sprism gran apatitic ox gabbro OXGB PCFA 50 SR CS S-SSR 25 SG S-CHL<br />

01-01-19.9 oxgb Med wfol gabbro mod to str alt med wfol sprism apatitic ox gabbro OXGB PCFA 50 SR CS S-SER 30 SG M-S-CHL<br />

01-01-31.2 oxgb Med wfol gabbro mod to str alt med wfol sprism apatitic ox gabbro OXGB PCFA 45 SR CS S-SER 45 SR M-CHL<br />

01-01-32.0 oxgb med crs w fol gabbro str alt med wfol sprism apatitic ox gabbro OXGB PCFA 60 SR CS S-SER 18 SG S-CHL<br />

01-01-36.6 oxgb Med wfol gabbro mod to str alt med wfol apatitic ox gabbro OXGB PCF(O?)A 48 SR CS S-SER 40 SR M-S-CHL<br />

01-01-43.2 oxgb Med wfol gabbro mod to str alt med nfol apatitic ox gabbro w/ apoik plag OXGB pCFA 40 SP CS S-SER 35 SR M-CHL<br />

01-01-44.5 oxgb poikolitic gabbroic anorthosite str epidote alt med wfol apatitic ox leuco gabbro w/ spoik cal LCGB PC?FA 75 SR CS S-SSR 20? ?? S-SSR<br />

01-01-46.1 oxgb Med wfol gabbro mod to str alt med pfol apatitic ox gab w/ spoik plag <strong>and</strong> cal OXGB pCFA 40 SP CS S-SER 40 SR M-CHL<br />

01-01-47.2 oxgb pyroxene oxide cummulate mod to str alt med pfol apatitic ox gab w/ poik plag <strong>and</strong> spoik cal OXGB pCFA 40 PK CS S-SER 40 SR M-CHL<br />

01-01-50.6 oxgb pyroxene oxide cummulate mod to str alt med pfol ox melagab w/ poik plag MLGB CpF 30 PK CS S-SER 40 SR M-CHL<br />

01-01-54.7 foxcp pyroxene oxide cummulate mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX CFpOa 20 PK CS S-SER 10 SG S-SRP 45 SG M-CHL<br />

01-01-58.4 foxcp pyroxene oxide cummulate mod alt med to med crs nfol feldspathic ox clinopyroxenite FLPX Cfp 15 PK NA S-SSR 55 SG-SR W-AMP<br />

01-01-60.5 focp med fn clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 15 PK NA C-SER 25 SG S-TLC 55 SG W-CHL<br />

01-01-75.5 focp med fn clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 12 PK NA C-SER 15 SG S-SRP 70 SG W-CHL<br />

01-01-89.45 focp med fn clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 15 PK NA C-SER 20 SG S-TLC 60 SG W-CHL<br />

01-01-104.3 focp med fn clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 10 PK NA C-SER 15 SG S-SRP 70 SG W-AMP<br />

01-01-117.2 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf 10 PK NA C-SER 15 SG S-SRP 70 SG-SR W-AMP<br />

01-01-130.5 focp med fn clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf 8 PK NA S-SER 20 SG S-SRP 65 SG W-AMP<br />

01-01-143.5 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing olivine clinopyroxenite w/ poik plag OCPX COpf 8 PK NA S-CHL 15 SG S-SRP 70 SG W-AMP<br />

01-01-151.6 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 15 PK NA S-CHL 20 SG S-SRP 60 SG W-AMP<br />

01-01-155.9 focp med fine clinopyroxenite mod alt med fn nfol oxide bearing feldspathic olivine clinopyroxenite w/ poik plag FLPX COpf 15 PK N/A S-CHL 18 SG S-SRP 60 SG W-AMP<br />

01-01-160.5 focp med fine clinopyroxenite mod alt med to med crs nfol feldspathic ox olivine clinopyroxenite FLPX CpOF 15 PK N/A S-CHL 8 SG S-SRP 70 SG W-AMP<br />

01-01-162.4 fwer med wehrlite mod alt med fn nfol oxide bearing feldspathic wehrlite w/ poik plag FLWH OCpf 15 pk N/A S-CHL 45 SG S-SRP 35 SG W-AMP<br />

01-01-163.4 fwer med wehrlite mod alt med fn nfol oxide bearing feldspathic wehrlite w/ poik plag FLWH OCpf 15 PK N/A S-CHL 55 SG S-SRP 25 SG W-AMP<br />

01-01-166.0 fwer med wehrlite str alt med fn nfol oxide bearing sub wehrlite w/poik plag, intersticial gran CPX WRLT Ocpf 10 PK N/A S-CHL 60 SG S-SRP 20 SP W-AMP<br />

01-01-173.7 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 15 PK N/A S-CHL 55 SG M-SRP 15 AG W-CHL<br />

01-01-183.0 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 15 PK N/A S-CHL 55 SG M-SRP 15 AG W-CHL<br />

01-01-196.0 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Opch f 15 PK N/A S-CHL 60 SG M-SRP 12 AG W-CHL<br />

01-01-207.9 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 15 PK N/A S-CHL 60 SG M-SRP 15 AG W-CHL<br />

01-01-221.7 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 15 PK N/A S-CHL 57 SG M-SRP 15 AG W-CHL<br />

01-01-235.9 fwer med wehrlite mod alt med fn nfol oxide bearing hornblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 13 PK N/A S-CHL 55 SG M-SRP 15 AG W-CHL<br />

01-01-244.65 fwer med wehrlite mod alt med fn to med oxide bearing honblende feldspathic wehrlite w/poik hornblende FLWH Ocph f 12 PK N/A S-CHL 50 SG M-SRP 18 AG W-CHL<br />

01-01-248.8 fwer sulfidic crs wehrlite mod alt med to med crs oxide bearing sub ophitic hornblende feldspathic wehrlite w/poik hbFLWH Ocph f 10 PK N/A S-CHL 50 SG M-SRP 23 SP AM W-AMP<br />

01-01-253.4 fwer sulfidic crs wehrlite mod alt med to med crs oxide bearing sub ophitic hornblende feldspathic wehrlite w/poik hbFLWH Ocph f 13 PK N/A S-CHL 45 SG M-SRP 25 SP AM W-AMP<br />

01-01-257.3 fwer sulfidic crs wehrlite mod alt med crs oxide bearing sub poik hornblende feldspathic wehrlite w/poik hb FLWH Ocph Sf 12 PK N/A S-CHL 50 SG M-SRP 20 SP W-AMP<br />

01-01-261.7 fwer sulfidic crs wehrlite str alt med crs oxide bearing sulfidic sub poik hornblende wehrlite w/poik hb WRLT Ocph f 5 PK N/A S-CHL 58 SG S-SRP 20 SP AM W-AMP<br />

01-01-265.5 fwer sulfidic crs wehrlite mod alt med crs oxide bearing sub poik hornblende wehrlite w/poik plag WRLT Ocph f 8 PK N/A S-CHL 44 SG M-SRP 38 SP AM W-AMP<br />

01-01-268.7 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing sulfidic feldspathic wehrlite w/poik plag FLWH OCph f 17 PK CS W-SER 40 AG M-SRP 30 SG AM W-AMP<br />

01-01-271.1 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf 15 PK CS W-SER 42 AG M-TLC 35 SG W-AMP<br />

01-01-273.4 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf 20 SP CS W-SER 40 AG M-TLC 28 SG W-AMP<br />

01-01-278.5 fwer crs sulfidic feldspathic wehrlite wk alt med oxide bearing feldspathic wehrlite w/poik plag FLWH OCpf 18 SP CS M-SER 50 AG W-TLC 22 SG W-AMP<br />

01-01-286.2 fwer crs sulfidic feldspathic wehrlite mod alt oxide bearing augite mela troctolite w/poik plag MLTR OpCf 30 PK CS M-SER 35 AG M-TLC 25 SG W-AMP<br />

01-01-295.8 fwer crs sulfidic feldspathic wehrlite mod alt med to med crs oxide bearing feldspathic olivine clinopyroxenite w/poik plag FLPX OCpf 15 PK CS W-SER 30 SG M-SRP 45 SG W-AMP<br />

01-01-303.0 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing feldspathic wehrlite w/spoik plag FLWH Ocpf 23 SP CS M-SER 38 AG M-SRP 27 SP AM W-AMP<br />

01-01-306.1 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing sulfidic feldspathic wehrlite w/spoik plag FLWH OpcSf 18 SP CS M-SER 50 SG M-SRP 12 AG AM W-AMP<br />

01-01-308.85 fwer crs sulfidic feldspathic wehrlite mod alt med oxide bearing sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSf 20 SP CS M-SER 40 SG M-SRP 25 SG W-AMP<br />

01-01-310.6 fwer crs sulfidic feldspathic wehrlite comp alt med oxide bearung sulfidic feldspathic wehrlite FLWH OCpSf? 20 NA C-SER 40 SG S-SRP 25 NA NA<br />

044-11.0 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA 55 SR CS M-SER 20 SG S-CHL<br />

044-19.5 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA 55 SR CS M-SER 20 SG M-CHL<br />

044-29.75 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA 53 SR CS M-SER 22 SG M-CHL<br />

044-38.0 oxgb med crs w fol oxide gabbro str alt med w fol apatitic oxide gabbro w-spoik calcite OXGB PCFA 60 SR CS S-SSR 22 SG M-CHL<br />

044-44.8 oxgb med crs w fol oxide gabbro str alt med w fol apatitic oxide gabbro w-spoik calcite OXGB PCFA 55 SR CS S-SSR 25 SG M-CHL<br />

044-50.5 oxgb med crs w fol oxide gabbro mod alt med w fol apatitic oxide gabbro w/spoik calcite OXGB PCFA 50 SR CS S-SSR 25 SG M-CHL<br />

044-52.0 oxgb med crs w fol oxide gabbro str alt med wfol apatitic sub ophitic oxide leucogabbro LCGB PFca 65 SR CS S-SSR 15 SO M-CHL<br />

044-54.5 foxcp med oxide pyroxenite wk alt med nfol apatitic feldspathic oxide pyroxenite w/spoik plag FLPX CpFa 20 SP CS W-SER 62 SG W-CHL<br />

044-57.3 foxcp med oxide pyroxenite mod alt med nfol feldspathic olivine oxide pyroxenite w/spoik plag FLPX CFpO 15 SP NA M-SER 10 SG S-SRP 50 SR W-AMP<br />

044-62.4 foxcp med oxide pyroxenite mod alt med n fol apititic feldspathic olivine oxide pyrpxenite w-spoik plag,cal FLPX CFpO 12 PK NA S-CHL 8 SG S-SRP 60 SR W-AMP<br />

044-66.4 foxcp med olivine oxide pyroxenite mod alt med fn nfol feldspathic olivine oxide pyroxenite w/poik plag FLPX CFpO 12 PK NA S-CHL 12 SG S-SRP 53 SG W-AMP<br />

44-67.4 foxcp med olivine oxide pyroxenite mod alt med fn nfol feldspathic olivine oxide pyroxenite w/poik plag FLPX CFpO 13 PK NA S-CHL 10 SG S-SRP 55 SG W-AMP<br />

044-68.5 focp med fn pyroxenite mod alt med fn nfol apatitic feldspathic olivine pyroxenite w/poik plag FLPX CpOfa 17 PK NA S-CHL 15 SG S-SRP 60 SG W-AMP<br />

044-69.3 focp med fn pyroxenite mod alt med fn nfol apatitic feldspathic olivine pyroxenite w/poik plag FLPX CpOfa 15 PK NA S-CHL 12 SG S-SRP 68 SG W-AMP<br />

044-71.5 focp med fn pyroxenite mod alt med fn nfol feldspathic olivine pyroxenite w/poik plag FLPX COpf 15 PK NA S-CHL 15 SG S-SRP 65 SG W-AMP<br />

044-74.8 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf 10 PK NA S-SER? 15 SG S-SRP 72 SG W-AMP<br />

044-88.5 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf 8 PK NA S-SER? 12 SG S-SRP 75 SG W-AMP<br />

044-104.1 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COpf 8 PK NA S-SER? 15 SG S-SRP 72 SG W-AMP<br />

044-116.4 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp 8 PK NA S-SER? 15 SG S-SRP 72 SG W-AMP<br />

044-129.4 focp med fn pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp 7 PK NA S-SER? 16 SG S-SRP 72 SG W-AMP<br />

044-147 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp 5 PK NA S-CHL 15 SG S-SRP 75 SG W-AMP<br />

044-163.2 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp 5 PK NA S-CHL 25 SG S-SRP 68 SG W-AMP<br />

044-180 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp 12 PK NA S-CHL 18 SG S-SRP 65 SG W-AMP<br />

044-188.5 focp med fn to med crs ol pyroxenite wk alt med fn nfol olivine clinopyroxenite w/poik plag OCPX COp 7 PK NA S-CHL 15 SG S-SRP 73 SG W-AMP<br />

044-194.3 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp 12 PK NA S-CHL 15 SG S-SRP 65 SG W-AMP<br />

044-201.2 focp med fn to med crs ol pyroxenite wk alt med fn nfol feldspathic olivine clinopyroxenite w/poik plag FLPX COp 10 PK NA S-CHL 12 SG S-SRP 73 SG W-AMP<br />

044-207.1 focp med fn to med crs ol pyroxenite wk alt med fn nfol sulfidic feldspathic olivine clinopyroxenite w/poik plag FLPX COpS 10 PK NA S-CHL 15 SG S-SRP 73 SG W-AMP<br />

044-212.5 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag FLWH Ocp 15 PK NA S-CHL 60 SG M-SRP 17 SG W-AMP<br />

044-229.5 fwer med fn to med crs ol pyroxenite mod alt med fn to med nfol feldspathic wehrlite w/poik plag FLWH Opc 15 PK NA S-CHL 63 SG M-SRP 12 SG W-AMP<br />

044-246.0 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch 18 PK NA S-CHL 60 SG M-SRP 12 SG W-AMP<br />

044-257.1 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc 15 PK NA S-CHL 65 SG M-SRP 13 AG W-AMP<br />

044-274.3 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc 20 PK NA S-CHL 60 SG M-SRP 15 AG W-AMP<br />

044-284.8 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opc 20 PK NA S-CHL 60 SG M-SRP 12 AG W-AMP<br />

044-307.3 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch 22 PK NA S-CHL 58 SG M-SRP 10 AG W-AMP<br />

044-323.6 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch 22 PK NA S-CHL 60 SP-SG M-SRP 10 AG W-AMP<br />

044-332.0 fwer med fn to med crs ol pyroxenite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch 25 PK NA S-CHL 60 SP-SG M-SRP 10 AG W-AMP<br />

044-340.2 fwer med crs to crs wehrlite mod alt med fn nfol feldspathic wehrlite w/poik plag, hornblende FLWH Opch 22 PK NA S-CHL 60 SP-SG M-SRP 8 AG W-AMP<br />

044-351.5 fwer med crs to crs wehrlite str alt med fn nfol oxide bearing felspathic wehrlite w/poik plag FLWH Opch 22 PK NA S-CHL 58 SP-SG MS-SRP 12 AG W-AMP<br />

044-362.4 fwer med crs to crs wehrlite str alt med fn nfol felspathic wehrlite w/poik plag FLWH Opch 23 PK NA S-CHL 60 SP-SG MS-SRP 10 AG W-AMP<br />

