24.08.2013 Views

Ray tracing - ESRF

Ray tracing - ESRF

Ray tracing - ESRF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ray</strong> <strong>tracing</strong><br />

❑ A powerful tool which allows “optics experiment” with the<br />

computer.This technique allows the accurate simulation of the optical<br />

components of the BL in the design phase.<br />

❑ There are many commercial programs to perform ray <strong>tracing</strong> in<br />

the visible region, suitable for camera objective, microscopes etc.<br />

❑ For x-ray applications, specially with synchrotron radiation<br />

the choice is SHADOW. It can raytrace any x-ray optical system and<br />

predict image shapes, intensities and resolving powers with great<br />

accuracy<br />

Manuel Sánchez del Río<br />

SHADOW proved to be an essential computer tool for:<br />

❑ Simulate beamline optics (Mirror and Crystal Optics)<br />

❑ Understand properties of Optical Elements (i.e. Laue crystals)<br />

❑ Check if operation performances are as expected<br />

Computer simulations for X-ray optics (5 of 20)<br />

Luso, May1998


<strong>Ray</strong> <strong>tracing</strong> in Optics can be easily done with computers.<br />

source<br />

Manuel Sánchez del Río<br />

image<br />

mirror<br />

Two aspects:<br />

Computer simulations for X-ray optics (6 of 20)<br />

❑ <strong>Ray</strong>s emerging from the source<br />

[source generation]<br />

❑ <strong>Ray</strong>s through Optical Elements<br />

[Geometrical and Physical models]<br />

Luso, May1998


What CAN be calculated with SHADOW?<br />

❑ Beam Cross sections (focal spot, etc). Effects of:<br />

❑ Energy resolution<br />

Manuel Sánchez del Río<br />

❑ source characteristics (dimensions, depth, emittances...)<br />

❑ vignetting (finite optical elements, slits, etc.)<br />

❑ aberrations<br />

❑ thermal deformations<br />

❑ waviness and roughness errors of mirrors<br />

❑ Flux & Power (number of photons at sample, absorbed/transmitted power, etc.)<br />

❑ Other parameters (i.e polarization transfer)<br />

Computer simulations for X-ray optics (11 of 33)<br />

PSI, Feb 1998


What CANNOT be calculated with SHADOW?<br />

(Ideas for future developments...)<br />

1) Physical models:<br />

❑ Sources: ➟X-ray tubes. ➟Elliptical undulators. ➟Tapered undulators. ➟General wigglers.<br />

➟Wiggler exact calculation.<br />

❑ Optics: ➟Extended energy range (E> 100 keV). ➟Compton absorption cross section.<br />

➟Coherence (holography, phase contrast, speckle patterns...).<br />

❑ Gratings: ➟Efficiency model.<br />

❑ Crystals: ➟Any crystal. ➟External Rocking Curve. ➟Transmitted beam (phase shifters,<br />

diamond monochromators). ➟Improved mosaic model (transition Perfect -><br />

Mosaic). ➟Bent crystal reflectivity. ➟Beam penetration in the crystal.<br />

❑ New devices: ➟Bragg Fresnel Lenses. ➟CRL. ➟Non-sequential systems (i.e. Multiple<br />

mirror arrays).<br />

2) Program structure:<br />

➟Migration Fortran -> C ?. ➟Dynamic arrays (any number of rays). ➟Test set. ➟➟User<br />

