24.08.2013 Views

Download - Arab Journal of Nuclear Sciences and Applications

Download - Arab Journal of Nuclear Sciences and Applications

Download - Arab Journal of Nuclear Sciences and Applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

Equilibrium <strong>and</strong> Kinetic Sorption <strong>of</strong> Some Heavy Metals from Aqueous<br />

Waste Solutions Using p (AAc-HEMA).<br />

M. M. B. El -Sabbah *2 , El-Sayed A. H, E. Elnesr, F. H. Khalil, , B. El-Gammal * 1 , <strong>and</strong> T.<br />

mansour<br />

National Center for Radiation Research <strong>and</strong> Technology P.O.Box 29,Nasr city. Cairo, Egypt<br />

* 1 Hot lab. Center-Inshas- Atomic Energy Authority<br />

* 2 Chemistry Department, Faculty <strong>of</strong> Science, Alazhar university<br />

Received: 4/1/2012 Accepted: 30/1/2012<br />

ABSTRACT<br />

Removal <strong>of</strong> heavy metals from aqueous waste solution using poly acrylic acid /<br />

2-hydroxyethyle methacrylate ( p-AAc/ HEMA) was investigated. Experiments were<br />

carried out as function <strong>of</strong> contact time, initial concentration , pH, partipcle size <strong>and</strong><br />

temperature . Adsorption data were modeled using the pseudo-first-order, pseudosecond-order<br />

<strong>and</strong> intra-particle diffusion kinetics equations. It was shown that<br />

pseudo-second-order kinetic equation could best describe the adsorption kinetics.<br />

The results indicated that poly acrylic acid / 2-hydroxyethyle methacrylate ( p-AAc/<br />

HEMA) is suitable as adsorbent material for adsorption <strong>of</strong> Sr 2+ , Co 2+ , Cd 2+ , Zn 2+ ,<br />

Nd 3+ <strong>and</strong> Eu 3+ radio active nuclei from aqueous solutions.<br />

Key words: polyacrylic acid - 2-hydroxyethyle methacrylate / europium/neodymium,<br />

strontium/ cadmium/ zinc <strong>and</strong> cobalt.<br />

INTRODUCTION<br />

The removal <strong>of</strong> radioactive nuclei from aqueous waste solution is one <strong>of</strong> the most important<br />

issues <strong>of</strong> environmental remediation. poly acrylic acid / 2-hydroxyethyle methacrylate ( p-AAc/<br />

HEMA) was chemically synthesized <strong>and</strong> exploited as adsorbent material for the decontamination<br />

study <strong>of</strong> Sr 2+ , Co 2+ , Cd 2+ , Zn 2+ , Nd 3+ <strong>and</strong> Eu 3+ radioactive nuclei from aqueous solutions under<br />

simulated conditions using batch technique. The main sources <strong>of</strong> these elements are metal plating<br />

industries, ab<strong>and</strong>oned disposal sites, <strong>and</strong> mining industries (1) . The presence <strong>of</strong> toxic heavy metals in<br />

water has caused several health problems with animals, plants, <strong>and</strong> human being [2] . Among toxic<br />

heavy metals, cadmium is one <strong>of</strong> the most dangerous for human health [3] . Cadmium is an irritant to<br />

the respiratory tract <strong>and</strong> exposure to this pollutant can lead to anaemia, renal damage, osseous disease<br />

with effects similar to osteoporosis, <strong>and</strong> Itai-Itai disease (4,5) . However, cadmium has also practical<br />

applications: e.g., it is highly corrosion resistant <strong>and</strong> is used as a protective coating for iron, steel, <strong>and</strong><br />

copper. The industrial uses <strong>of</strong> cadmium are increasing in plastics, paint pigments, electroplating,<br />

batteries, mining, <strong>and</strong> alloy industries (6) , also, cadmium having several industrial applications are the<br />

potential pollutants widely found in industrial wastewaters (7,8). The aim <strong>of</strong> this study was to synthesize<br />

<strong>and</strong> characterize polymeric hydrogels <strong>and</strong> demonstrate its potential use in various practical<br />

applications.<br />

1


Materials:<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

EXPERIMENTAL<br />

All chemicals <strong>and</strong> reagents were <strong>of</strong> analytical grade. Acrylic acid (CH2CHCOOH), / 2hydroxyethyle<br />

methacrylate <strong>and</strong> Nitric acid (HNO3) were obtained from Porlabo, europium nitrate<br />

[Eu(NO3)3] was obtained from Aldrich Chem. Co, cobalt chloride [Co(Cl)2], neodymium chloride<br />

[Nd(Cl)3], strontium chloride [Sr(Cl)2], cadmium chloride [Cd(Cl)2], zinc chloride [Zn(Cl)2], were<br />

purchased from Merck. The pH was adjusted by the addition <strong>of</strong> NH4OH.<br />

Instrumentation:<br />

Atomic absorption spectrophotometer (Buck Scientific) model 210 VGP, USA, was used to<br />

analyze europium, neodymium, strontium, cadmium, zinc, <strong>and</strong> cobalt ions in the solution. For batch<br />

investigation, a good shaking for the two phases was achieved using a thermostated mechanical<br />

shaker. The hydrogen ion concentration <strong>of</strong> different solutions was measured using CG-820 Schott<br />