044-373.4 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehlite w/poik plag, CPX FLWH Opch a 22 PK NA S-CHL 64 SP-SG MS-SRP 12 SP W-AMP<br />

044-385.0 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehlite w/poik plag, CPX FLWH Opch a 23 PK NA S-CHL 53 SP?-SG S-SRP 14 SP AM W-AMP<br />

044-401.1 fwer med crs to crs wehrlite str alt med crs nfol apatitic melatroctolite w/poik plag, CPX MLTR Opch a 32 PK NA S-CHL 45 SP?-SG S-SRP 15 SP W-AMP<br />

044-414.7 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehlite w/poik plag, CPX FLWH Opch a 25 PK NA S-CHL 47 SP?-SG S-SRP 15 SP AM W-AMP<br />

044-429.5 fwer med crs to crs wehrlite str alt med crs nfol apatitic feldspathic wehlite w/poik plag, CPX FLWH Opch a 15 PK NA S-CHL 55 SP?-SG S-SRP 20 SP AM W-AMP<br />

044-435.9 db diabase wk alt fn nfol oxide olivne gabbro OXGB CPFO? 35 SR CS W-SSR 5 SG S-SRP 45 SG N<br />

044-440.75 db diabase mod alt med fn nfol oxide olivine gabbro OXGB CPFO 43 SR CS M-SSR 10 SG S-SRP 35 SG W-CHL<br />

044-444.7 db diabase wk alt very fine plagioclase <strong>and</strong> olivine phyric diabse DB ? ? ? CS M-SSR ? SG S-SRP ? ? ?<br />

044-445.3 fwer med crs to crs wehrlite mod alt med crs n fol wehrlite w/poik plag WRLT OCph 8 PK CS M-SSR 55 SP?-SG M-SRP 32 SG AM W-AMP<br />

044-454.9 fwer med crs to crs wehrlite mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag FLWH OCph a 15 PK CS M-CHL 55 SP?-SG M-SRP 25 SG AM W-AMP<br />

044-462.5 fwer med crs to crs wehrlite mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag FLWH OCph a 18 PK CS M-CHL 52 SP?-SG M-SRP 22 SG AM W-AMP<br />

044-465.5 db diabase wk alt fn nfol oxide olivne gabbro OXGB CPFO? 35 SR CS N 5? SG S-SRP? 30 SG W-CHL<br />

044-470.2 fwer med crs sulficic wehrlite mod alt med crs nfol apatitic sulfidic feldspathic wehrlite w/poik plag, CPX FLWH OpcSa 15 PK CS M-CHL 45 SP?-SG M-SRP 35 SP W-CHL<br />

044-472.3 fwer med crs sulficic wehrlite str alt med crs nfol sulfidic apatitic feldspathic mela troctolite w poik plag, CPX MLTR OpcSa 35 SP CS W-SER 35 SG M-SRP 25 SP M-AMP<br />

044-480.0 cc layered carbonatae chert inclusion chert inclusion with carbonate veins CHERT QCAL<br />

044-485.2 db diabase with granite inclusions fine contaminated sulfidic granophyric diabase with metased inclusions GRPH gCFS 20 SG CS W-SER 20 SG S-AMP<br />

044-486.7 db diabase with granite inclusions fine sulfidic diabase w/calcite veining DB CPS 35 PK CS W-SER 50 SG W-AMP<br />

044-489.7 db diabase with granite inclusions inclusion <strong>of</strong> med crs n fol augite melatroctolite w/poik plag in diabase MLTR pOC 35 PK CS W-SER 30 SG M-TLC 30 SG M-AMP<br />

044-494.5 db diabase with granite inclusions fine contaminated sulfidic granophyric diabase with meta sed mela aug troc inclusions MLTR pOC 35 PK CS W-SER 33 SG M-TLC 32 SG M-AMP<br />

93


OPAQUES APATITE AMPHIBOLE BIOTITE GRANOPHYRE OTHER COMMENTS<br />

Mode Ox:Sulf Habit1 Habit2 Corona Mode Habit Host Mode % Primary Habit1 Habit2 Mode % Primary Habit1 Habit2 Mode QTZ:KSP Habit Phase Mode Habit<br />

## #:# XX XX XX ## XX XX ## ## XX XX ## ## XX XX ## #:# XX XXX ## XX<br />

10 5:01 SK AG 2 1:00 AG CAL 8 SP Mafics more altered than plag<br />

15 10:01 SK AG TRACE AC 5 1:00 AG CAL 5 SP One side <strong>of</strong> slide shows exreme epidote alteration <strong>of</strong> plagioclase<br />

15 20:01 SK AG TRACE AC CAL 5 SP<br />

10 20:01 SK AG TRACE AC CAL TRACE SP mafics less altered<br />

12 1:00 SK AG TRACE AC TRACE 100 AG CAL TRACE SP<br />

12 1:00 SK AG TRACE AC TRACE 100 AG CAL TRACE SP very hard to destinguish olivine from pyroxene<br />

22 20:01 SK SM TRACE AC 3 100 AG oxides show symplectic intergrowth with chlorite<br />

5 1:00 SK AG TRACE AC CAL TRACE SP extreme epidote alteration, no primary CPX remains?<br />

17 20:01 SK AG TRACE AC 1 100 AG CAL 2 SP<br />

20 20:01 SK AG TRACE AC TRACE 100 AG CAL TRACE SP plag is almost completely altered<br />

30 1:00 AG TRACE 100 AG<br />

25 1:00 AG TRACE AC TRACE 100 AG TRACE AG<br />

30 20:01 SP 8 10 AG TRACE 10 AG Plag almost completely altered to calcite, muscovite, <strong>and</strong> chlorite<br />

5 20:01 SP TRACE 90 AG TRACE 10 AG olivine almost completely altered to serp <strong>and</strong> talc<br />

3 1:00 DS TRACE 90 AG TRACE 90 AG<br />

5 20:01 DS TRACE 90 AG TRACE 90 AG<br />

5 20:01 DS TRACE 90 AG TRACE 75 AG olivines almost completely altered to serp<br />

5 1:00 DS TRACE 90 AG TRACE 75 AG<br />

5 20:01 DS 1 90 AG 1 50 AG<br />

5 1:00 DS 2 30 AG TRACE 10 AG Some pyroxenes altered to actinolite <strong>and</strong> hornblende?<br />

5 1:00 DS 5 50 AG TRACE 10 AG<br />

5 1:00 DS 2 70 AG TRACE 20 AG<br />

5 1:00 DS 2 50 AG TRACE 30 AG section contains less olivine <strong>and</strong> more greenish blue alteration which in this case seems to be targeting CPX grains<br />

5 1:00 DS TRACE 75 AG TACE 50 AG<br />

5 1:00 DS 5 20 AG TRACE 10 AG olivine becomes radically more abundant<br />

5 1:00 DS 2 20 AG 3 10 AG cpx is now subophitic<br />

5 1:00 DS 10 95 PK TRACE 50 AG large oikocrysts <strong>of</strong> poikoloitic hornblende<br />

5 1:00 DS 10 95 PK TRACE 50 AG apatite? In what used to be plag?<br />

5 1:00 DS 8 95 PK TRACE 50 AG<br />

5 1:00 DS 10 95 PK TRACE 50 AG<br />

5 1:00 DS 8 95 PK TRACE 75 AG<br />

5 1:00 DS 12 95 PK TRACE 75 AG cpx seems to be forming interstitially<br />

5 1:00 DS 10 95 PK 5 20 AG some olivone grains are much larger, CPX may be sub poikolitic?<br />

5 1:00 DS 10 60 PK OG 2 20 AG Apatitic?<br />

5 1:00 DS 10 40 OG PK 2 10 AG<br />

5 1:00 DS 8 75 SP 5 10 AG<br />

12 1:20 DS SK 4 25 OG SP 1 10 AG sulfides show strong association with HB anf BT<br />

5 20:01 DS 3 25 OG 2 10 OG AG small amounts <strong>of</strong> primary plagioclase reamining<br />

8 1:20 DS SK 3 25 OG 2 10 OG AG large amouns <strong>of</strong> poikolitic primary plag present. CPX seems to be granular<br />

5 20:01 DS 2 50 AG TRACE 10 AG HB <strong>and</strong> BT less abundant, plag altering to grungy SER, olivine grains much larger than CPX grains<br />

5 20:01 DS SK 2 50 AG TRACE 10 AG apatitic?<br />

7 20:01 DS SK 2 50 AG OG 1 10 AG OG<br />

5 20:01 DS 4 75 SP OG 1 10 AG OG<br />

5 20:01 DS 3 75 AG 2 10 OG AG<br />

5 20:01 DS 4 50 OG AG 3 10 OG AG some CPX sub poikolitic on olivine. Plag less poikolitic than previous slides<br />

10 1:20 DS AG 7 60 OG AG 3 10 OG AG CPX contents drops dramatically, plag is less poikolitic sulfides increased dramatically<br />

10 1:20 DS SK 3 50 AG 2 10 AG<br />

10 1:20 DS AG 3 50 AG 2 10 AG bottom <strong>of</strong> hole is almost completely altered. Extremely difficult to tell what was CPX from what was Plag<br />

20 20:01 SK AG TRACE AC 2 1:00 AG CAL 3 SP CPX almost entirely chloritized<br />

20 20:01 SK AG TRACE AC TRACE 90 AG TRACE 75 AG 1 1:00 AG CAL 4 SP some fresh CPX remaining, Olivine ?<br />

20 20:01 SK AG TRACE AC TRACE 50 AG TRACE 25 AG CAL 5 SP Olivine?<br />

18 20:01 SK AG TRACE AC TRACE 50 AG TRACE 50 AG CAL TRACE SP<br />

20 20:01 SK AG TRACE AC TRACE 50 AG TRACE 50 AG CAL TRACE SP<br />

25 20:01 SK AG TRACE AC TRACE 50 AG TRACE 50 AG CAL TRACE SP<br />

20 20:01 SK AG TRACE AC cpx becomes subophitic<br />

18 15:01 AG TRACE AC TRACE 50 AG TRACE 50 AG CAL TRACE SP CPX is now <strong>the</strong> dominant mineral, plag becomes sub poik<br />

25 15:01 AG TRACE 25 AG TRACE 10 AG<br />

20 10:01 AG TRACE AC TRACE 25 AG TRACE 10 AG CAL TRACE SP<br />

20 10:01 AG 3 80 SP TRACE 25 AG sulfIdes associated with olivine?<br />

20 20:01 AG 2 80 SP TRACE 50 AG<br />

5 1:01 AG SK TRACE AC PLAG 3 80 SP TRACE 50 AG oxides dramatically decrease<br />

5 1:01 AG SK TRACE AC PLAG TRACE 90 AG TRACE 75 AG<br />

5 1:01 AG SK TRACE 90 AG TRACE 75 AG<br />

3 1:01 AG DS TRACE 90 AG TRACE 75 AG slight increase in CPX at <strong>the</strong> expense <strong>of</strong> plag<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG OG<br />

5 1:01 AG DS TRACE 90 AG TRACE 75 AG<br />

5 1:01 AG DS TRACE 90 AG TRACE 75 AG<br />

5 1:01 AG DS TRACE 90 AG TRACE 75 AG<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG OG plag now altering to bluish chlorite<br />

5 1:01 AG DS 1 90 AG 1 50 AG OG<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG OG slight increase in plag content<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG OG<br />

5 1:01 AG DS 2 80 AG OG 1 60 AG OG<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG some large fresh olivine grains<br />

5 1:01 AG DS TRACE 90 AG TRACE 50 AG<br />

5 1:01 AG DS 3 90 AG SP TRACE 50 AG olivine content dramaticaly increases<br />

5 1:01 AG DS 5 90 AG SP TRACE 50 AG<br />

5 1:01 AG DS 5 90 SP TRACE 75 AG<br />

4 1:01 AG DS 2 90 SP 1 75 AG<br />

3 1:01 AG DS 2 90 SP 1 75 AG<br />

3 1:01 AG DS 3 90 SP 2 60 AG<br />

3 1:01 AG DS 5 90 PK 2 60 AG<br />

3 1:01 AG DS 4 90 PK 1 75 AG some large subpoikolitic olivines<br />

2 1:01 AG DS 3 90 PK TRACE 75 AG<br />

3 1:01 AG DS 5 90 PK 2 75 AG<br />

5 1:01 AG DS 2 75 AG 1 60 AG<br />

3 3:01 AG DS 3 75 AG 1 60 AG<br />

3 3:01 AG DS TRACE AC PLAG 1 90 SP AG TRACE 75 AG CAL TRACE SP CPX now subpoikolitic<br />

3 3:01 AG DS TRACE AC PLAG 5 60 SP OG 2 50 AG<br />

3 3:01 AG DS TRACE AC PLAG 3 75 SP 2 50 AG<br />

5 3:01 AG DS TRACE AC PLAG 3 60 SP OG TRACE 75 AG<br />

5 3:01 AG DS TRACE AC PLAG 4 60 SP OG 1 75 AG<br />

15 20:01 AG DS TRACE 90 AG diabase dike. Fibrous green clots assumed to be letered olivine<br />

12 20:01 AG SR TRACE 90 AG<br />

? ? ? ? very fine grained, immpossible to give modal percentages<br />

3 3:01 AG DS 2 50 AG OG TRACE 75 AG plag is cleaner <strong>and</strong> less abundant than above<br />

3 3:01 AG DS TRACE AC PLAG 2 50 AG OG TRACE 75 AG<br />

5 3:01 AG DS TRACE AC PLAG 3 50 SP OG TRACE 76 AG<br />

10 20:01 AG DS GLASS 30 diabase dike. Fibrous green clots assumed to be Altered olivine<br />

5 1:01 AG DS TRACE AC PLAG TRACE 90 AG TRACE 50 AG<br />

3 1:02 AG DS TRACE AC 1 90 AG 1 50 AG CAL 10 RP carbonate alteration <strong>of</strong> olivine<br />

5 1:01 AG DS SR 85 ALL Q CAL 15 quartz carb inclusion<br />

5 1:05 AG DS 55 1:01 CAL 5 SP extremely contaminated granophyric diabase with meta sed inclusions<br />

10 1:05 AG DS 4 75 SP AG 1 50 AG<br />

5 1:01 AG DS 4 75 SP AG 1 50 AG grungy alteration <strong>of</strong> CPX which are much smaller than <strong>the</strong> Olivine <strong>and</strong> plag grains<br />

5 1:01 AG DS SR TRACE 90 AG TRACE 50 AG describing mela troc inclusion<br />

94


044-497.5 fwer med to med crs calcite veined wehrlitemod alt med n fol apatitic feldspathic wehrlite w/poikplag FLWH OpC 25 PK CS W-SER 40 SG M-SRP 20 SG AM M-AMP<br />

044-502.7 focp ??? mod alt med n fol apatitic feldspathic clinopyroxenite w/spoik plag FLPX Cph a 22 SP CS M-SER 65 SG M-AMP<br />

044-511.7 focp ??? mod alt med n fol apatitic feldspathic olivine clinopyroxenite w/spoik plag FLPX CpOa 20 SP CS M-SER 18 SG M-TLC 49 SG M-AMP<br />

044-519.7 focp ??? mod alt med n fol apatitic feldspathic olivine clinopyroxenite w/poik plag FLPX COpa 18 PK CS W-SER 32 SG M-SRP 40 SG M-AMP<br />

044-530.5 focp ??? mod alt med to med crs n fol apatitic feldspathic olivine clinopyroxenite w/poik plag, spoik CPX FLPX COpa 14 PK CS C-CHL 26 SP-SG M-SRP 52 SP W-AMP<br />