program macros. ➟Global optimization. ➟Improve user-friendly interface<br />

Manuel Sánchez del Río<br />

Computer simulations for X-ray optics (12 of 33)<br />

PSI, Feb 1998


1- Simplest case: The spherical source.<br />

Source Models in SHADOW<br />

❑ 1st Solution. Grid Generation of <strong>Ray</strong>s:<br />

x = (0,0,0)<br />

v = (0, cos 2π(i/N), sin 2π(i/N) )<br />

i=0,...N<br />

❑ 2nd Solution. Random Generation of <strong>Ray</strong>s:<br />

x = (0,0,0)<br />

v = (0, cos (2πnr), sin (2πnr) )<br />

n r = random number in [0,1] with flat probability<br />

distribution function given by the computer random<br />

generator.<br />

Manuel Sánchez del Río -9-<br />

Experiments Division<br />

Programming Group<br />

Grenoble, January 18, 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


2- General case: The Gaussian [or any kind of distribution f ] generator.<br />

❑ 1st Solution. Deterministic generator:<br />

❑ 2nd Solution. Stochastic generator:<br />

x = (0,0,0)<br />

v = (0, cos θi , sin θi) I = f (θi )<br />

θi = θmin + (i/N) (θmax - θmin) i = 0, ..., N<br />

x = (0,0,0)<br />

v = (0, cos θ i , sin θ i)<br />

θ i are numbers generated randomly but following<br />

the gaussian [or f] distribution.<br />

How to get them?<br />

Manuel Sánchez del Río -10-<br />

Experiments Division<br />

Programming Group<br />

Grenoble, January 18, 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


The inversion method<br />

f(φ)<br />

cdf(φ)<br />

φ<br />

φ<br />

1<br />

0<br />

❑ Given the probability distribution, i.e.<br />

f ( φ)<br />

=<br />

1<br />

------------- exp i<br />

κ 2π<br />

φ2<br />

2κ2 ⎛– -------- ⎞<br />

⎝ ⎠<br />

❑ Calculate the Cumulative Distribution Function (cdf)<br />

cdf ( φ)<br />

= f ( φ)dφ<br />

Manuel Sánchez del Río -11-<br />

Experiments Division<br />

Programming Group<br />

Grenoble, January 18, 1994<br />

φ<br />

∫<br />

0<br />

❑ Calculate the inverse function<br />

Φ( n)<br />

cd f 1 – = ( n)<br />

If now n samples an interval [0,1] with flat<br />

probability distribution, Φ(n) samples an interval<br />

(-∞, +∞) with probability distribution f.<br />

❑ If n ∈[n1 ,n2 ] then the φ interval is [φ1 ,φ2 ] with<br />

n1=cdf(φ1) and n2=cdf(φ2) EUROPEAN SYNCHROTRON RADIATION FACILITY


The synchrotron sources<br />

e -<br />

ϑ<br />

Ψ<br />

Manuel Sánchez del Río<br />

Dipoles Wigglers Undulators<br />

hϖ<br />

Source Size 0.45mm(H)x0.30mm(V)<br />

Source Divergences<br />

hϖ<br />

e -<br />

Bending Magnet and Wiggler Radiation Undulator Radiation<br />

Computer simulations for X-ray optics (8 of 20)<br />

hϖ<br />

Undulator Divergences<br />

Luso, May1998


Tracing an Optical Element (i.e. MIRRORS)<br />

1) Geometrical Model<br />

source = { ray i , i=1...N }<br />

trajectory: x = x start + t v<br />

Surface equation<br />

Manuel Sánchez del Río<br />

f(x,y,z) = 0<br />

=> Intercept point<br />

source<br />

ray = ( x, ...) v,<br />

Computer simulations for X-ray optics (9 of 20)<br />

n = grad(f)<br />

Optical Element<br />

<strong>Ray</strong> <strong>tracing</strong> equation. Here (Mirrors) the specular reflectivity is applied:<br />

θin = θout ; vin , n and vout coplanar. In vectorial notation: vout = vin - 2 vin 2) Physical Model<br />

Reflectivity ~ probability of observation or intensity after reflection.<br />

We must include a new variable in the ray: Iout = Iin R(E,θ,...)<br />

In fact, R is polarization-dependent, so it is better to store the<br />

I = | Es exp(iφs ) + Ep exp(iφp ) | 2<br />

Electric field:<br />

ray i = ( x, v, i, flag, E s , E p , φ s , φ p , φ g , 2π/λ)<br />

v in<br />

v out<br />

image<br />

Luso, May1998


Focus is not perfect because of :<br />

❑ aberrations<br />

❑ source dimensions and depth [emittances]<br />

❑ waviness and roughness errors of mirrors<br />

All these effects can be studied by ray-<strong>tracing</strong>. Example:<br />

circular source (diameter: 10 μm)<br />

divergences: 100 μrad<br />

p=30m<br />

θ=89.8 deg<br />

q=10m<br />

Toroidal Mirror<br />

Ellipsoidal Mirror<br />

Manuel Sánchez del Río -13-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


The model is not sufficient: The ray may not exist after the mirror [it is absorbed]<br />