Gerate pH meter, Germany. The samples were weighed on analytical balance produced by Bosch.<br />

Preparation <strong>of</strong> the ion exchange material:<br />

A known volume <strong>of</strong> AAc/HEMA comonomers <strong>of</strong> composition ratios (1:1) was dissolved in<br />

water. Different amounts <strong>of</strong> HEMA are added to known volume <strong>of</strong> the prepared AAc, depending on<br />

the required comonomers ratios. This mixture was then placed in test tubes <strong>and</strong> degassed by bubbling<br />

<strong>of</strong> pure nitrogen gas for 5 minuets <strong>and</strong> subjected to 60 Co -Gamma irradiation. The prepared materials<br />

were washed several times with bidistilled water <strong>and</strong> dried in oven at 50ºC for 24 hours. The product<br />

was then grounded , <strong>and</strong> sieved to obtain the desired mesh size <strong>of</strong> 500μ.<br />

Characterization:<br />

Characterization <strong>of</strong> the prepared ion exchangers was carried out using the different analytical<br />

techniques such as: Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC),<br />

Fourier Transform Infrared Spectra (FTIR), Particle Size Analyzer (PSA) <strong>and</strong> Electron Spin<br />

Resonance (ESR). The thermal analysis <strong>of</strong> materials was studied using Differential Scanning<br />

Calorimeter (DSC); PERKIN ELMER DSC 7 at National Center <strong>of</strong> Radiation Research <strong>and</strong><br />

Technology.<br />

The IR spectrum was measured using ATI MATTFON [ Genfis Series, Unicam, Engl<strong>and</strong> ]<br />

FTIR spectrometer. Each sample was thoroughly mixed with KBr as a matrix, the mixture was ground<br />

<strong>and</strong> then pressed to give a disc <strong>of</strong> st<strong>and</strong>ard diameter. The electron spin resonance (ESR Spectroscopy)<br />

<strong>of</strong> the prepared material was studied using EPR spectrophotometer ( X-p<strong>and</strong> ) BRUKUR Germany.<br />

The morphology <strong>of</strong> the prepared material was studied using scanning electron microscopy. Samples<br />

were washed, dried <strong>and</strong> mounting on support <strong>and</strong> then made conductive with sputtered gold. The<br />

surface observations were made using JEOL JSM-5400 Scanning Electron Microscope.<br />

Ion-exchange capacity:<br />

The ion-exchange capacities <strong>of</strong> the Sr, Nd, Zn, Cd, Co <strong>and</strong> Eu ions on poly-acrylic<br />

acid/Acrylonitrile (P-AAc/HEMA) were determined using batch experiment by shaking 10 ml <strong>of</strong> 10 -4<br />

M sample solution with 0.05 g <strong>of</strong> exchanger at room temperature for 24 hours till reach the<br />

equilibrium,. The liquid <strong>and</strong> the solid phases were separated <strong>and</strong> then the ion concentration was<br />

measured in the liquid phase to calculate the percent uptake, ( eq. 1). Another 10 ml <strong>of</strong> sample solution<br />

was added to the solid phase <strong>and</strong> by repeating these steps several times <strong>and</strong> calculating the percent<br />

uptake in each case till no uptake was obtained. The ion exchange capacity was determined by<br />

equation (2) (9,10) .<br />

2


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

% Uptake = x 100 -------------- (1)<br />

Capacity = x V/m x Co -------- (2)<br />

Where Co , C are the initial <strong>and</strong> the measured concentrations <strong>of</strong> the tested ion,V is the volume<br />

<strong>of</strong> solution (L), m is the weight <strong>of</strong> exchanger (g).<br />

. Table (1) illustrates the values <strong>of</strong> capacity for Sr, Nd, Zn, Cd, Co <strong>and</strong> Eu ions, according to the<br />

order: Eu3+ > Nd3+ > Sr2+ > Zn2+ >Co2+ > Cd2+ Co<br />

- C<br />

Co<br />

Σ % uptake<br />

100<br />

.<br />

Table (1): The capacities <strong>of</strong> the Sr 2+ , Co 2+ , Cd 2+ , Zn 2+ , Nd 3+ <strong>and</strong> Eu 3+ ions on P-AAc/ HEMA.<br />

Factors affecting on the prepared materials:<br />

Metal ion capacity, meq/g<br />

Cd 2+ 3.01<br />

Co 2+ 3.15<br />

Zn 2+ 3.34<br />

Sr 2+ 3.72<br />

Nd 3+ 3.91<br />

Eu 3+ 4.1<br />

RESULTS AND DISCUSSION<br />

To prepare the hydrophilic copolymers in the final forms there are different factors which<br />

affect the preparation process such as:<br />

i. Effect <strong>of</strong> Comonomer Concentration on The copolymerization process.<br />

The influence <strong>of</strong> comonomer dilution in its solvent on the yield <strong>of</strong> copolymerization was<br />

studied <strong>and</strong> represented in Figure(1). We noted from the figure, the copolymer yield increases with<br />

increasing the comonomer concentration so that the maximum gel yields are produced using about<br />

50% comonomers concentration.<br />

ii. Effect <strong>of</strong> comonomer composition on the copolymer yield.<br />