044-545 fwer ??? mod alt med crs n fol apatitic feldspathic wehrlite w/poik plag, spoik CPX FLWH Ocph a 18 PK CS C-CHL 40 SG M-SRP 30 SP AM W-AMP<br />

044-555 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocpa 5 PK CS S-CHL 50 SG M-SRP 35 PK W-AMP<br />

044-570 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocph a 8 PK CS C-CHL 54 SG M-SRP 30 PK W-AMP<br />

044-585 fwer ??? mod alt med crs n fol apatitic wehrlite w/poik plag, CPX WRLT Ocph a 6 PK CS S-CHL 55 SG M-SRP 30 PK AM W-AMP<br />

044-600 fwer ??? str alt med crs n fol apatitic feldspathic wehrlite wpoik plag, spoik CPX FLWH Ocph a 12 PK CS S-CHL 53 SG S-TLC 20 PK AM W-AMP<br />

044-615 fwer ??? mod alt med crs n fol apatitic feldspathic wehrlite wpoik plag, spoik CPX FLWH Ocpa 12 PK CS S-CHL 60 SG M-SRP 18 SP AM W-AMP<br />

044-630 fwer ??? mod alt med crs n fol apatitic hornblende wehrlite wpoik plag, spoik CPX WRLT Oh cpa 8 PK CS S-CHL 55 SG M-SRP 15 SP W-AMP<br />

044-635 fwer ??? mod alt med crs n fol apatitic feldspathic hornblende wehrlite wpoik plag, FLWH Oh cpa 15 PK CS S-CHL 42 SG M-SRP 18 AG W-AMP<br />

044-640 fwer ??? mod alt med crs n fol apatitic feldspathic hornblende wehrlite wpoik plag, spoik CPX FLWH Ocph a 20 PK CS M-SER 40 SG M-SRP 20 SP AM W-AMP<br />

044-645 fwer ??? str alt med n fol apatitic sulfidic feldspathic hornblende wehrlite w/poik plag FLWH OpCSh a 22 SP CS M-SER 35 SG S-TLC 20 SG W-AMP<br />

044-650 fwer ??? str alt med n fol apatitic sulfidic hornblende olivine melagabbro w/spoik plag MLOG COpSh a 25 SP-SG? CS M-AMP? 25 SG S-TLC 30 SG W-AMP<br />

044-655 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa 20 SP-SG? CS M-AMP? 35 SG S-TLC 25 SG W-AMP<br />

044-660 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa 22 SP-SG? CS M-SER 35 SG S-TLC 28 SG W-AMP<br />

044-666 fwer ??? str alt med nfol apatitic sulfidic feldspathic wehrlite w/spoik plag FLWH OCpSa 24 SP-SG? CS M-SER 38 SG S-TLC 28 SG W-AMP<br />

044-670 grnt ??? str alt med n fol partially melted sulfidic granite GRNT QPKS?<br />

044-672 grnt ??? mod alt med nfol granite GRNT QPKS?<br />

007-7.1 med fine olivine rich ultramafic mod alt med fn nfol apatitic feldspathic hornblende wehrlite w/poik plag, CPX FLWH Ocph a 12 PK NA S-CHL 45 SG W-SRP 25 PK W-AMP<br />

007-11.1 med sulfidic olivine rich ultramafic mod alt med nfol apatitic sulfide bearing feldspathic hornblende wehrlite w/poik plag, CPXFLWH Ocph a 15 PK NA S-CHL 47 SG W-SRP 20 PK W-AMP<br />

077-17.0 med sulfidic olivine rich ultramafic mod alt med nfol apatitic sulfide bearing feldspathic hornblende wehrlite w/poik plag, CPXFLWH Ocph a 12 PK NA S-CHL 45 SG W-SRP 25 PK W-AMP<br />

007-20.4 med mottled sulfidic ultramafic mod alt med fn nfol apatitic sulfidic hornblende olivine melagabbro w/poik plag MLGB pCOSh a 30 PK NA W-SER 22 SG S-TLC 28 SG W-AMP<br />

007-21.4 heterogenious fine to course sufidic ultramafic ????? Granophyre OPX rim on CPX<br />

007-22.57 heterogenious fine to course sufidic ultramafic mod alt med fn nfol apatitic sulfidic feldspathic olivine clinopyroxenite w/poik plag FLPX COpSa 18 PK NA W-SER 22 SG S-SRP 45 SG W-AMP<br />

007-25.3 med sulfidic olivine CPX rich ultramaficmod alt med nfol apatitic sulfidic feldspathic hornblende wehrlite w/poik plag, spoik CPX FLWH OcpSh a 18 PK NA W-SER 40 SG M-SRP 27 SG AM W-AMP<br />

007-27.6 med sulfidic olivine CPX rich ultramaficwk alt med nfol apatitic sulfidic augite troctolite w/poik plag, spoik CPX MLTR OcpSa 25 PK NA W-SER 32 SG W-SRP 28 SG W-AMP<br />

007-30.6 med sulfidic olivine CPX rich ultramaficmod alt med nfol apatitic sulfidic feldspathic hornblende wehrlite w/poik plag, spoik CPX FLWH OcpSa 10 PK NA W-SER 40 SG W-TLC 35 SG W-AMP<br />

007-33.0 diss sulfide in med ultramafic mod alt fn to med fn n fol granular apatitic olivine mela gabbro MLGB CPOSa 35 SG NA S-SER 15 SG S-SER 38 SG W-AMP<br />

007-33.7 semi massive sulfide <strong>and</strong> hornfels str alt med fn semi massive sulfide <strong>and</strong> mela gabbroic melt in very fn metased MSLF CPOSga<br />

Field Samples<br />

BIC-43 crs to vcrs oxide monzodiorite mod alt med crs pfol sub ophitic oxide gabbro OXGB PCFa 48 SR CS S-SER 30 SO W-CHL<br />

BIC-23 crs oxide gabbro mod alt med crs pfol gran apatitic oxide gabbro OXGB PCFa 55 SR CS M-SER 23 SG-SR W-CHL<br />

BIC-11 mod foliated oxide gabbro mod alt med fn mod fol gran apatitic oxide gabbro OXGB PCFa 60 SR CS M-SSR 20 SG-SR W-CHL<br />

BIC-3A Oxide gabbro mod alt med fn nfol gran apatitic oxide gabbro OXGB PCFa 43 SG CS M-SER 35 SG W-AMP<br />

BIC-14 med oxide gabbro wk alt med fn p fol gran oxide gabbro OXGB PCF 60 SR CS W-SER 18 SG W-CHL<br />

BIC-12B granophyric oxide gabbro str alt med to med fn pfol gran apatitic granophyric oxide gabbro GPGB PCFga 53 SR CS M-SER 25 SG W-AMP<br />

BIC-45 granophyric oxide gabbro mod alt med fn n fol cpx, hb, qtz, ferro monzodiorite QFMD CpFQKa 45 SP CS M-SER 20 SG W-AMP<br />

BIC-26 med oxide gabbro mod alt med fn pfol oxide melagabbro MLGB CpF 25 SP CS M-SER 54 SG-SR W-CHL<br />

BIC-12A med granophyric felds pyrox mod alt med nfol apatitic feldspathic oxide clinpyroxenite w/spoik FLPX CpFa 15 SP CS S-SER 60 SG-SR W-CHL<br />

plag, felsic patches<br />

BIC-22 upper felds oxide pyrox wk alt med pfol oxide mela gabbro w/spoik plag MLGB CpF 25 SP CS M-SER 53 SG-SR W-AMP<br />

BIC-3B upper feldspathic oxide pyroxenite mod alt med fn nfol apatitic feldspathic oxide clinopyroxenite FLPX CFpa 12 PK NA C-??? 60 SG W-AMP<br />

w/poik plag<br />

BIC-3C middle feldspathic oxide pyroxenite mod alt med fn nfol apatitic oxide clinopyroxenite w/poik plag CLPX CFpa 8 PK NA C-??? 62 SG W-AMP<br />

BIC-21 oxide feldspathic pyroxenite mod alt med fn nfol apatitic feldspathic clinopyroxenite w/poik plag FLPX Cpfa 15 PK CS M-CHL 72 SG W-CHL<br />

BIC-16 feldspathic pyroxenite mod alt med fn nfol apatitic feldspathic clinopyroxenite w/poik plag FLPX Cpfa 15 PK CS S-SER 65 SG W-AMP<br />

10 SG S-SRP<br />

BIC-3D lower feldspathic pyroxenite str alt med fn nfol quartz bearing apatitic feldspathic clinopyroxenie w/poik plag FLPX CpfQa 20 PK CS S-SER 65 SG W-AMP<br />

BIC-2A upper ultramafic mod alt nfol apatitic feldspathic hornblende wehrlite w/poikplag, spoik CPX FLWH Opch a 22 PK NA C-CHL 46 SG M-SRP 20 SP W-AMP<br />

BIC-2B lower ultramafic mod alt nfol apatitic feldspathic hornblende wehrlite w/poikplag, spoik CPX FLWH Ocph a 15 PK NA C-CHL 48 SG M-SRP 25 SP W-AMP<br />

Dike<br />

BIC-19 crs granophyric clinopyroxenite dike wk alt med crs nfol apatitic oxide bearing feldspathic clinopyroxenite w/poik plag FLPX Cpfa 12 PK CS W-SER 83 SG AM M-AMP<br />

95


15 5:01 RP DS 4 90 AG 1 50 AG<br />

5 3:01 AG DS TRACE AC PLAG 6 90 AG 2 50 AG contains considerably more CPX <strong>and</strong> no Olivine<br />

5 3:01 AG DS TRACE AC PLAG 2 90 AG 1 50 AG OG<br />

5 3:01 AG DS TRACE AC PLAG 3 90 AG 2 50 AG<br />

4 1:01 AG DS TRACE AC PLAG 3 75 AG OG 1 50 AG CPX is now subpoikolitic <strong>and</strong> is taking up more <strong>of</strong> <strong>the</strong> interstitial space at <strong>the</strong> expense <strong>of</strong> plag<br />

4 3:01 AG DS TRACE AC PLAG 5 75 AG OG 3 50 AG OG<br />

5 1:01 AG DS TRACE AC PLAG 2 90 AG 3 50 AG OG<br />

3 3:01 AG DS TRACE AC PLAG 5 75 AG SP TRACE 50 AG<br />

4 3:01 AG DS TRACE AC PLAG 4 75 AG SP 1 50 AG<br />

5 1:01 AG DS TRACE AC PLAG 7 60 SP OG 3 50 AG consierably more hb <strong>and</strong> bt than most slides<br />

5 3:01 AG DS SR TRACE AC PLAG 3 75 AG OG 2 50 AG<br />

3 4:01 AG DS TRACE AC PLAG 22 90 SP 2 50 AG significant amounts <strong>of</strong> spoik hb<br />

3 4:01 AG DS TRACE AC PLAG 20 90 SP 2 50 AG<br />

3 4:01 AG DS TRACE AC PLAG 15 75 SP OG 2 50 AG<br />

15 1:20 AG TRACE AC PLAG 6 75 SP AG 2 50 AG contains several large sulfide grains which appear to be pyrrhotite <strong>and</strong> chalcopyrite<br />

10 1:20 AG TRACE AC PLAG 6 75 AG 4 50 AG TRACE 1:1? AG plag altering to amphibole?<br />

15 1:20 AG TRACE AC PLAG 3 75 AG 2 50 AG<br />

10 1:20 AG TRACE AC PLAG 3 75 AG 2 50 AG<br />

5 1:20 AG TRACE AC PLAG 3 75 AG 2 50 AG<br />

3 1:10 AG modal percents not estimated for felsic phases, archean basement<br />

modal percents not estimated for felsic phases, archean basement<br />

5 1:03 AG DS TRACE AC PLAG 10 90 SP 3 50 AG plag almost entirely altered to chl, CPX is poikolitic<br />

5 1:03 AG DS TRACE AC PLAG 10 90 SP 3 50 AG<br />

5 1:03 AG DS TRACE AC PLAG 10 90 SP 3 50 AG<br />

10 1:10 SK AG TRACE AC PLAG 8 80 AG 2 50 AG considrably finer grained, less olivine, higher sulfide content, finer grained than above<br />

10 1:10 AG TRACE AC PLAG 3 90 AG 2 50 AG<br />

7 1:10 AG TRACE AC PLAG 6 60 OG AG 2 50 AG<br />

12 1:10 AG TRACE AC PLAG 2 90 AG 1 50 AG<br />

NET<br />

10 1:20 SG BLEBBY TRACE AC PLAG 3 90 AG 2 50 AG<br />

5 1:10 DS BLEBBY TRACE AC PLAG 5 90 AG 2 50 AG<br />

modal percents not estimated. M sulfide is mixed with gp, CPX <strong>and</strong> Plag. Metased is mostly <strong>of</strong> VF QTZ<br />

18 ? AG 4 60 AG sub ophitic CPX<br />

20 ? AG TRACE AC PLAG 5 40 AG may have contained small completely altered olivine grains but it seems unlikely<br />

18 ? AG TRACE AC PLAG 2 90 AG TRACE 75 AG TRACE 1:00 AG CAL TRACE SP<br />

20 ? AG TRACE AC PLAG 2 90 AG TRACE 75 AG small patches <strong>of</strong> green alteration could be olivine but in this section it is assumed to be not present<br />

20 ? AG 1 90 AG TRACE 75 AG TRACE 1:00 AG<br />

15 ? AG 2 90 AG TRACE 75 AG 5 1:00 AG TRACE AC PLAG sample shows what appears to be hematite staining around <strong>the</strong> edges <strong>of</strong> <strong>the</strong> plag grains<br />

15 ? AG TRACE AC PLAG 5 90 AG TRACE 75 AG 15 1:01 AG<br />

20 ? AG 2 90 AG<br />

20 ? AG TRACE AC PLAG 5 75 AG modal percents <strong>of</strong> felsic patches not estimated, patches made up <strong>of</strong> qtz, plag, <strong>and</strong> kpar<br />

OG CAL TRACE AG<br />

20 ? AG 7 20 AG OG TRACE 75 AG<br />

25 ? AG TRACE AC PLAG 3 75 AG OG TRACE 75 AG<br />

28 ? AG TRACE AC PLAG 2 80 AG TRACE 75 AG<br />

6 ? AG TRACE AC PLAG TRACE 80 AG 1 75 AG SK some CPX grains comletely altered to chlorite<br />

6 ? AG TRACE AC PLAG 4 80 AG TRACE 75 AG contains small clots <strong>of</strong> what are assumed to be altered olivine<br />

7 ? AG TRACE AC PLAG 4 80 AG TRACE 75 AG 4 1:00 AG contains free QTZ may have been kicked out when pyroxene went to chlorite?<br />

5 ? AG TRACE AC PLAG 5 90 AG 2 75 AG clean spoik CPX<br />

SP<br />

5 ? AG TRACE AC PLAG 5 90 AG SP 2 75 AG<br />

5 ? AG SK TRACE AC PLAG 15 20 OG AG TRACE 75 AG CAL TRACE SP consitent hb overgrowth righns on <strong>and</strong> in CPX<br />

96


Appendix B Mineral Chemical Data<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 11.0<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.09 1.14 2.16 8.08 0.22 14.51 20.41 99.6 76.2 43.0 13.4 43.5<br />