We must extend the model<br />

E s out = E s in * R s<br />

E p out = E p in * R p<br />

θ inc=89.9deg<br />

Reflectivity ~ probability of observation<br />

or intensity after reflection.<br />

We must include a new variable in the ray: I<br />

I out = I in R(E,θ,...)<br />

In fact, R is polarization-dependent, so it is<br />

better to store the Electric field:<br />

I = | E s exp(iφ s ) + E p exp(iφ p ) | 2<br />

ray i = ( x, v, i, flag, E s , E p , φ s , φ p , φ g , 2π/λ)<br />

This permits also to work with polarized light, analyze the polarization degree<br />

and polarization properties through the beamline.<br />

|Es|=|Ep| φp = φs + π/2<br />

circular pol. light<br />

Rs, Rp and phase change are given by a physical model of reflectivity. For mirrors<br />

the Fresnel equations are coded in the program.<br />

Manuel Sánchez del Río -14-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Other O.E.s can be easily modeled:<br />

❑ Multilayers:Mirror + “New” Reflectivity curve.<br />

Geometry: Reflectivity:<br />

θ graz = 0.42 deg<br />

n pairs (100)<br />

Substrate (Si)<br />

❑ CRYSTALS: Symmetric Bragg Case =Mirror + “New” Reflectivity curve given by the DTD.<br />

Geometry: Reflectivity:<br />

v in<br />

θ<br />

v out<br />

v out = v in - 2 v in⊥<br />

Light element Si (41.4 A)<br />

Heavy element W(10.3 A)<br />

Manuel Sánchez del Río -15-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Other O.E.s can be easily modeled:<br />

❑ LENSES: interface between two mediaof refractive indeces n 1 and n 2<br />

n 1<br />

n 2<br />

k in k out<br />

❑ CRYSTALS: Symmetric Bragg Case = Mirror + “New” Reflectivity curve given by the DTD.<br />

θ<br />

u n<br />

n 1(k in x u n) = n 2(k out x u n)<br />

Geometry: Reflectivity:<br />

v in<br />

v out<br />

v out = v in - 2 v in<br />

[Hetch, Optics]<br />

Manuel Sánchez del Río -7-<br />

Experiments Division<br />

Programming Group<br />

Grenoble, January 18, 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


mλ = d (sin θ in + sin θ out )<br />

or<br />

k out = k in + G ||<br />

Gratings: Geometrical Model<br />

k in<br />

G || =m (2π/d) u ||<br />

Manuel Sánchez del Río -11-<br />

Computer simulations for X-ray optics (<strong>Ray</strong>-<strong>tracing</strong> and More)<br />

LSBarcelona, 13 Dec 1996<br />

θ in<br />

[k 1 ,k 3 ] k 1<br />

k 3<br />

k 2<br />

slit<br />

θ out k out<br />

m=2<br />

m=1<br />

m=0<br />

m=-1<br />

m=-2<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Gratings: Monochromators<br />

❑ They combine the dispersive effect of the grating + focusing effect of curvature<br />

❑ Can be analyzed by ray-<strong>tracing</strong><br />

❑ Focusing equations: Generalized case of mirror’s focusing equations<br />

Efficiency [%]<br />

0.4 -<br />

0.0 -<br />

1 1<br />

-- + --<br />

p q<br />

cosθ1 + cosθ2<br />

-----------------------------------<br />

Rs Manuel Sánchez del Río -12-<br />

Computer simulations for X-ray optics (<strong>Ray</strong>-<strong>tracing</strong> and More)<br />

LSBarcelona, 13 Dec 1996<br />

=<br />

( cosθ1<br />

) 2<br />

( cosθ2<br />

)<br />

-------------------p<br />

2<br />

+ --------------------q<br />

0 100<br />

Energy [eV]<br />

200<br />

=<br />

cosθ1 + cosθ2<br />

-----------------------------------<br />

Rt (Not considered in SHADOW)<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Mirror optics<br />

Surface errors and their implementation in SHADOW<br />

❑ Figure: (macroscopic ondulations of the surface, giving the surface shape (plane, spherical...),<br />

and deformations produced by the manufacturing errors, thermal loads and mechanical<br />

stress.<br />

In SHADOW we use a mapping of the surface (from FEM, etc.) or include directly the error<br />

parameters (surface radius,...)<br />

❑ Slope errors: generally considered as sinusoidal-like variations of the surface shape. It<br />

spreads the image in the focal plane due to the deflection of the incident rays at different<br />

angles.<br />

In RT <strong>tracing</strong> we use a reflection model with a mapping of the surface (d~mm>>λ, ie., geometrical<br />