Figure (2) illustrates the effect <strong>of</strong> AAc/HEMA comonomers composition on the yield <strong>of</strong><br />

copolymers. The figure showed that the maximum degree <strong>of</strong> grafting obtained at comonomer<br />

composition <strong>of</strong> (50:50).<br />

3


Copolymer Yield<br />

100<br />

80<br />

60<br />

40<br />

20<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

0<br />

10 20 30 40 50<br />

Comonomers Concentration %<br />

Fig. (1) Effect <strong>of</strong> comonomers concentration<br />

on the yield <strong>of</strong> copolymer, comonomer<br />

composition 50/50, Irradiation Dose 20<br />

kGy.<br />

iii. Effect <strong>of</strong> irradiation dose on the copolymer yield.<br />

Copolymer Yield<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

10 20 30 40 50<br />

Irradiation Dose (kGy.<br />

4<br />

Copolymer Yield<br />

100<br />

95<br />

90<br />

85<br />

20/80 40/60 50/50 60/40 80/20<br />

Comonomers Composition %<br />

Figure (3) illustrates the effect <strong>of</strong> irradiation dose on the yield <strong>of</strong> copolymers. The figure<br />

showed that the yield <strong>of</strong> copolymers increases when the radiation dose increases; the highest<br />

degree <strong>of</strong> copolymer (98%) is obtained at 50 kGy for 50% solution concentration.<br />

iv. Infrared analysis (IR):<br />

Fig. (2) Effect <strong>of</strong> comonomers composition on<br />

the yield <strong>of</strong> copolymer , comonomer<br />

concentration 50%, Irradiation Dose 20 kGy.<br />

Fig. (3) Effect <strong>of</strong> irradiation doses on the yield <strong>of</strong> copolymer, comonomer<br />

composition 50/50, comonomer concentration 50%.<br />

Figure (4) illustrates the infrared analysis obtained Poly-acrylic acid/2-hydroxy<br />

ethylemethacrylate (P-AAc/HEMA).The absorption b<strong>and</strong> at 3400-3460 cm -1 is <strong>of</strong> O-H, also the<br />

absorption b<strong>and</strong> at 1720 cm -1 which corresponds to the carbonyl group in case <strong>of</strong> AAc is clear. The<br />

spectra show the characteristic b<strong>and</strong> around 2655-2950 cm -1 corresponding to methyl group.


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

v. Electron Spin Resonance (ESR):<br />

Figure. (5) illustrates the Electron Spin Resonance (ESR) for P-AAc/HEMA which shows a<br />

hyperfine structure that is having the g-value, 3.51 T, which is different from the free electron<br />

indicating that participation <strong>of</strong> different atoms in a paramagnetic complex. This phenomena is<br />

encountered in complexation <strong>of</strong> some transition metal elements with organic lig<strong>and</strong>s<br />

Intensity<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

3400 3420 3440 3460 3480 3500 3520 3540 3560<br />

vi. Differential Scanning Calorimeter (DSC):<br />

Fig. (4) FTIR spectrum <strong>of</strong> P-AAc/HEMA.<br />

[G] value<br />

Fig. (5) Electron Spin Resonance <strong>of</strong> P-AAc/HEMA.<br />

The differential scanning calorimeter (DSC) figure. (6) Showed that the melt enthalpy <strong>of</strong> P-<br />

AAc/HEMA is observed at 222.5 °C<br />

5


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

Fig. (6) Differential scanning calorimeter (DSC) <strong>of</strong> P-AAc/HEMA.<br />

vii. Scanning Electron Microscope (SEM):<br />

Scanning electron microscope <strong>of</strong> P-AAc/HEMA is investigated in figure. (7) from which it is<br />

concluded that the particle size <strong>of</strong> the material is 3-9 μm <strong>and</strong> slit like porosity with width equals 1 μm<br />

<strong>and</strong> 20 μm length.<br />

Fig. (7) Scanning electron microscope (SEM) <strong>of</strong> P-AAc/HEMA.<br />

Kinetic study<br />

Effect <strong>of</strong> initial metal ion concentration <strong>and</strong> shaking time on the adsorption.<br />

6


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

i. Effect <strong>of</strong> Metal Ion Concentration on adsorption:<br />

The effect <strong>of</strong> metal ion concentration in the range from 10 -2 to 10 -4 M on sorption <strong>of</strong> metal<br />

ions, under study, by poly-acrylic acid/2-hydroxyethylene methacrylate (P-AAc/HEMA) from 0.01 M<br />

HNO3 medium, for 4 hours <strong>and</strong> V/m = 200 ml/g at room temperature was studied. The uptake<br />

decreases by increasing the metal ion concentration for Zn 2+ , Cd 2+ ,Co 2+ , Sr 2+ , Nd 3+ <strong>and</strong> Eu 3+ onto P-<br />

AAc/HEMA ions as shown in Figure (8).<br />

% uptake<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

0.000 0.002 0.004 0.006 0.008 0.010<br />

C (M)<br />

Fig. (8) Effect <strong>of</strong> metal ion concentration on the % uptake in case<br />

<strong>of</strong> P-AAc/HEMA at room temperature.<br />

ii. Effect <strong>of</strong> Contact Time:<br />

The effect <strong>of</strong> contact time on the uptake <strong>of</strong> 10 -4 M Sr 2+ , Co 2+ , Cd 2+ , Zn 2+ , Nd 3+ <strong>and</strong> Eu 3+ by<br />

poly-acrylic acid/2-hydroxyethylene methacrylate (P-AAc/HEMA) as cation exchanger from aqueous<br />

solution <strong>of</strong> 0.01 M HNO3 has been investigated batchwisely at room temperature. The percent uptake<br />

increases sharply at the initial stages by increasing shaking time until the equilibrium is obtained,<br />