Spectrum 2 52.93 1.15 2.25 8.2 0.24 14.44 20.49 99.7 75.8 42.8 13.6 43.6<br />

Spectrum 3 52.36 1.32 2.62 8.18 0.26 14.23 20.64 99.6 75.6 42.3 13.6 44.1<br />

Spectrum 4 53.21 1.1 2.32 8.04 0 14.37 20.6 99.6 76.1 42.7 13.4 44.0<br />

Spectrum 5 52.82 1.26 2.42 8.04 0.28 14.31 20.48 99.6 76.0 42.7 13.4 43.9<br />

Spectrum 6 53.49 0.82 1.69 8.66 0.49 14.55 19.92 99.6 75.0 43.1 14.4 42.5<br />

Spectrum 7 52.13 1.52 3.14 8.75 0 13.97 20.48 100.0 74.0 41.6 14.6 43.8<br />

Spectrum 8 52.63 1.42 2.93 8.58 0 14.1 20.34 100.0 74.5 42.0 14.4 43.6<br />

Spectrum 9 53.96 0.8 1.7 8.47 0.33 14.76 19.97 100.0 75.6 43.6 14.0 42.4<br />

Spectrum 10 53.22 1.2 2.28 7.96 0 14.53 20.81 100.0 76.5 42.8 13.2 44.1<br />

Spectrum 11 52.92 1.3 2.49 8.35 0 14.33 20.6 100.0 75.4 42.4 13.9 43.8<br />

Spectrum 12 53.08 1.17 2.37 7.94 0 14.22 20.83 99.6 76.1 42.3 13.2 44.5<br />

Spectrum 13 51.99 1.55 3.09 8.57 0 13.92 20.44 99.6 74.3 41.6 14.4 44.0<br />

Spectrum 14 53.32 1.07 2.11 8.07 0 14.7 20.39 99.7 76.4 43.4 13.4 43.3<br />

Spectrum 15 53.72 1.04 2.01 8.45 0 14.36 20.42 100.0 75.2 42.5 14.0 43.5<br />

Average 75.5 42.6 13.8 43.6<br />

SD 0.78 0.58 0.48 0.57<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 38.0<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 52.61 1.16 2.55 8.07 15.27 20.36 100.0 77.1 44.3 13.2 42.5<br />

Spectrum 2 52.38 1.09 2.55 7.96 15.45 20.20 99.6 77.6 44.9 13.0 42.2<br />

Spectrum 3 52.25 1.21 2.69 8.19 15.01 20.21 99.6 76.6 44.0 13.5 42.6<br />

Spectrum 4 52.56 1.04 2.75 8.08 15.27 20.30 100.0 77.1 44.4 13.2 42.4<br />

Spectrum 5 52.37 1.27 2.77 7.87 14.93 20.44 99.7 77.2 43.9 13.0 43.2<br />

Spectrum 6 52.21 1.24 2.56 7.85 0.00 15.22 20.52 99.6 77.6 44.3 12.8 42.9<br />

Spectrum 7 52.57 1.28 2.63 7.86 0.00 15.21 20.43 100.0 77.5 44.3 12.9 42.8<br />

Spectrum 8 52.58 1.19 2.67 8.03 0.00 15.10 20.43 100.0 77.0 44.0 13.1 42.8<br />

Spectrum 9 52.80 1.09 2.36 7.86 0.23 15.04 20.22 99.6 77.3 44.3 13.0 42.8<br />

Spectrum 10 52.31 1.18 2.71 7.96 0.00 15.09 20.37 99.6 77.2 44.1 13.1 42.8<br />

Spectrum 11 53.86 0.75 1.22 8.62 0.27 16.13 18.71 99.6 76.9 46.9 14.1 39.1<br />

Spectrum 12 52.28 1.27 2.77 8.06 0.26 15.12 20.23 100.0 77.0 44.2 13.2 42.5<br />

Spectrum 13 52.55 1.14 2.70 7.99 0.00 15.18 20.48 100.0 77.2 44.1 13.0 42.8<br />

Spectrum 14 52.52 1.23 2.81 7.95 0.00 14.97 20.53 100.0 77.0 43.8 13.0 43.2<br />

Spectrum 15 51.31 1.54 3.38 8.73 0.00 14.52 20.14 99.6 74.8 42.8 14.4 42.7<br />

Average 77.0 44.3 13.2 42.5<br />

SD 0.67 0.84 0.45 0.98<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 50.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 52.84 1.14 2.5 8.01 0 14.67 20.44 99.6 76.5 43.3 13.3 43.4<br />

Spectrum 2 52.83 1.02 2.71 7.97 0 14.7 20.44 99.7 76.7 43.4 13.2 43.4<br />

Spectrum 3 52.14 1.47 3.16 8.41 0 14.48 20.34 100.0 75.4 42.8 14.0 43.2<br />

Spectrum 4 52.4 1.2 3.12 8 0 14.5 20.4 99.6 76.4 43.1 13.3 43.6<br />

Spectrum 5 51.49 1.69 3.95 9.08 0 13.84 19.95 100.0 73.1 41.6 15.3 43.1<br />

Spectrum 6 52.58 1.24 2.98 7.71 0 14.78 20.36 99.7 77.4 43.8 12.8 43.4<br />

Spectrum 7 53.28 1.05 2.11 8.07 0 14.81 20.31 99.6 76.6 43.6 13.3 43.0<br />

Spectrum 8 53.26 1.08 2.21 8.08 0 14.89 20.48 100.0 76.7 43.6 13.3 43.1<br />

Spectrum 9 52.53 1.25 2.81 8.15 0 14.84 20.42 100.0 76.4 43.5 13.4 43.1<br />

Spectrum 10 52.45 1.38 3.19 7.91 0 14.75 20.32 100.0 76.9 43.6 13.1 43.2<br />

Spectrum 11 52.79 1.33 2.74 7.96 0 14.82 20.36 100.0 76.8 43.7 13.2 43.1<br />

Spectrum 12 53.22 0.99 2.07 7.8 0.3 14.9 20.38 99.7 77.3 43.9 12.9 43.2<br />

Spectrum 13 52.32 1.27 3.11 7.92 0 14.58 20.48 99.7 76.6 43.2 13.2 43.6<br />

Spectrum 14 52.4 1.17 3.07 7.87 0 14.79 20.71 100.0 77.0 43.4 13.0 43.7<br />

Spectrum 15 51.68 1.49 3.7 8.37 0 14.12 20.22 99.6 75.0 42.3 14.1 43.6<br />

Average 76.3 43.3 13.4 43.3<br />

SD 1.08 0.62 0.62 0.22<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 52.0<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.02 1.31 2.56 8.08 0 14.59 20.06 99.6 76.3 43.5 13.5 43.0<br />

Spectrum 2 52.78 1.24 2.81 8.05 0 14.55 20.23 99.7 76.3 43.3 13.4 43.3<br />

Spectrum 3 52.36 1.4 2.97 8.1 0 14.61 20.21 99.7 76.3 43.4 13.5 43.1<br />

Spectrum 4 53.51 1.04 2.1 7.57 0 15.15 20.26 99.6 78.1 44.6 12.5 42.9<br />

Spectrum 5 52.38 1.35 2.96 8.17 0 14.58 20.21 99.7 76.1 43.3 13.6 43.1<br />

Spectrum 6 52.87 1.29 2.5 8.21 0.23 14.86 19.72 99.7 76.3 44.2 13.7 42.1<br />

Spectrum 7 52.83 1.21 2.6 8.11 0 14.89 20.03 99.7 76.6 44.0 13.4 42.6<br />

Spectrum 8 52.29 1.4 3.03 8.15 0.2 14.52 20.09 99.7 76.0 43.3 13.6 43.1<br />

Spectrum 9 51.84 1.46 3.21 8.33 0.22 14.51 20.1 99.7 75.6 43.1 13.9 43.0<br />

97


Spectrum 10 53.27 1.1 2.38 7.92 0.2 14.82 19.95 99.6 76.9 44.1 13.2 42.7<br />

Spectrum 11 53.05 1.2 2.53 8.12 0 14.82 19.96 99.7 76.5 43.9 13.5 42.5<br />

Spectrum 12 53.09 1.15 2.44 7.9 0.23 14.9 19.95 99.7 77.1 44.2 13.2 42.6<br />

Spectrum 13 53.47 1.11 2.08 7.94 0 14.58 19.99 99.2 76.6 43.6 13.3 43.0<br />

Spectrum 14 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 76.5 43.7 13.4 42.8<br />

SD 0.60 0.47 0.34 0.32<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 54.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.56 0.76 1.83 7.77 0 15.58 20.16 99.6 78.1 45.2 12.7 42.1<br />

Spectrum 2 51.97 1.28 3.07 8.39 0.224274 14.62 20.45 100.0 75.6 43.0 13.8 43.2<br />

Spectrum 3 51.76 1.40 3.26 7.97 0 14.82 20.39 99.6 76.8 43.6 13.2 43.2<br />

Spectrum 4 52.29 1.24 3.03 7.94 0 14.84 20.20 99.5 76.9 43.9 13.2 42.9<br />

Spectrum 5 52.02 1.30 3.01 7.99 0 14.85 20.50 99.7 76.8 43.6 13.2 43.3<br />

Spectrum 6 51.89 1.23 3.13 7.96 0.00 14.79 20.64 99.6 76.8 43.4 13.1 43.5<br />

Spectrum 7 52.06 1.12 2.82 7.97 0.00 15.01 20.66 99.6 77.0 43.7 13.0 43.3<br />

Spectrum 8 51.89 1.30 2.89 7.97 0.00 15.17 20.42 99.7 77.2 44.2 13.0 42.8<br />

Spectrum 9 52.83 1.03 2.31 7.96 0.00 15.09 20.42 99.6 77.2 44.1 13.0 42.9<br />

Spectrum 10 52.38 1.05 2.63 8.05 0.24 15.01 20.30 99.7 76.9 44.0 13.2 42.8<br />

Spectrum 11 52.85 0.93 2.31 8.07 0.00 15.17 20.26 99.6 77.0 44.3 13.2 42.5<br />

Spectrum 12 53.87 0.70 1.60 7.68 0.23 15.76 19.82 99.7 78.5 45.9 12.6 41.5<br />

Spectrum 13 51.73 1.22 2.99 8.18 0.00 14.90 20.66 99.7 76.4 43.4 13.4 43.3<br />

Spectrum 14 51.78 1.28 3.27 8.21 0.00 14.55 20.53 99.6 75.9 42.9 13.6 43.5<br />

Spectrum 15 52.45 1.09 2.73 7.96 0.21 14.98 20.58 100.0 77.0 43.7 13.0 43.2<br />

Average 77.0 43.9 13.1 42.9<br />

SD 0.71 0.79 0.31 0.54<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 57.3<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.37 0.88 2.15 7.74 0 15.02 20.49 99.7 77.6 44.1 12.7 43.2<br />

Spectrum 2 53.38 0.98 2.31 7.87 0 15.08 20.39 100.0 77.3 44.2 12.9 42.9<br />

Spectrum 3 53.59 1.02 2.29 7.62 0 15.09 20.37 100.0 77.9 44.4 12.6 43.1<br />

Spectrum 4 53.52 0.99 2.37 7.87 0 14.9 20.34 100.0 77.1 43.9 13.0 43.1<br />

Spectrum 5 51.75 1.48 3.7 8.16 0 14.19 20.31 99.6 75.6 42.5 13.7 43.8<br />

Spectrum 6 53.53 0.88 2.22 7.83 14.85 20.69 100.0 77.2 43.5 12.9 43.6<br />

Spectrum 7 53.4 0.95 2.13 7.78 14.96 20.46 99.7 77.4 44.0 12.8 43.2<br />

Spectrum 8 52.76 1.18 2.58 7.93 0.24 14.49 20.48 99.7 76.5 43.0 13.2 43.7<br />

Spectrum 9 52.7 1.18 2.99 7.8 14.42 20.55 99.6 76.7 43.0 13.0 44.0<br />

Spectrum 10 53.05 1.13 2.65 7.97 14.78 20.43 100.0 76.8 43.5 13.2 43.3<br />

Spectrum 11 53.08 1.07 2.33 7.85 0 14.89 20.45 99.7 77.2 43.8 13.0 43.2<br />

Spectrum 12 53.71 0.88 2.07 7.85 0 15.47 20.02 100.0 77.8 45.1 12.9 42.0<br />

Spectrum 13 52.97 1.06 2.69 7.71 0 14.85 20.38 99.7 77.4 43.9 12.8 43.3<br />

Spectrum 14 52.62 1.19 2.61 8.08 0 14.7 20.43 99.6 76.4 43.3 13.4 43.3<br />

Spectrum 15 53.2 0.99 2.36 7.85 0 14.97 20.63 100.0 77.3 43.8 12.9 43.4<br />

Average 77.1 43.7 13.0 43.3<br />

SD 0.60 0.63 0.28 0.46<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 67.4<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.07 1.05 2.61 7.82 0 15.1 20.35 100.0 77.5 44.3 12.9 42.9<br />

Spectrum 2 53.05 1.22 2.61 7.99 0 15.04 20.09 100.0 77.0 44.3 13.2 42.5<br />

Spectrum 3 54.43 0.99 2.11 7.04 0 15.87 19.56 100.0 80.1 46.8 11.7 41.5<br />

Spectrum 4 53.81 0.92 2.38 7.22 0 15.11 20.15 99.6 78.9 44.9 12.0 43.1<br />

Spectrum 5 53.5 1.18 2.39 7.75 0 15.04 20.15 100.0 77.6 44.4 12.8 42.8<br />

Spectrum 6 53.33 1.05 2.61 7.74 15.09 20.19 100.0 77.6 44.4 12.8 42.8<br />

Spectrum 7 53.59 0.96 2.32 8.19 14.96 19.97 100.0 76.5 44.1 13.6 42.3<br />

Spectrum 8 53.55 1.03 2.43 7.5 0 14.93 20.13 99.6 78.0 44.4 12.5 43.1<br />

Spectrum 9 53.28 0.95 2.21 8.06 15.23 20.26 100.0 77.1 44.4 13.2 42.4<br />

Spectrum 10 53.54 0.91 2.12 7.77 15.14 20.12 99.6 77.6 44.6 12.8 42.6<br />

Spectrum 11 51.87 1.48 3.29 8.35 0 14.35 20.67 100.0 75.4 42.3 13.8 43.8<br />

Spectrum 12 53.28 1.03 2.05 7.74 0 15.12 20.36 99.6 77.7 44.3 12.7 42.9<br />

Spectrum 13 53.08 1.05 2.15 7.77 0 15.12 20.39 99.6 77.6 44.3 12.8 42.9<br />

Spectrum 14 53.94 0.78 2 7.54 0 15.43 20.31 100.0 78.5 45.0 12.3 42.6<br />

Spectrum 15 53.33 1 2.18 7.94 0 15.18 20.37 100.0 77.3 44.3 13.0 42.7<br />

Average 77.6 44.5 12.8 42.7<br />

SD 1.05 0.89 0.54 0.49<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 68.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.15 1.14 2.57 8.01 0 15.12 20 100.0 77.1 44.5 13.2 42.3<br />