optics regime)<br />

❑ Roughness: Random irregularities in the micro or sub-microscopic scale, which depends<br />

on the manufacture processes and materials. It increases the scattering of the photon beam,<br />

producing a blur of the image in the focal point.<br />

In RT, as it is impossible to characterize deterministically the surface, a statistical approach<br />

based on the diffraction theory is used.<br />

Manuel Sánchez del Río<br />

Computer simulations for X-ray optics (13 of 33)<br />

PSI, Feb 1998


Mirror optics: Thermal Analysis (figure error)<br />

Manuel Sánchez del Río<br />

Power density on first crystal<br />

Spot without thermal load<br />

Crystal deformation<br />

Spot with thermal load<br />

Computer simulations for X-ray optics (14 of 33)<br />

BL 2 SHADOW/<br />

ANSYS calculation.<br />

Source:<br />

Wiggler<br />

λu = 125 mm<br />

N = 12<br />

E = 6.04 GeV<br />

σx = 69 μm<br />

σz = 47 μm<br />

εx = 610 -7 rad.cm<br />

εz = 610 -8 rad cm<br />

Optics:<br />

C,Be,Al attenuators<br />

Flat Mirror<br />

Double-xtal monochromator<br />

First crystal: cryogenically<br />

cooled<br />

θ B = 3.78 degrees<br />

(sagittally focusing<br />

M=1/3)<br />

Cylindrical mirror<br />

(M=1/4.3)<br />

Power on first crystal:<br />

2.6 kW<br />

PSI, Feb 1998


Mirror optics: waviness (slope error) analysis<br />

Focal spot simultions for BL1<br />

(Microfocus):<br />

Source<br />

Undulator placed in a low beta<br />

section<br />

λu = 46mm<br />

N = 33<br />

E = 6.04 GeV<br />

σx = 59 μm<br />

σz = 11 μm<br />

εx = 4 10 -7 rad.cm<br />

εz = 4 10-9 rad cm<br />

III harmonic @ 7144 eV<br />

Ellipsoidal mirror M=1/10<br />

Slope error 0.8”<br />

Manuel Sánchez del Río<br />

Slope<br />

error:<br />

Sinusoidal<br />

Toroidal Mirror Ellipsoidal Mirror<br />

Ellipsoidal Mirror + 0.8” slope error<br />

Computer simulations for X-ray optics (15 of 33)<br />

C. Riekel et al.<br />

Rev Sci Instrum 63<br />

974-981 (1992)<br />

Multi- frequency<br />

M. Sanchez del Rio et al.<br />

Nucl. Ins. Meth. A319<br />

170-177 (1992)<br />

PSI, Feb 1998


Mirror optics:<br />

Slope/Figure errors with real profiles I<br />

R. Signorato & M. Sanchez del Rio, SPIE Proceedings 3152 (1997)<br />

(ID12a)<br />

Manuel Sánchez del Río<br />

F1<br />

7.64 m<br />

Computer simulations for X-ray optics (16 of 33)<br />

.3 m<br />

M=0.2<br />

42.77 m<br />

❑ R1 = 4809 m (concave)<br />

❑ R2 = 154232 m (convex)<br />

❑ Expected focal position ~ 17m<br />

❑ Theoretical focal FWHM = 37 x 0.2 ~ 8 μm<br />

❑ Incuding Slope Error = 5μrad x 8m x 2 mirrors = 80 μm<br />

Results:<br />

❑ 22 μm FWHM<br />

❑ Satellite structures<br />

❑ Best focus fount at 7.64 m from M2<br />

source<br />

37 μm<br />

PSI, Feb 1998


Slope/Figure errors with real profiles II<br />

Mirror metrology<br />

❑ Slopes measured at the <strong>ESRF</strong> LTP<br />

❑ Standard data reduction (linear detrending, slope error rms, PSD) done with XOP.<br />

❑ Profiles used to create a surface mapping (transversal replication) to be included in<br />