91.51%, 85.3%, 78.8%, 77.9%, 75.41% <strong>and</strong> 74.6% for Eu 3+ Nd 3+ Sr 2+ , Co 2+ , Cd 2+ <strong>and</strong> Zn 2+ ions<br />

respectively as shown the figure (9) which illustrates that the time required for equilibrium is within<br />

60 minutes.<br />

7<br />

Sr<br />

Nd<br />

Eu<br />

Co<br />

Cd<br />

Zn


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

iii. Effect <strong>of</strong> particle size<br />

The effect <strong>of</strong> particle size using the size ranging 5 – 15 µm <strong>of</strong> Poly-acrylic acid/2-hydroxy<br />

ethylemethacrylate (P-AAc/HEMA) on the removal <strong>of</strong> Eu3+ , Nd3+ , Sr2+ , Co2+ , Cd2+ <strong>and</strong> Zn2+ ions was<br />

studied at room temperature. Figures. (10-1) : (10-6) show the effect <strong>of</strong> contact time at different<br />

particle sizes. The capacity <strong>of</strong> aforementioned ions sorption at the equilibrium was calculated <strong>and</strong><br />

found to increase with the decrease <strong>of</strong> the adsorbent particle sizes indicating that the ions sorption<br />

occurs by a surface mechanism, as shown in Table (2). It was also observed that the variation in<br />

particle size affects on the equilibrium time. Thus, for particle size 5 µm, the time required to reach<br />

equilibrium is about 50 minutes for metal ions. While for particle sizes 15 µm, the time necessary is<br />

about 80 minutes for the metal ions. Consequently, increasing particle size increases the time needed<br />

to reach equilibrium. These results suggest that the sorption kinetic <strong>of</strong> Eu3+ , Nd3+ , Sr2+ , Co2+ , Cd2+ <strong>and</strong><br />

Zn2+ ,ions by Poly-acrylic acid/2-hydroxyethylemethacrylate (P-AAc/HEMA) is largely determined by<br />

the particle size.<br />

Table (2) Effect <strong>of</strong> particle size <strong>of</strong> P-AAc/AN on the capacity <strong>of</strong><br />

Zn2+ , Cd2+ Co2+ , Sr2+ , Nd3+ <strong>and</strong> Eu3+ Fig.(9): Effect <strong>of</strong> contact time on the % uptake in case<br />

<strong>of</strong> P-AAc/HEMA.<br />

ions.<br />

Metal ion Zn Cd Co<br />

Particle size,<br />

µm<br />

Capacity,<br />

meq/g<br />

5 10 15 5 10 15 5 10 15<br />

3.84 2.56 1.87 3.55 2.91 1.74 3.62 2.68 1.81<br />

Metal ion Sr Nd Eu<br />

Particle size,<br />

µm<br />

Capacity,<br />

meq/g<br />

% uptake<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120<br />

5 10 15 5 10 15 5 10 15<br />

4.3 3.1 2.22 4 2.95 2.32 4.6 3.66 2.72<br />

8<br />

time, mint.<br />

Sr<br />

Nd<br />

Eu<br />

Co<br />

Cd<br />

Zn


% uptake<br />

% uptake<br />

% uptake<br />

80<br />

60<br />

40<br />

20<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

0<br />

0 50 100 150 200 250 300<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 50 100 150 200 250 300<br />

time, mint.<br />

0.05mm<br />

0.10mm<br />

0.15mm<br />

0<br />

0 50 100 150 200 250 300<br />

Sorption Kinetics Modeling<br />

time, mint.<br />

time, mint.<br />

0.05mm<br />

0.10mm<br />

0.15mm<br />

Fig. (10-1) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Eu 3+ ion.<br />

Fig. (10-3) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Sr 2+ ion.<br />

0.05mm<br />

0.10mm<br />

0.15mm<br />

Fig. (10-5) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Cd 2+ ion.<br />

9<br />

% uptake<br />

% uptake<br />

Fig. (10-2) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Nd 3+ ion.<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 50 100 150 200 250 300<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 50 100 150 200 250 300<br />

time, mint.<br />

0.05mm<br />

0.10mm<br />

0.15mm<br />

Fig. (10-4) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Co 2+ ion.<br />

0<br />

0 50 100 150 200 250 300<br />

time, mint.<br />

0.05mm<br />

0.10mm<br />

0.15mm<br />

Fig. (10-6) Effect <strong>of</strong> particle size <strong>of</strong> P-<br />

AAc/HEMA on removal <strong>of</strong> Zn 2+ ion.<br />

As given in the previous section, for P-AAc/HEMA system, the sorption process was investigated<br />

by studying some kinetic models, pseudo-first-order, pseudo-second-order <strong>and</strong> intra-particle diffusion.<br />

% uptake<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

time, mint.<br />

0.05mm<br />

0.10mm<br />

0.15mm


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

i. First-order kinetic model<br />

The sorption kinetics <strong>of</strong> metal ions from liquid phase to solid is considered as a reversible reaction<br />

with an equilibrium state being established between two phases. A simple pseudo first order model<br />