Spectrum 2 54.35 0.82 1.86 6.88 0 15.92 20.16 100.0 80.5 46.4 11.3 42.3<br />

98


Spectrum 3 53.26 0.94 2.43 7.6 0 15.21 20.56 100.0 78.1 44.4 12.4 43.2<br />

Spectrum 4 54.36 0.84 1.77 6.97 0 15.85 20.22 100.0 80.2 46.2 11.4 42.4<br />

Spectrum 5 54.24 0.89 1.91 7.16 0 15.64 20.15 100.0 79.6 45.8 11.8 42.4<br />

Spectrum 6 53.75 0.84 1.84 7.02 16.27 20.28 100.0 80.5 46.8 11.3 41.9<br />

Spectrum 7 53.87 0.9 2.03 7.38 15.7 20.12 100.0 79.1 45.8 12.1 42.2<br />

Spectrum 8 53.69 1.18 2.1 7.22 0 15.55 20.25 100.0 79.3 45.5 11.9 42.6<br />

Spectrum 9 53.53 0.87 2.1 7.45 15.63 20.42 100.0 78.9 45.3 12.1 42.6<br />

Spectrum 10 53.72 1.03 2.09 7.56 15.37 20.22 100.0 78.4 45.0 12.4 42.6<br />

Spectrum 11 54.36 0.84 1.87 6.9 0 15.81 20.22 100.0 80.3 46.2 11.3 42.5<br />

Spectrum 12 53.16 1.07 2.4 7.5 0 15.63 20.24 100.0 78.8 45.4 12.2 42.3<br />

Spectrum 13 53.65 0.84 2 7.11 0 15.82 20.58 100.0 79.9 45.7 11.5 42.8<br />

Spectrum 14 53.08 1.18 2.54 7.94 0 15.05 20.21 100.0 77.2 44.2 13.1 42.7<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 79.1 45.5 12.0 42.5<br />

SD 1.14 0.78 0.64 0.30<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 71.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.38 1.07 2.54 8.02 0 15.07 19.92 100.0 77.0 44.5 13.3 42.3<br />

Spectrum 2 53.15 1.28 2.45 7.85 0 15.1 20.17 100.0 77.4 44.4 13.0 42.6<br />

Spectrum 3 53.18 1.02 2.5 8.65 0 14.26 20.39 100.0 74.6 42.2 14.4 43.4<br />

Spectrum 4 52.81 1.15 2.84 7.55 0 15.2 20.07 99.6 78.2 44.9 12.5 42.6<br />

Spectrum 5 53.96 0.88 2.2 7.45 0 15.35 20.15 100.0 78.6 45.1 12.3 42.6<br />

Spectrum 6 53.67 0.86 2.07 7.85 15.44 20.11 100.0 77.8 45.0 12.8 42.1<br />

Spectrum 7 53.21 1.31 2.69 7.51 14.96 19.91 99.6 78.0 44.7 12.6 42.7<br />

Spectrum 8 53.22 1.19 2.35 7.75 0 15.15 20.34 100.0 77.7 44.4 12.7 42.9<br />

Spectrum 9 53.55 1.01 2.02 7.91 15.36 20.16 100.0 77.6 44.8 12.9 42.3<br />

Spectrum 10 53.25 0.97 2.42 7.76 15.28 20.31 100.0 77.8 44.6 12.7 42.7<br />

Spectrum 11 53.9 0.78 2.16 7.56 0 15.39 20.21 100.0 78.4 45.0 12.4 42.5<br />

Spectrum 12 53.39 1.15 2.13 7.97 0 15.33 20.03 100.0 77.4 44.8 13.1 42.1<br />

Spectrum 13 53.53 1.03 2.3 7.55 0 14.91 20.22 99.5 77.9 44.3 12.6 43.2<br />

Spectrum 14 53.98 0.95 2.14 7.45 0 15.41 20.07 100.0 78.7 45.3 12.3 42.4<br />

Spectrum 15 53.35 0.9 2.24 7.71 0 15.38 20.43 100.0 78.0 44.7 12.6 42.7<br />

Average 77.7 44.6 12.8 42.6<br />

SD 0.96 0.72 0.52 0.36<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 74.8<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.15 0.99 2.23 6.79 0 15.57 20.27 100.0 80.3 45.9 11.2 42.9<br />

Spectrum 2 53.6 1.09 2.26 7.16 0 15.44 20.45 100.0 79.4 45.2 11.8 43.0<br />

Spectrum 3 53.48 0.8 2.15 8.08 0 15.79 19.7 100.0 77.7 45.8 13.1 41.1<br />

Spectrum 4 54.58 0.91 1.91 6.62 0 15.66 20.32 100.0 80.8 46.1 10.9 43.0<br />

Spectrum 5 53.17 0.88 2.47 7.66 0 15.52 20.28 100.0 78.3 45.1 12.5 42.4<br />

Spectrum 6 54.12 1.01 2.1 6.96 15.9 19.9 100.0 80.3 46.6 11.4 41.9<br />

Spectrum 7 54.42 0.81 1.61 6.49 16.11 20.55 100.0 81.6 46.7 10.5 42.8<br />

Spectrum 8 53.77 0.99 2.49 7.16 0 15.49 20.1 100.0 79.4 45.6 11.8 42.6<br />

Spectrum 9 53.55 1 2.15 7.86 15.69 19.76 100.0 78.1 45.7 12.9 41.4<br />

Spectrum 10 54.53 0.75 1.63 6.56 16.42 20.11 100.0 81.7 47.5 10.7 41.8<br />

Spectrum 11 53.92 0.94 2.1 7.05 0 15.85 20.21 100.1 80.0 46.2 11.5 42.3<br />

Spectrum 12 53.89 1.02 1.98 8.1 0 15.36 20.03 100.4 77.2 44.8 13.2 42.0<br />

Spectrum 13 53.95 0.85 2.08 6.67 0 16.07 20.22 99.8 81.1 46.8 10.9 42.3<br />

Spectrum 14 54.61 0.6 1.45 6.7 0 16.54 20.07 100.0 81.5 47.6 10.8 41.5<br />

Spectrum 15 54.32 0.77 2.06 7.39 0 15.4 20.43 100.4 78.8 45.0 12.1 42.9<br />

Average 79.7 46.0 11.7 42.3<br />

SD 1.48 0.87 0.90 0.62<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 116.4<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.55 1.38 5.4 0 17.06 20.62 100.0 84.9 48.9 8.7 42.5<br />

Spectrum 2 55.16 0.78 1.36 5.84 0 17.07 19.79 100.0 83.9 49.4 9.5 41.2<br />

Spectrum 3 54.94 1.49 6.2 0 16.57 20.01 99.2 82.6 48.1 10.1 41.8<br />

Spectrum 4 55.71 0.59 1.46 5.46 0 16.6 20.16 100.0 84.4 48.6 9.0 42.4<br />

Spectrum 5 54.75 0.7 1.77 5.9 0 16.82 20.06 100.0 83.6 48.7 9.6 41.7<br />

Spectrum 6 55.59 0.64 1.16 5.09 17.09 20.42 100.0 85.7 49.4 8.2 42.4<br />

Spectrum 7 55.43 0.57 1.32 5.47 16.85 20.36 100.0 84.6 48.8 8.9 42.4<br />

Spectrum 8 54.89 0.76 1.72 5.96 0 16.71 19.97 100.0 83.3 48.6 9.7 41.7<br />

Spectrum 9 55.01 0.8 1.29 5.88 16.91 20.1 100.0 83.7 48.8 9.5 41.7<br />

Spectrum 10 54.7 0.59 1.83 5.55 16.94 20.4 100.0 84.5 48.8 9.0 42.2<br />

Spectrum 11 54.65 0.73 1.7 6.82 0 16.45 19.65 100.0 81.1 47.8 11.1 41.1<br />

Spectrum 12 54.6 0.77 1.69 5.86 0 16.87 20.21 100.0 83.7 48.6 9.5 41.9<br />

Spectrum 13 54.62 0.9 1.63 6.23 0 16.95 19.68 100.0 82.9 49.0 10.1 40.9<br />

Spectrum 14 55.02 0.75 1.29 5.58 0 16.91 20.45 100.0 84.4 48.7 9.0 42.3<br />

Spectrum 15 54.64 0.84 1.51 6.99 0 16.76 19.25 100.0 81.0 48.5 11.4 40.1<br />

Average 83.6 48.7 9.5 41.7<br />

SD 1.29 0.40 0.86 0.69<br />

99


Pyroxene Data Reduction with wt% oxides<br />

Sample: 180.0<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.34 0.58 1.4 5.4 0 17.18 20.1 100.0 85.0 49.6 8.7 41.7<br />

Spectrum 2 54.8 0.65 1.56 5.05 0 17.04 20.08 99.2 85.7 49.7 8.3 42.1<br />

Spectrum 3 55 0.57 1.38 4.82 0 17.25 20.05 99.1 86.4 50.2 7.9 41.9<br />

Spectrum 4 54.76 0.6 1.69 5.31 0 17.15 19.73 99.2 85.2 50.0 8.7 41.3<br />

Spectrum 5 54.5 0.72 1.86 5.71 0 16.87 19.34 99.0 84.0 49.6 9.4 40.9<br />

Spectrum 6 54.83 0.56 1.57 5.22 17.09 20.42 99.7 85.4 49.2 8.4 42.3<br />

Spectrum 7 54.6 0.79 1.91 5.21 16.99 20.36 99.9 85.3 49.2 8.5 42.4<br />

Spectrum 8 54.57 0.58 1.56 4.96 0 17.2 19.97 98.8 86.1 50.1 8.1 41.8<br />

Spectrum 9 55.74 1.38 4.86 17.04 20.1 99.1 86.2 49.8 8.0 42.2<br />

Spectrum 10 53.67 0.93 2.18 5.82 16.39 20.4 99.4 83.4 47.8 9.5 42.7<br />

Spectrum 11 54.66 0.64 1.56 5.44 0 17.16 19.71 99.2 84.9 49.9 8.9 41.2<br />

Spectrum 12 55.56 0.61 5.16 0 16.93 20.28 98.5 85.4 49.2 8.4 42.4<br />

Spectrum 13 54.48 0.87 1.48 5.62 0 16.68 20.12 99.3 84.1 48.6 9.2 42.2<br />

Spectrum 14 54.78 0.47 1.37 5.37 0 17.12 19.92 99.0 85.0 49.7 8.7 41.6<br />

Spectrum 15 54.99 0.65 1.54 5.48 0 17.09 19.3 99.1 84.7 50.2 9.0 40.8<br />

Average 85.1 49.5 8.6 41.8<br />

SD 0.84 0.65 0.50 0.58<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 201.2<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.46 0.82 1.85 6.02 0 17.42 18.69 99.3 83.8 50.9 9.9 39.3<br />

Spectrum 2 55.09 0.69 1.21 5.55 0 17.16 19.6 99.3 84.6 49.9 9.1 41.0<br />

Spectrum 3 55 0.61 1.55 5.15 0 17.04 19.78 99.1 85.5 49.9 8.5 41.6<br />

Spectrum 4 54.54 0.86 1.51 5.13 0 16.72 20.05 98.8 85.3 49.2 8.5 42.4<br />

Spectrum 5 54.66 0.88 1.74 5.05 0 16.85 20.13 99.3 85.6 49.3 8.3 42.4<br />

Spectrum 6 54.4 0.5 1.56 5.61 17.27 19.83 99.2 84.6 49.8 9.1 41.1<br />

Spectrum 7 54.92 0.57 1.43 5.14 17.23 20.05 99.3 85.7 49.9 8.4 41.7<br />

Spectrum 8 54.39 0.9 2.07 5.34 0 16.42 20.05 99.2 84.6 48.5 8.9 42.6<br />

Spectrum 9 55.08 0.56 1.32 5.2 17.4 20.07 99.6 85.6 50.1 8.4 41.5<br />

Spectrum 10 54.79 0.6 1.47 5.22 16.97 19.93 99.0 85.3 49.6 8.6 41.9<br />

Spectrum 11 53.47 1.2 2.58 5.84 0 16.06 20.15 99.3 83.1 47.5 9.7 42.8<br />

Spectrum 12 55.12 1.46 5.33 0 17.22 19.94 99.1 85.2 49.8 8.7 41.5<br />

Spectrum 13 54.9 0.56 1.35 5.09 0 17.12 20.16 99.2 85.7 49.7 8.3 42.0<br />

Spectrum 14 55.1 0.62 1.43 5.1 0 17.13 19.73 99.1 85.7 50.1 8.4 41.5<br />

Spectrum 15 19.3 19.3 #DIV/0! 0.0 0.0 100.0<br />

Average 85.0 49.6 8.7 41.7<br />

SD 0.81 0.81 0.51 0.88<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 201.2<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 50.65 16.13 32.51 99.3 78.2<br />

Ol.2 50.37 15.79 33.06 99.2 78.9<br />

Ol.3 50.58 15.74 0.49 32.43 99.2 78.6<br />

Ol.4 40.79 18.49 0.00 40.73 100.0 79.7<br />

Ol.5 40.55 18.54 0.00 40.91 100.0 79.7<br />

Ol.6 40.76 18.33 0.00 40.91 100.0 79.9<br />

Ol.7 50.03 19.36 0.00 29.75 99.1 73.3<br />

Ol.8 51 17.56 0.00 30.66 99.2 75.7<br />

Ol.9 51.27 15.01 0.00 32.94 99.2 79.6<br />

Ol.10 0.0 #DIV/0!<br />

AVG 78.2<br />

SD 2.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 212.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.9 0.52 1.39 5.05 0 17.54 19.75 99.2 86.1 50.7 8.2 41.1<br />

Spectrum 2 55.11 0.69 1.26 5.01 0 17.14 19.87 99.1 85.9 50.1 8.2 41.7<br />

Spectrum 3 54.53 0.71 1.64 5.01 0 17.2 19.87 99.0 86.0 50.1 8.2 41.7<br />

Spectrum 4 54.76 0.55 1.6 5.27 0 17.17 19.77 99.1 85.3 50.0 8.6 41.4<br />

Spectrum 5 55.19 0.64 1.29 4.76 0 17.3 19.92 99.1 86.6 50.4 7.8 41.8<br />

Spectrum 6 55.21 0.72 1.42 4.92 16.93 19.98 99.2 86.0 49.7 8.1 42.2<br />

Spectrum 7 54.66 0.54 1.53 4.82 17.1 19.91 98.6 86.3 50.1 7.9 42.0<br />

Spectrum 8 55 0.54 1.32 4.91 0 17.01 19.94 98.7 86.1 49.9 8.1 42.0<br />

Spectrum 9 55.02 0.65 1.41 4.84 17.13 20.13 99.2 86.3 49.9 7.9 42.2<br />

Spectrum 10 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 11 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 12 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 13 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 14 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

100


Average 86.1 50.1 8.1 41.8<br />

SD 0.37 0.31 0.24 0.37<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 212.5<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.66 17.48 41.86 100.0 81.0<br />

Ol.2 40.68 17.12 42.2 100.0 81.5<br />

Ol.3 40.9 17.17 0 41.93 100.0 81.3<br />

Ol.4 41.29 16.97 0.00 41.74 100.0 81.4<br />

Ol.5 41.09 17.01 0.00 41.89 100.0 81.4<br />

Ol.6 40.95 17.07 0.00 41.98 100.0 81.4<br />

Ol.7 40.7 17.61 0.00 41.69 100.0 80.8<br />

Ol.8 40.67 17.67 0.00 41.66 100.0 80.8<br />

Ol.9 40.77 17.41 0.00 41.82 100.0 81.1<br />

Ol.10 41.26 17.11 0.00 41.63 100.0 81.3<br />

Ol.11 40.54 17.42 42.04 100.0 81.1<br />

Ol.12 41.38 16.92 41.7 100.0 81.5<br />

Ol.13 40.66 17.72 41.62 100.0 80.7<br />

Ol.14 41.1 17.14 41.76 100.0 81.3<br />

Ol.15 40.79 17.08 41.76 99.6 81.3<br />

AVG 81.2<br />

SD 0.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 246.0<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.1 0.93 1.8 5.31 0 16.77 20.3 99.2 84.9 48.8 8.7 42.5<br />