SHADOW (by its PRESURFACE tool).<br />

Manuel Sánchez del Río<br />

Computer simulations for X-ray optics (17 of 33)<br />

PSI, Feb 1998


Slope/Figure errors with real profiles III<br />

<strong>Ray</strong>-<strong>tracing</strong>/Experiment comparison<br />

Manuel Sánchez del Río<br />

Computer simulations for X-ray optics (18 of 33)<br />

A = experimental<br />

B = calculated<br />

PSI, Feb 1998


Slope/Figure errors with real profiles IV<br />

Focal images at positions E (@7.62m from M2) and T (@17.14 m from M2)<br />

Manuel Sánchez del Río<br />

Computer simulations for X-ray optics (19 of 33)<br />

PSI, Feb 1998


Imaging properties of spherically bent crystals<br />

Backlighting scheme<br />

Mesh grid<br />

X-ray source<br />

Manuel Sánchez del Río<br />

Image of source<br />

Film (image of mesh)<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (16 of 30)<br />

Rowland circle geometry<br />

2R R=R~>100-180 mm<br />

θ B ~ 80-88 deg<br />

λ = 6.63 A<br />

Resolution better than 10 µm<br />

Ref: M. Sanchez del Rio, A. Ya Faenov,<br />

V. M. Dyakin, T. A. Pikuz, S. A. Pikuz,<br />

V. M. Romanova and T. A. Shelkovenko,<br />

Physica Scripta 55, 735-740 (1997)<br />

Weimar, Oct 4, 1999


Imaging properties of spherically bent crystals<br />

<strong>Ray</strong> <strong>tracing</strong> simulation<br />

Manuel Sánchez del Río<br />

θ B [deg] c [cm] R [cm] a [cm] b [cm]<br />

Conf A 86 9.98 10.00 6.25 25.00<br />

Conf B 86 18.56 18.60 11.63 46.5<br />

Conf C 80 9.85 10.00 6.25 25.0<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (17 of 30)<br />

A central<br />

A lateral<br />

B central<br />

point<br />

source<br />

10 µm 100 µm<br />

2 2.1 2.1 2.9<br />

5 5.5 9.4 ~25<br />

3 3 4.2 ~18<br />

B lateral 4 4.3 7.7 ~25<br />

C central<br />

3.3 3.3 3.3 4<br />

Weimar, Oct 4, 1999<br />

1000<br />

µm<br />

C lateral 10 11 18 No resolution


Collimation of X-rays (from plasmas)<br />

<strong>Ray</strong> <strong>tracing</strong> simulation of spherically bent crystals<br />

We studied the effects of<br />

1) Surface shape and geometrical errors<br />

2) Crystal size (entrance pupil)<br />

3) Source depth abd width<br />

4) Incident angle<br />

Manuel Sánchez del Río<br />

Ref: M. Sanchez del Rio, M. Fraenkel, A.<br />

Ziegler, A. Ya. Faenov and T. A. Pikuz,<br />

Rev. Sci. Instrum. 70(3), 1614-1620, 1999<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (18 of 30)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6<br />

-0.6<br />

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

140<br />

120<br />

100<br />

50 µm source<br />

200 µm source<br />

-0.6<br />

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6<br />

Weimar, Oct 4, 1999


Introduction V:<br />

Perfect crystals in asymmetric diffraction<br />

In Reflection (Bragg) mode<br />

S1<br />

Δθ 1<br />

Manuel Sánchez del Río<br />

Δθ 2<br />

S 2<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (7 of 23)<br />

In Transmission (Laue) mode<br />

M. Sanchez del Rio & F. Cerrina M. Sanchez del Rio et al.<br />

Rev. Sci. Instrum 63 (1) 936 (1992) Nucl. Ins. Meth. A347 338 (1994)]<br />

S 1<br />

k 1<br />

d<br />

θ B<br />

k 2<br />

S 2<br />

SPIE, July 22, 1998


Theory I<br />

Geometrical model<br />

S 1<br />

k' 1<br />

k1<br />

Manuel Sánchez del Río<br />

θ 1<br />

k 1<br />

d<br />

θ B<br />

B H<br />

B H<br />

k' 2<br />

1<br />

= ⎛– -- ⎞uB ⎝ d⎠<br />

α>0<br />

θ 2<br />

k 2<br />

k2<br />

S 2<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (8 of 23)<br />

❑ Elastic scattering: k2 = k1 ❑Boundary conditions: k2 = k1 + BH ⇔<br />

– sinθ2<br />

= sinθ1<br />

Gratings<br />

λ<br />

– -- sinα<br />

d<br />

mλ = d’ (sin θ in + sin θ out )<br />

or<br />

k out = k in + G ||<br />

d/sinα = d’ /m<br />

Tracing condition (Grating eq.)<br />

k in<br />

G || =m (2π/d’) u ||<br />

θ in<br />

θ out k out<br />

m=-2<br />

m=-1<br />

m=0<br />

m=1<br />

m=2<br />

SPIE, July 22, 1998


Theory II<br />

Physical model: Dynamical Theory of Diffraction<br />

C 1<br />

C 2<br />

=<br />

=<br />

e iϕ – 1t o<br />

e iϕ – 2t o<br />

Manuel Sánchez del Río<br />

z<br />

=<br />

❑ BRAGG case<br />

(Zachariasen 1945)<br />

(Compact, general (thin/thick, Laue/Bragg), with absorption, general expression for τ, F H )<br />