(11,12,13,14) was therefore used to correlate the rate <strong>of</strong> reaction <strong>and</strong> expressed by the Lagergren equation<br />

as follows:<br />

k 1<br />

log qe qt logq<br />

e t<br />

(2)<br />

2.303<br />

qe <strong>and</strong> qt are the amounts adsorbed at equilibrium <strong>and</strong> at time t, respectively (mmol/g), k1 is the rate<br />

constant <strong>of</strong> Pseudo-first-order model (min-1 ).<br />

The plots <strong>of</strong> log(qe − qt) against t for the pseudo-first-order equation give a linear relationship,<br />

the values <strong>of</strong> k1 (rate constant) <strong>and</strong> qe can be determined from the slope <strong>and</strong> the intercept <strong>of</strong> this<br />

equation, respectively. Figs. (11-1): (11-6) show the plots <strong>of</strong> the linearized form <strong>of</strong> the pseudo-firstorder<br />

equation. Kinetic parameters along with correlation coefficients (R2 ) <strong>of</strong> the pseudo-first-order<br />

model are shown in Table (3). As can be seen from the the figures <strong>and</strong> the table, despite the correlation<br />

coefficients for the first-order kinetic model obtained at 298, 303, 313 <strong>and</strong> 323 o K for the six metal<br />

ions, under study, are quite high (>0.90), yet the calculated qe values give reasonable values within the<br />

experimental results at low temperature (298 °K) only, therefore the sorption <strong>of</strong> Eu3+ , Nd3+ , Sr2+ , Co2+ ,<br />

Cd2+ <strong>and</strong> Zn2+ ions on poly-acrylic acid/Acrylonitrile (P-AAc/HEMA) fit this model at low<br />

temperature.<br />

Table (3) The kinetic parameters <strong>of</strong> Pseudo-first-order model for sorption <strong>of</strong> Zn 2+ , Cd 2+ Co 2+ ,<br />

Sr 2+ , Nd 3+ <strong>and</strong> Eu 3+ onto P-AAc/HEMA at different temperatures.<br />

Temp,<br />

o K<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

Zn Co Cd<br />

qe, calc.,<br />

mmol/g<br />

R 2<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

11<br />

qe , calc.,<br />

mmol/g<br />

R 2<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

qe , calc.,<br />

mmol/g<br />

298 0.005 0.01357 0.013 0.97 0.0051 0.01438 0.0115 0.92 0.0058 0.01424 0.0096 0.98<br />

303 0.0037 0.01499 0.0091 0.94 0.0053 0.01467 0.0068 0.98 0.008 0.01482 0.0069 0.96<br />

313 0.0028 0.01591 0.0074 0.93 0.0066 0.01522 0.0041 0.91 0.0068 0.01562 0.0054 0.99<br />

323 0.0031 0.01659 0.0068 0.97 0.0052 0.01547 0.0026 0.96 0.0066 0.01657 0.0047 0.97<br />

Temp,<br />

o K<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

Sr Nd Eu<br />

qe, calc.,<br />

mmol/g<br />

R 2<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

qe , calc.,<br />

mmol/g<br />

R 2<br />

k1 ,<br />

min -1<br />

qe, exp.<br />

mmol/g<br />

qe , calc.,<br />

mmol/g<br />

298 0.0073 0.01592 0.0139 0.99 0.0073 0.01529 0.0139 0.99 0.0077 0.01717 0.0158 0.99<br />

303 0.0059 0.01628 0.0094 0.97 0.0059 0.01566 0.0093 0.97 0.008 0.01753 0.0112 0.98<br />

313 0.0068 0.01697 0.0061 0.99 0.0068 0.01627 0.0061 0.99 0.0079 0.0181 0.009 0.98<br />

323 0.0069 0.01723 0.0044 0.99 0.0069 0.01673 0.0045 0.99 0.007 0.01867 0.0061 0.99<br />

R 2<br />

R 2


log ( q e - q t )<br />

log ( q e -q t )<br />

log ( q e - q t )<br />

-1.8<br />

-1.9<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

-3.1<br />

-1.8<br />

-1.9<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20 25 30<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

t , mint.<br />

t , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

0 5 10 15 20 25 30<br />

t , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (11-1) Pseudo-first-order plots for Sr 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

Fig. (11-3) Pseudo-first-order plots for Eu 3+<br />

onto P-AAc/HEMA at different temperatures.<br />

Fig. (11-5) Pseudo-first-order plots for Cd 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

11<br />

log ( q e -q t )<br />

log ( q e - q t )<br />

log ( q e - q t )<br />

-1.8<br />

-1.9<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

-3.1<br />

-1.8<br />

-1.9<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

-3.1<br />

-2.0<br />

-2.1<br />

-2.2<br />

-2.3<br />

-2.4<br />

-2.5<br />

-2.6<br />

-2.7<br />

-2.8<br />

-2.9<br />

-3.0<br />

0 5 10 15 20 25 30<br />

t ,mint.<br />

0 5 10 15 20 25 30<br />

t , mint.<br />

298 K<br />

303 k<br />

313 K<br />

323 K<br />

0 5 10 15 20 25 30<br />

t , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (11-2) Pseudo-first-order plots for Nd3+ onto P-AAc/HEMA at different temperatures.<br />

Fig. (11-4) Pseudo-first-order plots for Co 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

Fig. (11-6) Pseudo-first-order plots for Zn 2+<br />

onto P-AAc/HEMA at different temperatures.