Spectrum 2 54.62 0.79 1.79 4.93 0 16.85 20.03 99.0 85.9 49.5 8.1 42.3<br />

Spectrum 3 54.78 0.62 1.33 5.16 0 17.16 20.15 99.2 85.6 49.7 8.4 41.9<br />

Spectrum 4 54.93 0.72 1.84 5.14 0 16.7 19.91 99.2 85.3 49.3 8.5 42.2<br />

Spectrum 5 55.32 0.49 1.45 4.84 0 17.11 19.77 99.0 86.3 50.3 8.0 41.8<br />

Spectrum 6 54.78 0.62 1.33 5.16 17.16 20.15 99.2 85.6 49.7 8.4 41.9<br />

Spectrum 7 54.93 0.72 1.84 5.14 16.7 19.91 99.2 85.3 49.3 8.5 42.2<br />

Spectrum 8 55.32 0.49 1.45 4.84 0 17.11 19.77 99.0 86.3 50.3 8.0 41.8<br />

Spectrum 9 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 10 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 11 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 12 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 13 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 14 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 85.6 49.6 8.3 42.1<br />

SD 0.50 0.50 0.26 0.27<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 246.0<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.95 17.37 41.68 100.0 81.0<br />

Ol.2 40.99 16.93 42.08 100.0 81.6<br />

Ol.3 40.57 17.35 0 42.08 100.0 81.2<br />

Ol.4 41.14 16.91 0.00 41.94 100.0 81.5<br />

Ol.5 40.97 17.28 0.00 41.75 100.0 81.2<br />

Ol.6 41.06 17.28 0.00 41.67 100.0 81.1<br />

Ol.7 40.79 17.37 0.00 41.85 100.0 81.1<br />

Ol.8 40.63 17.47 0.00 41.9 100.0 81.0<br />

Ol.9 40.75 17.33 0.00 41.61 99.7 81.1<br />

Ol.10 40.69 17.39 0.00 41.92 100.0 81.1<br />

Ol.11 40.82 17.33 41.85 100.0 81.1<br />

Ol.12 41.03 16.98 41.98 100.0 81.5<br />

Ol.13 40.5 17.73 41.77 100.0 80.8<br />

Ol.14 40.94 17.02 42.04 100.0 81.5<br />

Ol.15 40.94 17.21 41.85 100.0 81.2<br />

AVG 81.2<br />

SD 0.2<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 323.6<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.6 0.68 1.49 5.09 0 16.92 20.05 98.8 85.6 49.5 8.4 42.2<br />

Spectrum 2 54.64 0.67 1.73 5.12 0 16.78 20.03 99.0 85.4 49.3 8.4 42.3<br />

Spectrum 3 54.88 0.55 1.63 5.19 0 16.96 19.85 99.1 85.3 49.7 8.5 41.8<br />

Spectrum 4 54.47 0.78 1.66 5.23 0 16.87 19.7 98.7 85.2 49.7 8.6 41.7<br />

Spectrum 5 53.23 1.17 2.71 5.69 0 16.14 20.23 99.2 83.5 47.6 9.4 42.9<br />

Spectrum 6 54.44 0.62 1.76 5.35 16.68 20.43 99.3 84.7 48.5 8.7 42.7<br />

101


Spectrum 7 54.69 0.72 1.95 5.11 16.52 19.83 98.8 85.2 49.1 8.5 42.4<br />

Spectrum 8 54.67 0.66 1.48 5.59 0 17.58 19.26 99.2 84.9 50.9 9.1 40.1<br />

Spectrum 9 54.17 0.91 2.3 5.54 16.27 20.11 99.3 84.0 48.1 9.2 42.7<br />

Spectrum 10 53.36 1.22 2.63 5.47 16.38 19.76 98.8 84.2 48.7 9.1 42.2<br />

Spectrum 11 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 12 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 13 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 14 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 84.8 49.1 8.8 42.1<br />

SD 0.69 0.92 0.37 0.82<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 323.6<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.95 17.43 41.62 100.0 81.0<br />

Ol.2 40.89 17.26 41.85 100.0 81.2<br />

Ol.3 41.14 16.88 0 41.98 100.0 81.6<br />

Ol.4 40.86 17.42 0.00 41.43 99.7 80.9<br />

Ol.5 40.77 17.34 0.00 41.89 100.0 81.1<br />

Ol.6 40.93 17.19 0.00 41.89 100.0 81.3<br />

Ol.7 40.41 17.66 0.00 41.93 100.0 80.9<br />

Ol.8 41.09 17.27 0.00 41.63 100.0 81.1<br />

Ol.9 41 16.96 0.00 42.04 100.0 81.5<br />

Ol.10 40.84 17.42 0.00 41.74 100.0 81.0<br />

Ol.11 40.98 17.08 41.94 100.0 81.4<br />

Ol.12 40.79 17.47 41.74 100.0 81.0<br />

Ol.13 40.76 17.17 0.39 41.68 100.0 81.2<br />

Ol.14 40.69 17.7 41.61 100.0 80.7<br />

Ol.15 0.0 #DIV/0!<br />

AVG 81.1<br />

SD 0.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 373.4<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 52.98 1.39 2.76 5.56 0 15.96 20.27 98.9 83.6 47.4 9.3 43.3<br />

Spectrum 2 53.25 1.16 2.81 5.76 0 15.95 20.26 99.2 83.1 47.3 9.6 43.2<br />

Spectrum 3 52.81 1.48 3.28 5.91 0 15.71 20.08 99.3 82.6 46.9 9.9 43.1<br />

Spectrum 4 53.9 1.16 2.51 5.41 0 16.32 20.04 99.3 84.3 48.3 9.0 42.7<br />

Spectrum 5 54.09 1.17 2.53 5.67 0 16.07 20.07 99.6 83.5 47.7 9.4 42.8<br />

Spectrum 6 54.16 0.99 2.58 5.5 16.39 19.68 99.3 84.2 48.7 9.2 42.1<br />

Spectrum 7 53.13 1.45 3.28 5.51 15.72 19.78 98.9 83.6 47.6 9.4 43.1<br />

Spectrum 8 53.65 1.2 2.21 5.69 0 16.6 20.23 99.6 83.9 48.3 9.3 42.4<br />

Spectrum 9 54.21 0.92 1.9 5.63 17 19.66 99.3 84.3 49.6 9.2 41.2<br />

Spectrum 10 53.21 1.39 3.29 5.45 15.92 19.95 99.2 83.9 47.8 9.2 43.0<br />

Spectrum 11 53.91 1.51 2.34 5.42 0 16.39 19.98 99.6 84.3 48.5 9.0 42.5<br />

Spectrum 12 52.5 1.45 3.25 5.73 0 15.85 20 98.8 83.1 47.4 9.6 43.0<br />

Spectrum 13 53.27 1.47 2.86 5.86 0 16.24 20.29 100.0 83.2 47.6 9.6 42.8<br />

Spectrum 14 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 83.7 47.9 9.4 42.7<br />

SD 0.56 0.72 0.27 0.57<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 373.4<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.58 17.85 41.57 100.0 80.6<br />

Ol.2 40.8 17.21 42 100.0 81.3<br />

Ol.3 41.28 17.14 41.59 100.0 81.2<br />

Ol.4 41.04 17.04 41.92 100.0 81.4<br />

Ol.5 40.67 17.23 0.5 41.61 100.0 81.1<br />

Ol.6 40.91 16.93 42.17 100.0 81.6<br />

Ol.7 41.09 17.01 41.9 100.0 81.4<br />

Ol.8 40.85 16.62 42.53 100.0 82.0<br />

Ol.9 0.0 #DIV/0!<br />

Ol.10 0.0 #DIV/0!<br />

AVG 81.3<br />

SD 0.4<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 414.7<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.93 0.5 1.54 4.69 0 16.89 20.16 98.7 86.5 49.7 7.7 42.6<br />

Spectrum 2 54.98 0.64 1.39 4.78 0 17.02 20.22 99.0 86.4 49.7 7.8 42.5<br />

102


Spectrum 3 54.15 0.84 1.64 5.3 0 16.82 19.92 98.7 85.0 49.3 8.7 42.0<br />

Spectrum 4 54.83 0.78 1.8 5.15 0 16.52 20.03 99.1 85.1 48.9 8.5 42.6<br />

Spectrum 5 54.01 0.86 2.21 5.58 0 16.43 20.07 99.2 84.0 48.3 9.2 42.5<br />

Spectrum 6 52.79 1.32 3.15 5.9 15.96 20.18 99.3 82.8 47.2 9.8 43.0<br />

Spectrum 7 54.16 0.96 1.98 5.72 16.4 20.07 99.3 83.6 48.2 9.4 42.4<br />

Spectrum 8 53.17 1.61 3.37 5.86 0 15.45 20.15 99.6 82.5 46.5 9.9 43.6<br />

Spectrum 9 53.19 1.08 2.56 5.92 16.02 19.88 98.7 82.8 47.6 9.9 42.5<br />

Spectrum 10 53.91 0.99 2.09 5.65 16.41 20.31 99.4 83.8 48.0 9.3 42.7<br />

Spectrum 11 53.6 1.17 2.73 5.6 0 16.18 20.31 99.6 83.7 47.7 9.3 43.0<br />

Spectrum 12 53.6 1.12 2.32 6.05 0 16.25 19.95 99.3 82.7 47.8 10.0 42.2<br />

Spectrum 13 52.89 1.4 3.11 5.97 0 15.97 20.25 99.6 82.7 47.1 9.9 43.0<br />

Spectrum 14 52.6 1.53 3.32 6.04 15.74 20.35 82.3 46.6 10.0 43.3<br />

Spectrum 15 53.23 1.22 2.72 6.08 15.89 20.11 82.3 47.1 10.1 42.8<br />

Average 83.7 48.0 9.3 42.7<br />

SD 1.41 1.03 0.78 0.43<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 414.7<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 41.17 17.34 41.49 100.0 81.0<br />

Ol.2 40.94 17.77 41.29 100.0 80.5<br />

Ol.3 41 17.11 41.89 100.0 81.4<br />

Ol.4 41.14 17.85 41.01 100.0 80.4<br />

Ol.5 41 17.6 0 41.4 100.0 80.7<br />

Ol.6 40.85 17.95 41.2 100.0 80.4<br />

Ol.7 40.64 18.01 41.36 100.0 80.4<br />

Ol.8 40.55 17.86 41.59 100.0 80.6<br />

Ol.9 41.04 17.77 41.19 100.0 80.5<br />

Ol.10 0.0 #DIV/0!<br />

AVG 80.6<br />

SD 0.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 429.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.7 0.94 2.09 5.52 0 16.51 20.03 98.8 84.2 48.5 9.1 42.3<br />

Spectrum 2 53.92 0.88 2.38 6.02 0 16.8 19.99 100.0 83.3 48.6 9.8 41.6<br />

Spectrum 3 54.75 0.71 1.48 5.42 0 16.79 20.01 99.2 84.7 49.1 8.9 42.0<br />

Spectrum 4 54.42 0.8 1.94 5.5 0 16.63 19.97 99.3 84.3 48.8 9.1 42.1<br />

Spectrum 5 54.73 0.72 1.62 5.44 0 16.93 19.76 99.2 84.7 49.5 8.9 41.6<br />

Spectrum 6 55.17 0.63 1.57 5.09 16.82 19.76 99.0 85.5 49.6 8.4 41.9<br />

Spectrum 7 54.84 0.73 1.61 5.08 17.08 19.91 99.3 85.7 49.9 8.3 41.8<br />

Spectrum 8 54.21 0.82 2.17 5.72 0 16.48 19.9 99.3 83.7 48.5 9.4 42.1<br />

Spectrum 9 54.56 0.73 1.67 5.23 16.64 20.35 99.2 85.0 48.6 8.6 42.8<br />

Spectrum 10 54.91 0.65 1.41 5.18 17.18 19.88 99.2 85.5 50.0 8.5 41.6<br />

Spectrum 11 54.26 0.89 1.95 5.38 0 16.7 19.81 99.0 84.7 49.2 8.9 41.9<br />

Spectrum 12 55.01 0.7 1.61 5.15 0 16.79 19.78 99.0 85.3 49.5 8.5 41.9<br />

Spectrum 13 54.48 0.86 1.78 5.28 0 16.5 20 98.9 84.8 48.8 8.8 42.5<br />

Spectrum 14 54.35 0.98 2.04 5.39 16.47 19.83 99.1 84.5 48.8 9.0 42.2<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 84.7 49.1 8.9 42.0<br />

SD 0.69 0.51 0.41 0.35<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 429.5<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.47 18.49 41.03 100.0 79.8<br />

Ol.2 40.71 17.73 41.56 100.0 80.7<br />

Ol.3 40.95 17.84 41.21 100.0 80.5<br />

Ol.4 40.54 17.31 41.72 99.6 81.1<br />

Ol.5 40.5 17.81 0 41.27 99.6 80.5<br />

Ol.6 40.83 16.97 42.2 100.0 81.6<br />

Ol.7 40.69 17.63 41.68 100.0 80.8<br />

Ol.8 40.77 17.92 41.31 100.0 80.4<br />

Ol.9 40.83 17.69 41.48 100.0 80.7<br />

Ol.10 0.0 #DIV/0!<br />

AVG 80.7<br />

SD 0.5<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 445.3<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.52 0.73 1.71 5.36 0 16.71 19.84 98.9 84.7 49.2 8.9 42.0<br />

Spectrum 2 54.29 0.7 1.7 5.67 0 16.49 19.77 98.6 83.8 48.7 9.4 41.9<br />

Spectrum 3 54.38 0.6 1.68 5.39 0 16.99 20.13 99.2 84.9 49.3 8.8 42.0<br />

103


Spectrum 4 54.6 0.66 1.72 5.1 0 17.12 20.02 99.2 85.7 49.8 8.3 41.9<br />

Spectrum 5 54.8 0.49 1.5 5.36 0 16.91 20.18 99.2 84.9 49.1 8.7 42.1<br />

Spectrum 6 54.84 0.74 1.25 6.21 16.21 19.31 98.6 82.3 48.3 10.4 41.3<br />

Spectrum 7 54.97 0.7 1.39 5.67 16.92 19.4 99.1 84.2 49.7 9.3 41.0<br />

Spectrum 8 55.13 0.61 1.49 5.75 0 16.8 19.61 99.4 83.9 49.2 9.5 41.3<br />

Spectrum 9 55.03 0.57 1.56 5.44 16.94 19.7 99.2 84.7 49.6 8.9 41.5<br />

Spectrum 10 54 0.74 2 5.92 16.03 19.93 98.6 82.8 47.6 9.9 42.5<br />

Spectrum 11 54.54 0.64 1.5 5.16 0 17.1 19.58 98.5 85.5 50.2 8.5 41.3<br />

Spectrum 12 54.7 1.55 5.37 0 16.94 20.02 98.6 84.9 49.3 8.8 41.9<br />

Spectrum 13 54.69 0.68 1.9 5.56 0 16.28 20.28 99.4 83.9 47.9 9.2 42.9<br />

Spectrum 14 54.65 0.87 1.49 4.97 16.71 20.06 98.8 85.7 49.3 8.2 42.5<br />

Spectrum 15 54.55 0.59 1.6 5.45 17.13 19.68 99.0 84.9 49.9 8.9 41.2<br />

Average 84.5 49.1 9.0 41.8<br />

SD 0.98 0.73 0.58 0.56<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 445.3<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.49 19.02 0.43 40.06 100.0 79.0<br />