valid for perfect flat crystals<br />

R( θ)<br />

❑ LAUE case R( θ)<br />

ϕ1 2π koδ'o = ----------γ<br />

o<br />

ϕ2 2π koδ''o = ------------γ<br />

o<br />

1 – b b<br />

-----------Ψ<br />

2 o – --τ<br />

2<br />

q = bΨHΨ H<br />

γ o<br />

b ≈ -----γ<br />

H<br />

where<br />

δ'<br />

⎛ o⎞<br />

=<br />

⎝δ''o⎠ τ<br />

1<br />

--<br />

b<br />

IH = ----- =<br />

Io 1<br />

--<br />

b<br />

IH = ----- =<br />

Io <strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (9 of 23)<br />

1<br />

--<br />

b<br />

x1x2 c ( 1 – c2) --------------------------------c2x2<br />

– c1x1 1<br />

--<br />

b<br />

x1x2 c ( 1 – c2) --------------------------------x2<br />

– x1 1<br />

-- ψ<br />

2 o z q z 2<br />

⎛ – ⎛ ± + ⎞⎞<br />

⎝ ⎝ ⎠⎠<br />

2<br />

2<br />

x<br />

⎛ 1⎞<br />

=<br />

⎝x2⎠ 1<br />

---- B<br />

2<br />

ko 2 H 2 ke = ( + ( o ⋅ BH ) ) τ ≈ 2( θ– θB) sin2θ<br />

Ψ H<br />

=<br />

z q z 2<br />

– ⎛ ± + ⎞<br />

⎝ ⎠<br />

----------------------------------ψ<br />

H<br />

e2 mc2 --------- 1<br />

---<br />

V<br />

λ2<br />

----- ( f<br />

π<br />

o + f ' + f '')<br />

e<br />

n 2πi H r ⎛ ( ⋅ n)<br />

⎞<br />

∑<br />

K<br />

⎝ ⎠<br />

n ∈ unitcell<br />

SPIE, July 22, 1998


Perfect crystals IV<br />

Tracing a polychromatic divergent bem on a flat symmetrical xtal<br />

Manuel Sánchez del Río<br />

point source: image plane<br />

1: 3 Ι Energy lines<br />

2: continous spectrum<br />

θ Β<br />

Computer simulations for X-ray optics (23 of 33)<br />

PSI, Feb 1998


Benchmarks I<br />

Phase space<br />

Study the changes induced by a Si 111 crystal in the (z,z’) space, E= 8 keV, α = 5 deg<br />

z<br />

z z'<br />

z'<br />

Manuel Sánchez del Río<br />

Dependency in energy<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (10 of 23)<br />

SPIE, July 22, 1998


Benchmarks II<br />

Du Mond diagrams (J.W.M. Du Mond, Phys. Rev. 52 (1937) 872)<br />

(+,+) Si 111, 12 keV<br />

Manuel Sánchez del Río<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (11 of 23)<br />