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

ii. Pseudo-second-order:<br />

A pseudo-second-order rate model is used to describe the kinetics <strong>of</strong> the sorption <strong>of</strong> metal ions<br />

onto sorbent materials (15,16,17) . The second model used to describe the kinetics <strong>of</strong> the adsorption <strong>of</strong><br />

Sr +3 , Co +2 , Cd +2 , Zn +2 , Nd +3 <strong>and</strong> Eu 3+ by poly-acrylic acid/2-Hydroxyethylmethacrylate (P-<br />

AAc/HEMA) at different temperatures is pseudo second-order model, which presented in equation<br />

(3).<br />

t 1 1<br />

t<br />

(3)<br />

q k q q<br />

2<br />

2 e e<br />

Where, k2 is the pseudo second-order rate constant. The qe <strong>and</strong> k2 values <strong>of</strong> the pseudosecond-order<br />

kinetic model can be determined from the slope <strong>and</strong> the intercept <strong>of</strong> the plots <strong>of</strong> t/q<br />

versus t, respectively. Figs. (12-1) : (12-6) give the results <strong>of</strong> the linearized form <strong>of</strong> the pseudosecond-order<br />

kinetic model. The calculated qe values are more closer to the experimental data than the<br />

calculated values <strong>of</strong> pseudo-first-order model. Therefore, the sorption <strong>of</strong> the six ions can be<br />

approximated more favorably by the pseudo-second-order model, Table (4) illustrates that the<br />

correlation coefficients are very high, R 2 >0.99, for pseudo-second-order kinetic model this<br />

reinforcing the applicability <strong>of</strong> this model.<br />

Table (4) The kinetic parameters <strong>of</strong> Pseudo-second-order model for sorption <strong>of</strong> Sr 2+ , Nd 3+ , Eu 3+<br />

,Co 2+ ,Cd 2+ <strong>and</strong> Zn 2+ onto P-AAc/HEMA at different temperatures.<br />

Temp,<br />

o K<br />

k2<br />

,g/mmol<br />

.min<br />

Sr Nd Eu<br />

qe ,<br />

calc.,<br />

mmol/g<br />

R 2<br />

k2<br />

,g/mmol<br />

.min<br />

12<br />

qe ,<br />

calc.,<br />

mmol/g<br />

R 2<br />

k2<br />

,g/mmol<br />

.min<br />

qe ,<br />

calc.,<br />

mmol/g<br />

298 5.68 0.017065 0.999 5.96 0.016313 0.999 5.28 0.018797 0.997<br />

303 7.22 0.018149 0.998 10.62 0.01642 0.999 7.77 0.01912 0.998<br />

313 17.47 0.017637 0.999 16.96 0.016556 0.995 11.08 0.019231 0.999<br />

323 28.25 0.017699 0.996 25.29 0.017241 0.999 17.49 0.019455 0.999<br />

Temp,<br />

o K<br />

k2<br />

,g/mmol<br />

.min<br />

Co Cd Zn<br />

qe ,<br />

calc.,<br />

mmol/g<br />

R 2<br />

k2<br />

,g/mmol<br />

.min<br />

qe ,<br />

calc.,<br />

mmol/g<br />

R 2<br />

k2<br />

,g/mmol<br />

.min<br />

qe ,<br />

calc.,<br />

mmol/g<br />

298 7.33 0.015576 0.999 8.05 0.01548 0.998 7.68 0.015748 0.999<br />

303 9.81 0.015723 0.997 17.66 0.015552 0.999 14.271 0.015848 0.997<br />

313 18.15 0.015823 0.999 19.6 0.016181 0.998 15.59 0.016807 0.998<br />

323 42.2 0.015873 0.996 25.17 0.017153 0.999 27.81 0.016892 0.999<br />

R 2<br />

R 2


t/q, mint.g/mmol<br />

t/q, mint. g/mmol<br />

t/q, mint. g/mmol<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

0<br />

0 10 20 30 40 50 60<br />

500<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

0<br />

0 10 20 30 40 50 60<br />

500<br />

Fig. (12-1) Pseudo-second-order plots for Sr 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (12-3) Pseudo-second-order plots for Eu 3+<br />

onto P-AAc/HEMA at different temperatures.<br />

0<br />

0 10 20 30 40 50 60<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (12-5) Pseudo-second-order plots for Cd 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

13<br />

t/q, mint.g/mmol<br />

t/q, mint. g/mmol<br />

t/q, mint. g/mmol<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

0<br />

0 10 20 30 40 50 60<br />

500<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (12-2) Pseudo-second-order plots for Nd 3+<br />

onto P-AAc/HEMA at different temperatures.<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

0<br />

0 10 20 30 40 50 60<br />

500<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (12-4) Pseudo-second-order plots for Co 2+<br />

onto P-AAc/HEMA at different temperatures.<br />

0<br />

0 10 20 30 40 50 60<br />

t, mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (12-6) Pseudo-second-order plots for Zn 2+<br />

onto P-AAc/HEMA at different temperatures.