Ol.2 40.36 19.24 40.4 100.0 78.9<br />

Ol.3 40.82 18.61 40.57 100.0 79.5<br />

Ol.4 40.86 18.87 40.28 100.0 79.2<br />

Ol.5 41.5 19.18 0 40.82 101.5 79.1<br />

Ol.6 40.57 19.23 40.2 100.0 78.8<br />

Ol.7 40.73 18.34 40.93 100.0 79.9<br />

Ol.8 40.57 18.38 41.05 100.0 79.9<br />

Ol.9 40.73 18.12 41.15 100.0 80.2<br />

Ol.10 0.0 #DIV/0!<br />

AVG 79.4<br />

SD 0.5<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 454.9<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.13 1.27 2.69 6.54 0 15.61 19.75 100.0 81.0 46.6 11.0 42.4<br />

Spectrum 2 54.02 0.93 2.24 6.3 0 16.03 20.08 99.6 81.9 47.1 10.4 42.5<br />

Spectrum 3 54.44 0.71 1.81 5.82 0 16.69 19.74 99.2 83.6 48.9 9.6 41.6<br />

Spectrum 4 54.13 0.71 1.92 5.87 0 16.7 20.05 99.4 83.5 48.5 9.6 41.9<br />

Spectrum 5 53.97 0.95 2.28 6.38 0 15.91 20.11 99.6 81.6 46.9 10.5 42.6<br />

Spectrum 6 54.4 0.72 1.98 6.39 16.54 19.97 100.0 82.2 48.0 10.4 41.6<br />

Spectrum 7 54.79 0.71 1.77 5.99 16.75 19.99 100.0 83.3 48.6 9.7 41.7<br />

Spectrum 8 54.4 0.66 1.75 5.93 0 16.54 20.05 99.3 83.3 48.2 9.7 42.0<br />

Spectrum 9 54.31 0.79 1.77 5.96 16.79 19.74 99.4 83.4 48.9 9.7 41.3<br />

Spectrum 10 54.35 0.83 1.85 5.92 16.63 19.7 99.3 83.3 48.7 9.7 41.5<br />

Spectrum 11 54.19 0.89 2.24 6.14 0 16.01 19.58 99.1 82.3 47.7 10.3 42.0<br />

Spectrum 12 54.06 0.94 2.42 6.36 0 16.1 20.02 99.9 81.9 47.3 10.5 42.3<br />

Spectrum 13 54.07 0.88 2.24 5.96 0 16.7 20.28 100.1 83.3 48.2 9.7 42.1<br />

Spectrum 14 54.49 0.95 1.91 5.65 16.28 20.06 99.3 83.7 48.1 9.4 42.6<br />

Spectrum 15 55.07 0.7 1.72 5.82 16.63 19.68 99.6 83.6 48.8 9.6 41.6<br />

Average 82.8 48.0 10.0 42.0<br />

SD 0.89 0.76 0.48 0.42<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 454.9<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.31 20.15 39.54 100.0 77.8<br />

Ol.2 40.49 20.32 39.19 100.0 77.5<br />

Ol.3 40.11 20.32 0.48 39.09 100.0 77.4<br />

Ol.4 40.52 19.94 39.54 100.0 77.9<br />

Ol.5 40.39 19.78 39.82 100.0 78.2<br />

Ol.6 40.2 20.11 0.43 39.25 100.0 77.7<br />

Ol.7 40.34 20.39 39.27 100.0 77.4<br />

Ol.8 40.42 20.25 39.33 100.0 77.6<br />

Ol.9 40.64 20.32 39.04 100.0 77.4<br />

Ol.10 0.0 #DIV/0!<br />

AVG 77.7<br />

SD 0.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 470.2<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.9 1.28 5.89 0 18.35 17.7 99.1 84.7 53.4 9.6 37.0<br />

Spectrum 2 55.26 1.15 5.62 0 18.06 19.06 99.2 85.1 51.7 9.0 39.2<br />

Spectrum 3 55.71 1.06 5.49 0 18.84 18.2 99.3 85.9 53.8 8.8 37.4<br />

Spectrum 4 54.68 0.65 1.75 5.61 0 18.38 17.88 99.0 85.4 53.5 9.2 37.4<br />

104


Spectrum 5 55.36 1.56 5.96 0 19.97 16.42 99.3 85.7 56.9 9.5 33.6<br />

Spectrum 6 53.27 1.43 2.65 6.8 16.32 18.97 99.4 81.0 48.3 11.3 40.4<br />

Spectrum 7 54.86 0.63 1.77 6.25 18.05 17.65 99.2 83.7 52.7 10.2 37.1<br />

Spectrum 8 54.91 0.57 1.66 5.98 0 18.26 17.79 99.2 84.5 53.1 9.8 37.2<br />

Spectrum 9 55.48 0.48 0.93 6.48 19.24 16.59 99.2 84.1 55.3 10.4 34.3<br />

Spectrum 10 55.05 0.51 1.57 5.93 18.08 17.97 99.1 84.5 52.7 9.7 37.6<br />

Spectrum 11 55.13 0.41 1.27 5.93 0 18.42 17.99 99.2 84.7 53.1 9.6 37.3<br />

Spectrum 12 55.36 0.58 1.43 5.97 0 18.75 17.03 99.1 84.8 54.6 9.8 35.7<br />

Spectrum 13 54.99 0.48 1.32 5.04 0 18.37 18.9 99.1 86.7 52.8 8.1 39.1<br />

Spectrum 14 55.26 0.5 1.4 6.11 19.04 16.83 99.1 84.7 55.1 9.9 35.0<br />

Spectrum 15 54.61 0.64 1.81 6.41 17.26 18.6 99.3 82.8 50.4 10.5 39.1<br />

Average 84.6 53.2 9.7 37.1<br />

SD 1.34 2.04 0.76 1.89<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 470.2<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.72 18.27 41.02 100.0 80.0<br />

Ol.2 40.84 19.01 40.15 100.0 79.0<br />

Ol.3 40.45 19.74 0 39.81 100.0 78.2<br />

Ol.4 40.01 21.03 38.97 100.0 76.8<br />

Ol.5 40.25 20.95 38.8 100.0 76.7<br />

Ol.6 40.17 20.18 0 39.64 100.0 77.8<br />

Ol.7 40.72 20.02 39.26 100.0 77.8<br />

Ol.8 40.4 20.2 39.4 100.0 77.7<br />

Ol.9 40.34 20.5 39.16 100.0 77.3<br />

Ol.10 0.0 #DIV/0!<br />

AVG 77.9<br />

SD 1.1<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 497.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.27 0.53 1.19 7.47 0 15.78 19.23 99.5 79.0 46.7 12.4 40.9<br />

Spectrum 2 54.37 0.74 1.92 7.54 0 16.59 18.85 100.0 79.7 48.3 12.3 39.4<br />

Spectrum 3 55.1 0.69 1.3 7.18 0 16.27 19.03 99.6 80.2 47.9 11.9 40.3<br />

Spectrum 4 54.83 0.63 1.71 5.47 0 17.44 18.92 99.0 85.0 51.1 9.0 39.9<br />

Spectrum 5 54.69 0.64 1.79 5.63 0 17.49 19.21 99.5 84.7 50.8 9.2 40.1<br />

Spectrum 6 55.8 7.33 15.49 19.68 98.3 79.0 45.9 12.2 41.9<br />

Spectrum 7 56.89 5.75 15.82 21.55 100.0 83.1 45.8 9.3 44.9<br />

Spectrum 8 55.19 0.6 1.3 6.64 0 16.35 19.45 99.5 81.4 48.0 10.9 41.1<br />

Spectrum 9 55.93 0.95 6.82 15.82 19.95 99.5 80.5 46.5 11.3 42.2<br />

Spectrum 10 54 0.95 2.17 6.64 16.76 18.79 99.3 81.8 49.3 11.0 39.7<br />

Spectrum 11 53.95 0.79 2.51 6.58 0 16.95 18.68 99.5 82.1 49.7 10.8 39.4<br />

Spectrum 12 55 0.59 1.48 6.17 0 17.87 18.23 99.3 83.8 51.9 10.1 38.1<br />

Spectrum 13 54.98 0.66 1.36 5.93 0 17.83 18.59 99.4 84.3 51.6 9.6 38.7<br />

Spectrum 14 54.58 1 1.83 6.82 16.53 18.81 99.6 81.2 48.8 11.3 39.9<br />

Spectrum 15 54.89 0.6 1.78 7.07 16.99 18.67 100.0 81.1 49.4 11.5 39.0<br />

Average 81.8 48.8 10.9 40.4<br />

SD 2.00 2.02 1.16 1.67<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 511.7<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.83 0.79 2.44 7.62 0 16.29 18.64 99.6 79.2 48.0 12.6 39.5<br />

Spectrum 2 53.98 0.92 2.18 8.29 0 15.6 18.61 99.6 77.0 46.4 13.8 39.8<br />

Spectrum 3 53.18 1.06 2.88 7.91 0 15.63 18.9 99.6 77.9 46.4 13.2 40.4<br />

Spectrum 4 53.48 1.06 2.14 8.45 0 15.08 19.78 100.0 76.1 44.3 13.9 41.8<br />

Spectrum 5 54.87 0.61 1.54 7.86 0 17.22 17.9 100.0 79.6 49.9 12.8 37.3<br />

Spectrum 6 54.95 0.7 1.73 6.29 17.03 19.3 100.0 82.8 49.5 10.3 40.3<br />

Spectrum 7 52.85 0.76 2.23 7.3 15.67 21.18 100.0 79.3 44.8 11.7 43.5<br />

Spectrum 8 52.8 1.46 3.39 7.93 0 16.2 18.23 100.0 78.5 48.0 13.2 38.8<br />

Spectrum 9 53.82 1.09 2.75 7.5 15.96 18.88 100.0 79.1 47.3 12.5 40.2<br />

Spectrum 10 54.56 0.8 1.66 7.54 15.52 19.91 100.0 78.6 45.6 12.4 42.0<br />

Spectrum 11 53.57 1.07 2.77 7.66 0 15.84 19.08 100.0 78.7 46.8 12.7 40.5<br />

Spectrum 12 53.79 1.12 2.39 7.51 0 16.27 18.92 100.0 79.4 47.7 12.4 39.9<br />

Spectrum 13 54.4 0.95 1.98 8.09 0 15.25 18.83 99.5 77.1 45.8 13.6 40.6<br />

Spectrum 14 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Spectrum 15 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!<br />

Average 78.7 46.9 12.7 40.4<br />

SD 1.64 1.67 0.97 1.52<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 511.7<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

105


Ol.1 39.6 25.5 34.9 100.0 70.9<br />

Ol.2 39.53 24.62 0.5 35.35 100.0 71.9<br />

Ol.3 39.15 25.76 35.09 100.0 70.8<br />

Ol.4 39.91 23.79 36.3 100.0 73.1<br />

Ol.5 39.59 24.64 35.77 100.0 72.1<br />

Ol.6 39.62 25.87 34.51 100.0 70.4<br />

Ol.7 39.33 23.73 0.5 36.44 100.0 73.2<br />

Ol.8 39.54 23.98 36.48 100.0 73.1<br />

Ol.9 39.71 24.41 35.88 100.0 72.4<br />

Ol.10 0.0 #DIV/0!<br />

AVG 72.0<br />

SD 1.1<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 530.5<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.14 1.03 2.52 7.08 0 16.87 18.37 100.0 80.9 49.5 11.7 38.8<br />

Spectrum 2 54.42 0.59 2.01 6.55 0 17.78 17.92 99.3 82.9 51.8 10.7 37.5<br />

Spectrum 3 54.99 0.63 1.76 5.99 0 17.66 18.09 99.1 84.0 51.9 9.9 38.2<br />

Spectrum 4 54.43 0.83 1.88 6.51 0 17.83 17.82 99.3 83.0 52.0 10.7 37.4<br />

Spectrum 5 54.21 0.74 2.08 6.39 0 17.31 18.45 99.2 82.8 50.7 10.5 38.8<br />

Spectrum 6 53.83 0.81 2.64 6.76 17.23 18.02 99.3 82.0 50.7 11.2 38.1<br />

Spectrum 7 55.06 0.81 2.46 6.44 18.06 17.15 100.0 83.3 53.1 10.6 36.3<br />

Spectrum 8 55.17 0.55 1.6 5.64 0 18.72 17.5 99.2 85.5 54.3 9.2 36.5<br />

Spectrum 9 55.28 1.38 5.59 18.69 18.18 99.1 85.6 53.6 9.0 37.5<br />

Spectrum 10 55.07 0.52 1.22 5.61 18.66 18.13 99.2 85.6 53.6 9.0 37.4<br />

Spectrum 11 55.12 0.7 1.38 5.42 0 18.22 18.48 99.3 85.7 52.7 8.8 38.5<br />

Spectrum 12 54.03 0.92 2.24 6.22 0 17.4 18.28 99.1 83.3 51.1 10.3 38.6<br />

Spectrum 13 55.15 1.57 6.13 0 17.95 18.51 99.3 83.9 51.7 9.9 38.4<br />

Spectrum 14 54.59 0.6 1.76 5.9 17.96 18.22 99.0 84.4 52.3 9.6 38.1<br />

Spectrum 15 55.12 1.6 6.22 18.3 17.86 99.1 84.0 52.8 10.1 37.1<br />

Average 83.8 52.1 10.1 37.8<br />

SD 1.42 1.28 0.84 0.80<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 530.5<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.78 18.08 40.85 99.7 80.1<br />

Ol.2 40.73 19.26 0 40 100.0 78.7<br />

Ol.3 41.15 18.32 40.52 100.0 79.8<br />

Ol.4 40.86 18.63 40.51 100.0 79.5<br />

Ol.5 40.37 19.44 40.19 100.0 78.7<br />

Ol.6 40.68 17.73 41.31 99.7 80.6<br />

Ol.7 40.64 19.19 0 39.88 99.7 78.7<br />

Ol.8 40.57 19.05 40.38 100.0 79.1<br />

Ol.9 40.53 18.38 41.09 100.0 79.9<br />

Ol.10 0.0 #DIV/0!<br />

AVG 79.5<br />

SD 0.7<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 555<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.12 0.78 1.82 5.78 0 18.03 17.68 99.2 84.8 53.1 9.5 37.4<br />