SPIE, July 22, 1998


Benchmarks III<br />

Few equations<br />

Focusing equations for a monochromatic beam (like for gratings):<br />

1<br />

p<br />

Manuel Sánchez del Río<br />

+ 1<br />

q = sin 1 + j sin 2j<br />

Rs<br />

For Bragg symmetrical crystals ( 1 = 2 = 0):<br />

Spectral resolution:<br />

0<br />

= E<br />

E0<br />

= cot 0<br />

1 1<br />

+<br />

p q = 2 sin 0<br />

;<br />

Rs<br />

;<br />

sin 2 1<br />

p + sin2 2<br />

q<br />

1<br />

p<br />

+ 1<br />

q =<br />

= sin 1 + j sin 2j<br />

Rt<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (12 of 23)<br />

2<br />

Rt sin 0<br />

q<br />

! 2 D +( geom + ss) 2 s<br />

cot 0 = ! 2 D +<br />

p<br />

R sin 1<br />

, 1 src + s1<br />

p<br />

2<br />

(1)<br />

(2)<br />

cot 0<br />

(3)<br />

SPIE, July 22, 1998


High resolution I<br />

Collimating pre-mirror (Δ src ~ 0)<br />

Mirror (3 mrad) and (+,-) Si111. E=10 keV, source 85 μm 185 μrad<br />

Manuel Sánchez del Río<br />

Mirror E[eV ] I [ rad]<br />

No mirror 8.47 0.99 1008 38 158 24<br />

Parabolic 1.27 0.05 1004 20 3.9 0.3<br />

Elliptical 1.27 0.05 1004 20 3.9 0.3<br />

Cylindrical 1.28 0.06 1002 18 4.4 0.3<br />

Cylindrical+1" slope 1.44 0.15 1000 20 20.7 2.9<br />

Cylindrical+2" slope 2.33 0.12 1008 18 38.5 3.6<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (13 of 23)<br />

SPIE, July 22, 1998


High resolution II<br />

Rowland bending (p/(R sin θ B )= 1)<br />

Manuel Sánchez del Río<br />

θ B +δ<br />

θ B<br />

θ B −δ<br />

(+,-) Si111, 10 keV, source 85 μm 185 μrad<br />

System I1 I2 E1[eV ] E2[eV ]<br />

at- at 413 14 307 12 8.92 0.55 8.71 0.69<br />

Rowland(1:1)- at 414 25 65 9 1.44 0.06 1.23 0.24<br />

Rowland(concave)-Rowland(convex) 399 12 296 10 1.44 0.07 1.32 0.06<br />

Out-Rowland(1:3)- at 408 18 36 3 8.2 0.9 2.1 0.5<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (14 of 23)<br />

θ B<br />

θ B<br />

SPIE, July 22, 1998


High resolution III<br />

Normal incidence (Masciovecchio et al, NIM B111 (1996) 181)<br />

Manuel Sánchez del Río<br />

ΔE=0.28 meV (e -M =0.13)<br />

ΔE=0.45 meV (e -M =0.2)<br />

ΔE=0.5 meV [experimental]<br />

Si 13,13,13, ~ 25 keV, θ B =89.98 deg, R=250 cm<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (15 of 23)<br />

SPIE, July 22, 1998


High resolution IV<br />

Multicrystal dispersive system<br />

Manuel Sánchez del Río<br />

E=14413 eV<br />

Si 10,6,4 α=20 deg<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (16 of 23)<br />

Si 4,2,2 α=0<br />

Si 10,6,4 α=-20 deg<br />

ΔE=6.3 meV (6.7 from refs)<br />

Si 9,7,5 α=75.4 deg<br />

Si 9,7,5 α=-75.4 deg<br />

ΔE=1.65 meV (1.57 theoretically from ref)<br />

Nested monochromator<br />

Isikawa et al. RSI 63 (1992) 1015<br />

Chumakov et al. SPIE 3151(1997) 262<br />

Alp et al. APS Res. 1(1998) 9<br />

Highly asymmetric<br />

monochromator<br />

Chumakov et al. NIM A383(1996) 642<br />

SPIE, July 22, 1998


Focusing optics I<br />

Polychromatic focusing with plane Laue crystals I<br />

Manuel Sánchez del Río<br />

s 1<br />

λ,θ Β<br />

λ’,θ’ Β<br />

λ”,θ” Β<br />

Pseudo-focusing effect of a Laue crystal for a white incident divergent beam. The selective<br />

reflections on the Bragg planes convert the divergent beam into a convergent one.<br />

❑ magnification factor M<br />

s<br />

2<br />

Δθ<br />

1<br />

= ---- = --------- =<br />

s<br />

1<br />

Δθ<br />

2<br />

❑ best focus expected at a distance of s2 = Ms1 1<br />

--<br />

b<br />

❑ Symmetrical Laue: M=1 ( i.e. a 1:1 focussing device)<br />

❑ Asymmetrical Laue: M=1/b => M(E) => Dispersive System=> Focus size is a function of ΔE<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (17 of 23)<br />