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

iii. Intra-particle Diffusion:<br />

Since rate <strong>of</strong> adsorption is usually measured by determining the change in concentration <strong>of</strong><br />

adsorbate with the adsorbent as a function <strong>of</strong> time, linearization <strong>of</strong> the data is obtained by plotting the<br />

amount adsorbed per unit weight <strong>of</strong> adsorbent q versus t 1/2 as given by ref. (18) <strong>and</strong> Eq. (4): The intraparticle<br />

diffusion model, Morris <strong>and</strong> Weber model, is presented as the following (19) .<br />

q = kad t 1/2 + C (4)<br />

where kad is the rate constant <strong>of</strong> intra-particle transport (mmol/g min 1/2 ).<br />

The value C (mmol/g) in this equation is a constant which indicates that there exist a boundary layer<br />

diffusion effects, <strong>and</strong> is proportional to the extent <strong>of</strong> boundary layer thickness (20) larger the value the<br />

greater is the boundary effect (21) . If the plot <strong>of</strong> q versus t 1/2 gives a straight line, the adsorption process<br />

is controlled by intra-particle diffusion only. However, if the data exhibit multi-linear plots, then two<br />

or more steps influence the sorption process (22) .<br />

The plots <strong>of</strong> q versus t 1/2 are given in Figs. (13-1) : (13-6) for the adsorption <strong>of</strong> Eu 3+ , Nd +3 ,<br />

Sr +2 , Co +2 , Cd +2 , <strong>and</strong> Zn +2, ions on poly-acrylic acid/Acrylonitrile (P-AAc/AN) at different<br />

temperatures. It can be seen from the figures that the adsorption data gives a straight lines, therefore<br />

the intra-particle diffusion model is applicable for the adsorption process <strong>and</strong> the adsorption is<br />

controlled by intra-particle diffusion.. The kinetic parameters are given in Table (5).<br />

Table (5) The kinetic parameters <strong>of</strong> intra-particle diffusion model for sorption <strong>of</strong> Zn 2+ , Cd 2+<br />

Co 2+ , Sr 2+ , Nd 3+ <strong>and</strong> Eu 3+ onto P-AAc/HEMA at different temperatures.<br />

Temp<br />

,<br />

o K<br />

Cd<br />

Zn<br />

Co<br />

Sr<br />

Nd<br />

Eu<br />

kad,<br />

mmol<br />

/g h 1/2<br />

0.34<br />

0.39<br />

0.40<br />

0.52<br />

0.82<br />

1.11<br />

298 o K<br />

C,<br />

mmol<br />

/g<br />

0.000<br />

4<br />

0.002<br />

9<br />

0.000<br />

8<br />

0.000<br />

1<br />

0.000<br />

2<br />

0.000<br />

1<br />

R 2<br />

0.99<br />

0.99<br />

0.98<br />

0.97<br />

0.98<br />

0.98<br />

kad ,<br />

mm<br />

ol/g<br />

h 1/2<br />

0.25<br />

0.28<br />

0.22<br />

0.42<br />

0.50<br />

0.80<br />

303 o K<br />

C,<br />

mmol/<br />

g<br />

0.0077<br />

0.007<br />

0.0054<br />

0.0028<br />

0.005<br />

0.0049<br />

R 2<br />

0.97<br />

0.97<br />

0.99<br />

0.98<br />

0.96<br />

0.97<br />

14<br />

kad,<br />

mmol/<br />

g h 1/2<br />

0.20<br />

0.24<br />

0.13<br />

0.24<br />

0.28<br />

0.57<br />

313 o K<br />

C,<br />

mm<br />

ol/g<br />

0.00<br />

93<br />

0.00<br />

9<br />

0.00<br />

94<br />

0.00<br />

91<br />

0.00<br />

95<br />

0.00<br />

86<br />

R 2<br />

0.98<br />

0.99<br />

0.99<br />

0.96<br />

0.98<br />

0.98<br />

kad,<br />

mmol/<br />

g h 1/2<br />

0.16<br />

0.17<br />

0.07<br />

0.17<br />

0.25<br />

0.44<br />

323 o K<br />

C,<br />

mm<br />

ol/g<br />

0.01<br />

1<br />

0.01<br />

1<br />

0.01<br />

2<br />

0.01<br />

1<br />

0.01<br />

1<br />

0.01<br />

2<br />

R 2<br />

0.9<br />

8<br />

0.9<br />

8<br />

0.9<br />

8<br />

0.9<br />

6<br />

0.9<br />

9<br />

0.9<br />

7


q, mmol/g<br />

q, mmol/g.<br />

q, mmol/g<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

1 2 3 4 5 6 7 8<br />

t 1/2 , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (13-1) Intra-particle diffusion model for<br />

sorption <strong>of</strong> Sr 2+ onto P-AAc/HEMA at<br />

different temperatures.<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

1 2 3 4 5 6 7 8<br />

t 1/2 , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (13-3) Intra-particle diffusion model for<br />

sorption <strong>of</strong> Eu3+ onto P-AAc/HEMA at<br />

different temperatures.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

1 2 3 4 5 6 7 8<br />

t 1/2 Fig. (13-5) Intra-particle , mint. diffusion model for<br />

sorption <strong>of</strong> Cd 2+ onto P-AAc/HEMA at<br />

different temperatures.<br />

15<br />

q, mmol/g<br />

q, mmol/g<br />

q, mmol/g<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

1 2 3 4 5 6 7 8<br />

t 1/2 , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (13-2) Intra-particle diffusion model<br />