Spectrum 2 55.51 0.56 1.32 5.29 0 18.4 18.17 99.3 86.1 53.4 8.6 37.9<br />

Spectrum 3 54.44 0.7 1.88 5.73 0 17.96 18.51 99.2 84.8 52.1 9.3 38.6<br />

Spectrum 4 53.93 0.95 2.35 6 0 17.34 18.64 99.2 83.7 50.8 9.9 39.3<br />

Spectrum 5 53.86 1.19 2.65 5.88 0 17.27 18.59 99.4 84.0 50.9 9.7 39.4<br />

Spectrum 6 53.79 1.41 2.49 6.21 16.32 18.79 99.0 82.4 49.0 10.5 40.6<br />

Spectrum 7 53.77 1.2 2.55 6.26 16.77 18.85 99.4 82.7 49.6 10.4 40.1<br />

Spectrum 8 53.94 1.13 2.89 5.88 0 17.04 18.49 99.4 83.8 50.7 9.8 39.5<br />

Spectrum 9 53.15 1.2 3.17 6.07 16.87 18.75 99.2 83.2 50.0 10.1 39.9<br />

Spectrum 10 53.52 1.07 2.45 6.14 17.42 18.14 98.7 83.5 51.4 10.2 38.5<br />

Spectrum 11 54.76 1.02 1.91 5.89 0 17.12 19.3 100.0 83.8 49.9 9.6 40.5<br />

Spectrum 12 54.66 0.68 1.91 5.85 0 17.95 18.13 99.2 84.5 52.4 9.6 38.0<br />

Spectrum 13 54.09 1.23 2.42 6.14 0 16.78 19.33 100.0 83.0 49.2 10.1 40.7<br />

Spectrum 14 54.9 0.61 1.88 5.3 17.82 18.57 99.1 85.7 52.2 8.7 39.1<br />

Spectrum 15 55.42 0.46 1.29 5.49 18.73 17.85 99.2 85.9 54.1 8.9 37.0<br />

Average 84.1 51.2 9.7 39.1<br />

SD 1.15 1.58 0.57 1.16<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 555<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 41.13 16.09 42.78 100.0 82.6<br />

106


Ol.2 40.99 16.16 0 42.84 100.0 82.5<br />

Ol.3 41.15 16.13 42.72 100.0 82.5<br />

Ol.4 40.59 17.79 41.62 100.0 80.7<br />

Ol.5 40.66 17.74 41.6 100.0 80.7<br />

Ol.6 41.18 17.62 41.2 100.0 80.6<br />

Ol.7 40.91 16.58 0 42.52 100.0 82.0<br />

Ol.8 41.07 16.72 42.21 100.0 81.8<br />

Ol.9 41.22 16.78 42.01 100.0 81.7<br />

Ol.10 0.0 #DIV/0!<br />

AVG 81.7<br />

SD 0.8<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 615<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 53.53 1.08 2.74 6.35 0 16.86 18.43 99.0 82.6 50.1 10.6 39.3<br />

Spectrum 2 53.26 1.02 2.95 6.23 0 16.79 18.57 98.8 82.8 49.9 10.4 39.7<br />

Spectrum 3 53.02 1.3 2.91 6.28 0 16.44 19.04 99.0 82.3 48.9 10.5 40.7<br />

Spectrum 4 53.66 1.09 2.67 6 0 17.3 18.38 99.1 83.7 51.1 9.9 39.0<br />

Spectrum 5 53.76 0.97 2.72 6.2 0 16.95 18.61 99.2 83.0 50.1 10.3 39.6<br />

Spectrum 6 53.33 1.17 2.91 6.13 16.64 18.54 98.7 82.9 49.8 10.3 39.9<br />

Spectrum 7 53.7 1.06 2.8 6.04 17.76 17.73 99.1 84.0 52.4 10.0 37.6<br />

Spectrum 8 53.51 1.19 2.81 6.18 0 16.58 19.01 99.3 82.7 49.2 10.3 40.5<br />

Spectrum 9 53.44 1.15 2.85 6.46 17.11 18.11 99.1 82.5 50.7 10.7 38.6<br />

Spectrum 10 54.12 0.82 2.44 6.19 17.19 18.69 99.5 83.2 50.4 10.2 39.4<br />

Spectrum 11 54.04 1.08 2.66 6.11 0 17.29 18.82 100.0 83.5 50.5 10.0 39.5<br />

Spectrum 12 54.75 0.83 1.8 5.84 0 17.34 18.69 99.3 84.1 50.9 9.6 39.5<br />

Spectrum 13 54.83 0.77 1.7 6.36 0 18.39 17.25 99.3 83.7 53.5 10.4 36.1<br />

Spectrum 14 53.5 1.05 3.1 6.04 16.69 19.25 99.6 83.1 49.2 10.0 40.8<br />

Spectrum 15 53.54 0.97 2.77 6.21 17.39 18.11 99.0 83.3 51.3 10.3 38.4<br />

Average 83.2 50.5 10.2 39.2<br />

SD 0.55 1.23 0.28 1.22<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 615<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.51 17.86 41.63 100.0 80.6<br />

Ol.2 40.94 17.56 0 41.5 100.0 80.8<br />

Ol.3 41.13 17.32 41.55 100.0 81.0<br />

Ol.4 40.83 18.03 41.14 100.0 80.3<br />

Ol.5 41.05 17.92 41.03 100.0 80.3<br />

Ol.6 40.91 17.53 41.57 100.0 80.9<br />

Ol.7 40.95 17.98 0 41.07 100.0 80.3<br />

Ol.8 40.67 17.98 41.35 100.0 80.4<br />

Ol.9 40.47 18.03 41.51 100.0 80.4<br />

Ol.10 0.0 #DIV/0!<br />

AVG 80.6<br />

SD 0.3<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 630<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 55.38 0.55 1.27 5.48 0 18.4 18.08 99.2 85.7 53.4 8.9 37.7<br />

Spectrum 2 55.1 1.44 5.84 0 18.19 18.58 99.2 84.7 52.2 9.4 38.4<br />

Spectrum 3 55.03 0.45 1.4 5.93 0 18.36 17.92 99.1 84.7 53.1 9.6 37.3<br />

Spectrum 4 54.54 0.58 1.61 5.94 0 18.13 18.11 98.9 84.5 52.6 9.7 37.8<br />

Spectrum 5 54 0.74 2.05 6.07 0 17.73 18.39 99.0 83.9 51.6 9.9 38.5<br />

Spectrum 6 55.21 0.48 1.38 5.67 17.95 18.48 99.2 84.9 52.2 9.2 38.6<br />

Spectrum 7 55.64 0.84 6.14 19.65 16.86 99.1 85.1 55.8 9.8 34.4<br />

Spectrum 8 55.48 1.43 5.55 0 18.23 18.34 99.0 85.4 52.8 9.0 38.2<br />

Spectrum 9 54.64 0.64 1.79 5.54 17.85 18.49 99.0 85.2 52.1 9.1 38.8<br />

Spectrum 10 55.36 0.56 1.33 5.19 18.04 18.69 99.2 86.1 52.5 8.5 39.1<br />

Spectrum 11 55.62 0.54 1.17 5.88 0 19.03 17.02 99.3 85.2 55.1 9.5 35.4<br />

Spectrum 12 53.97 0.7 2.39 6.47 0 17.37 17.86 98.8 82.7 51.3 10.7 37.9<br />

Spectrum 13 54.39 0.78 1.8 5.56 0 17.5 19.02 99.1 84.9 51.0 9.1 39.9<br />

Spectrum 14 54.26 0.64 2.01 6.46 16.95 18.54 98.9 82.4 50.0 10.7 39.3<br />

Spectrum 15 55.42 0.61 1.49 5.31 17.87 18.44 99.1 85.7 52.4 8.7 38.9<br />

Average 84.7 52.5 9.5 38.0<br />

SD 1.04 1.45 0.65 1.43<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 630<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 40.65 17.78 41.56 100.0 80.6<br />

Ol.2 41.22 16.99 0 41.79 100.0 81.4<br />

107


Ol.3 41.14 17.02 41.85 100.0 81.4<br />

Ol.4 40.63 19.27 40.1 100.0 78.8<br />

Ol.5 41.01 17.22 41.77 100.0 81.2<br />

Ol.6 40.28 18.88 40.84 100.0 79.4<br />

Ol.7 40.73 18.4 0 40.88 100.0 79.8<br />

Ol.8 40.54 18.63 40.84 100.0 79.6<br />

Ol.9 41.03 17.1 41.87 100.0 81.4<br />

Ol.10 0.0 #DIV/0!<br />

AVG 80.4<br />

SD 1.0<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 640<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.39 0.6 2.13 6.09 0 17.49 18.11 98.8 83.7 51.6 10.1 38.4<br />

Spectrum 2 54.7 0.87 1.93 6.69 0 17.28 18.52 100.0 82.2 50.3 10.9 38.8<br />

Spectrum 3 54.53 0.71 2.26 6.91 0 15.95 19.2 99.6 80.4 47.4 11.5 41.0<br />

Spectrum 4 53.23 1.07 2.59 7.9 0 15.99 19.22 100.0 78.3 46.7 12.9 40.4<br />

Spectrum 5 54.47 0.7 1.91 6.44 0 17.53 18.22 99.3 82.9 51.2 10.6 38.3<br />

Spectrum 6 55.36 0.53 1.22 5.84 18.23 18.04 99.2 84.8 52.9 9.5 37.6<br />

Spectrum 7 54.71 0.68 1.8 5.9 17.76 18.09 98.9 84.3 52.1 9.7 38.2<br />

Spectrum 8 54.41 0.63 1.96 6.47 0 17.66 17.89 99.0 82.9 51.7 10.6 37.7<br />

Spectrum 9 54.18 0.73 2.28 6.54 17.29 18.08 99.1 82.5 50.9 10.8 38.3<br />

Spectrum 10 53.81 0.97 2.54 7.14 17.15 17.67 99.3 81.1 50.6 11.8 37.5<br />

Spectrum 11 53.53 0.87 2.58 7.18 0 17.01 17.75 98.9 80.8 50.3 11.9 37.8<br />

Spectrum 12 53.7 0.78 2.31 6.82 0 17.47 18.02 99.1 82.0 51.0 11.2 37.8<br />

Spectrum 13 54.75 0.49 1.92 6.53 0 17.91 17.51 99.1 83.0 52.4 10.7 36.8<br />

Spectrum 14 54.49 0.57 1.98 6.4 18.55 16.95 98.9 83.8 54.0 10.5 35.5<br />

Spectrum 15 55.16 0.49 1.32 6 18.26 18.03 99.3 84.4 52.8 9.7 37.5<br />

Average 82.5 51.1 10.8 38.1<br />

SD 1.75 1.93 0.94 1.31<br />

Olivine Data Reduction with wt% oxides<br />

Sample: 640<br />

Spectrum Position SiO2 FeO MnO MgO Total Fo<br />

Ol.1 41.27 15.75 42.97 100.0 82.9<br />

Ol.2 41.68 15.07 0 43.25 100.0 83.6<br />

Ol.3 41.4 16.34 42.26 100.0 82.2<br />

Ol.4 40.67 18.89 40.45 100.0 79.2<br />

Ol.5 41.39 15.19 43.42 100.0 83.6<br />

Ol.6 41.07 17.03 41.9 100.0 81.4<br />

Ol.7 41.21 16.6 0 42.19 100.0 81.9<br />

Ol.8 40.45 18.89 40.66 100.0 79.3<br />

Ol.9 40.65 19.05 40.3 100.0 79.0<br />

Ol.10 0.0 #DIV/0!<br />

AVG 81.5<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 650<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.69 0.66 1.91 5.71 0 17.18 18.91 99.1 84.3 50.6 9.4 40.0<br />

Spectrum 2 54.18 0.66 2.4 6.85 0 16.8 18.53 99.4 81.4 49.5 11.3 39.2<br />

Spectrum 3 54.74 0.71 1.93 5.67 0 17.27 18.35 98.7 84.4 51.3 9.5 39.2<br />

Spectrum 4 55.14 0.46 1.53 5.98 0 18.02 18.01 99.1 84.3 52.5 9.8 37.7<br />

Spectrum 5 55.13 0.56 1.78 5.69 0 17.1 18.79 99.1 84.3 50.6 9.4 40.0<br />

Spectrum 6 54.11 0.6 1.92 6.42 17.74 18.44 99.2 83.1 51.3 10.4 38.3<br />

Spectrum 7 53.65 0.79 2.4 6.67 16.98 18.82 99.3 81.9 49.6 10.9 39.5<br />

Spectrum 8 54.81 0.59 1.53 6.33 0 18.06 17.89 99.2 83.6 52.4 10.3 37.3<br />

Spectrum 9 54.78 0.63 2 5.97 16.93 18.78 99.1 83.5 50.1 9.9 40.0<br />

Spectrum 10 54.65 1.69 6.6 17.3 18.57 98.8 82.4 50.4 10.8 38.9<br />

Spectrum 11 53.85 0.97 2.39 7.03 0 16.52 18.56 99.3 80.7 48.9 11.7 39.5<br />

Spectrum 12 56.04 1.42 6.12 0 18.46 17.97 100.0 84.3 53.0 9.9 37.1<br />

Spectrum 13 54.79 0.58 1.84 5.91 0 17.51 18.36 99.0 84.1 51.5 9.7 38.8<br />

Spectrum 14 55.5 0.63 1.01 6.07 19.19 16.89 99.3 84.9 55.2 9.8 35.0<br />

Spectrum 15 54.26 0.64 2.01 6.07 17.6 18.47 99.1 83.8 51.3 9.9 38.7<br />

Average 83.4 51.2 10.2 38.6<br />

SD 1.25 1.62 0.70 1.37<br />

Pyroxene Data Reduction with wt% oxides<br />

Sample: 666<br />

Spectrum SiO2 TiO2 Al2O3 FeO MnO MgO CaO Total En' En Fs Wo<br />

Spectrum 1 54.3 0.84 2.41 5.94 0 16.35 19.55 99.4 83.1 48.5 9.9 41.7<br />

Spectrum 2 54.04 0.74 2.21 6.18 0 17.08 19.76 100.0 83.1 49.1 10.0 40.9<br />

Spectrum 3 53.68 0.98 2.29 7.1 0 16.74 18.64 99.4 80.8 49.1 11.7 39.3<br />

Spectrum 4 54.34 0.98 2.51 6.35 0 17.1 18.72 100.0 82.8 50.1 10.4 39.4<br />

Spectrum 5 52.29 1.36 3.6 9.04 0 15.56 18.15 100.0 75.4 46.2 15.1 38.7<br />

108


Spectrum 6 53.95 0.95 2.41 6.92 17.18 17.81 99.2 81.6 50.7 11.5 37.8<br />

Spectrum 7 54.67 0.69 2.31 6.56 17.08 18.68 100.0 82.3 50.0 10.8 39.3<br />

Spectrum 8 53.79 0.93 2.67 6.13 0 16.56 19.19 99.3 82.8 49.0 10.2 40.8<br />

Spectrum 9 53.78 0.84 2.5 7.11 17.13 18 99.4 81.1 50.3 11.7 38.0<br />

Spectrum 10 51.99 1.3 4.18 8.74 15.54 18.25 100.0 76.0 46.3 14.6 39.1<br />

Spectrum 11 53.74 1.1 2.51 8.86 16.4 17.39 100.0 76.7 48.4 14.7 36.9<br />

Spectrum 12 54.27 0.69 2.31 7.39 17.29 18.06 100.0 80.7 50.2 12.0 37.7<br />

Spectrum 13 53.26 0.89 3.12 8.11 0.45 16.17 17.63 99.6 78.0 48.4 13.6 38.0<br />

Spectrum 14 53.77 0.82 2.49 6.88 17.21 18.22 99.4 81.7 50.4 11.3 38.3<br />

Spectrum 15 53.72 0.98 2.39 6.96 16.93 18.42 99.4 81.3 49.7 11.5 38.9<br />

Average 80.5 49.1 11.9 39.0<br />

SD 2.63 1.38 1.75 1.32<br />

109

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!