for sorption <strong>of</strong> Nd 3+ onto P-AAc/HEMA at<br />

different temperatures.<br />

1 2 3 4 5 6 7 8<br />

t 1/2 , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 k<br />

Fig. (13-4) Intra-particle diffusion model<br />

for sorption <strong>of</strong> Co2+ onto P-AAc/HEMA at<br />

different temperatures.<br />

1 2 3 4 5 6 7 8<br />

t 1/2 , mint.<br />

298 K<br />

303 K<br />

313 K<br />

323 K<br />

Fig. (13-6) Intra-particle diffusion model for<br />

sorption <strong>of</strong> Zn2+ onto P-AAc/HEMA at<br />

different temperatures.


<strong>Arab</strong> <strong>Journal</strong> Of <strong>Nuclear</strong> Science And <strong>Applications</strong>, 46(2),(1-16) 2013<br />

Conclusions<br />

Poly acrylic acid / 2-hydroxyethyle methacrylate ( p-AAc/ HEMA) was prepared using direct<br />

gamma irradiation technique, characterized using DSC, ESR, IR, <strong>and</strong> SEM measurements <strong>and</strong> tested<br />

as an ion exchange material for the removal <strong>of</strong> europium, neodymium, strontium, cadmium, zinc, <strong>and</strong><br />

cobalt ions from nitrate solutions. The uptake <strong>of</strong> these ions increases with increasing the pH value <strong>and</strong><br />

decreases with increasing the metal ion concentration. Sorption kinetics modeling was investigated by<br />

studying some kinetic models, pseudo-first-order, pseudo-second-order kinetic model this reinforcing<br />

the applicability <strong>of</strong> this model <strong>and</strong> intra-particle diffusion model is applicable for the adsorption<br />

process <strong>and</strong> the adsorption is controlled by intra-particle diffusion,.<br />

REFERENCES<br />

(1) C.N. Mulligan, R.N. Yong, B.F. Gibbs, Eng. Geol; 60, 193 (2001).<br />

Özer, H.B. Pirinççi, J. Hazard. Mater. ; 137, 849 (2006).<br />

(2) S. M<strong>and</strong>jiny, K.A. Matis, A.I. Zouboulis, M. Fedor<strong>of</strong>f, J. Jeanjean, J.C.<br />

(3) Rouchaud, N. Toulhoat, V. Potocek, C. Loos-Neskovic, P. Maireles-Torres,<br />

(4) D. Jones, J. Mater. Sci.; 33, 5433 (1998).<br />

(5) T.Miyahara, M. Miyakoshi, Y. Saito, H. Kozuka, Toxicol. Appl. Pharm. ; 55, 477 (1980).<br />

(6) D. Marchat, D. Bernache-Assollant, E. Champion, J. Hazard. Mater.; 139, 453 (2007).<br />

(7) S. Al-Asheh, Z. Duvnjak, J. Hazard. Mater.; 56 , 35 (1997).<br />

(8) Z.R. Holan, B. Volesky, I. Prasetyo, Biotechnol. Bioeng.; 41, 819 (1993).<br />

(9) B. Volesky, H. May, Z.R. Holan, Biotechnol. Bioeng.; 41, 826 (1993).<br />

(10) I.Yamagishi, Y. Morita, M. Kubota, M Tsuji, Radiochem. Acta.; 75, 27(1996).<br />

(11) J. Mathew, S.N T<strong>and</strong>on, J. Radioanal. Chem.; 27, 315(1975).<br />

(12) M. Alkan, O. Demirbas, S. Alikcapa, <strong>and</strong> M. Dogan, J. Hazard. Mater.; 116, 135<br />

(13) (2004).<br />

(14) G. McKay, <strong>and</strong> Y. S. Ho, Process Biochem.; 34, 451 (1999).<br />

(15) G. McKay, <strong>and</strong> Y. S. Ho, Water Res.; 33, 585 (1999).<br />

(16) R.G. McLaren, D.V.Crawford; J. Soil Sci.; 24 (4) , 443 (1973).<br />

(17) R. Qadeer, J. Hanif, <strong>and</strong> I. Hanif, J. Radioanal. Nucl. Chem.; 190, 103 (1995).<br />

(18) G. Ahmet, A. Ertan, <strong>and</strong> T. Ismail, J. Hazard. Mater.; 146, 362 (2007).<br />

(19) G. McKay, <strong>and</strong> Y. S. Ho, Water Res.; 33, 585 (1999).<br />

(20) D. Sushanta, <strong>and</strong> C. G.Uday, J. Chem. Thermodynamics; 40, 67 (2008).<br />

(21) R. R. Sheha, <strong>and</strong> A. A. El-Zahhar, J. Hazard. Mater.;150, 795 (2008).<br />

(22) K. Ibrahim, U. Mehmet, <strong>and</strong> K. Hamdi, Celik Bioresource Technology; 99, 492<br />

(23) (2008).<br />

(24) Y. Xiaoyan, <strong>and</strong> A. Bushra, J. Colloid Interf. Sci.; 287, 25 (2005).<br />

(25) B. M. Sinan, J. Hazard. Mater.; 137, 157 (2006).<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!