s 2<br />

SPIE, July 22, 1998


Focusing optics I<br />

Polychromatic focusing with plane Laue crystals II<br />

Manuel Sánchez del Río<br />

Undulator Source<br />

top view<br />

28 m<br />

Layout of the experimental station at the Troika<br />

beamline.<br />

The monochromator is composed by the Laue<br />

diamond and Bragg Ge crystals in the nondispersive<br />

arrangement.<br />

Inset: Incidence angles for the x-ray beam when<br />

the diamond crystal is set to diffract photons<br />

with energy of 9100 eV<br />

slit<br />

1 m<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (18 of 23)<br />

Ge<br />

image planes<br />

112 cm<br />

transmitted beam<br />

<br />

125.6<br />

<br />

15.6 55<br />

Diamond Crystal<br />

diffracted beam<br />

SPIE, July 22, 1998


Focusing optics I<br />

Polychromatic focusing with plane Laue crystals III<br />

Manuel Sánchez del Río<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (19 of 23)<br />

M. Sanchez del Rio et al, Rev Sci Instrum, 66 (11)<br />

5148- 5152, Nov 1995<br />

0.4 cm<br />

0.3 cm<br />

0.2 cm<br />

0.1 cm<br />

0.05 cm<br />

0.8 cm<br />

SPIE, July 22, 1998


Focusing optics III<br />

Sagittal bending<br />

Two aspects that can be analyzed:<br />

1) The effects of surface shape:<br />

• ❑ Anticlastic effect<br />

• ❑ Alignment<br />

• ❑ Loss of cylindrical shape<br />

• ❑ Spurious errors left by ribs<br />

• ❑ Conical surface: Ice & Sparks, JOSA<br />

A11 (1994) 1265<br />

Manuel Sánchez del Río<br />

p q<br />

2) beam transmission as a function of<br />

the angular divergence [Sparks et al.,<br />

NIM 172 (1980) 237]. The<br />

M=1:3=0.33 is optimal to focus divergent<br />

beams.<br />

M=q/p=1:3<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (20 of 23)<br />

5 mrad<br />

2.5 mrad<br />

1 mrad<br />

SPIE, July 22, 1998


Diffraction & Coherence I<br />

Fraunhofer diffraction pattern from a slit<br />

Coherent &<br />

collimated beam (8 keV)<br />

Manuel Sánchez del Río<br />

10 cm<br />

Fraunhofer Diffraction by a slit<br />

Diffraction Pattern<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (21 of 23)<br />

25 microns<br />

5 microns<br />

12.5 microns<br />

SPIE, July 22, 1998


Diffraction & Coherence II<br />

Fraunhofer diffraction after a symmetrical/asymmetrical crystal<br />

The conservation and propagation of transversal coherence can be studied from the visibility of the diffraction patterns<br />

Example: Degradation of the transversal coherence when using asymmetric crystal (which produce chromatic aberrations)<br />

[S. Brauer et al., J. Synchr. Rad. 2 (1995) 163]<br />

Si 111, α=0, α=0.15 deg<br />

8 keV, ΔE~ 1 eV<br />

Manuel Sánchez del Río<br />

α=0<br />

8000.0eV<br />

8000.5 eV<br />

<strong>Ray</strong> <strong>tracing</strong> simulations for crystal optics (22 of 23)<br />

α=0.15 deg<br />

SPIE, July 22, 1998


Introduction<br />

They are formed by a large number of small perfect crystallites of microscopical or submicroscopical<br />

size, which are oriented almost, but not exactly parallel to each other<br />

The most extensively used is Highly Oriented Pyrolithic Graphite (HOPG), produced by<br />

Advanced Ceramics (USA), Optigraph (Russia) and Panasonic (Japan). Typical mosaicity values<br />

go from 0.1 to 0.5 deg<br />

❑ Wider reflectivity curve than perfect crystals ~ ∆E/E ~ 10 -2<br />

❑ Lower peak reflectivity but higher integrated reflectivity<br />

❑ Well established theory Bacon & Lowde Acta Crystall. 1 (1948) 303 and Zachariasen’s book<br />

(1945)<br />

❑ The theory fails when using narrow beams due to possible macrostructures of about 40 x 400<br />

microns: Freund et al. SPIE 2856 (1996) 68<br />

❑ Macrostructures have been seen by x-ray topography: Ohler et al., NIM B129 (1997) 257<br />

❑ We studied the focusing properties [SPIE vol. 3448, 246-255, 1998]. We found that the existence<br />

or not of macrostructures depend on the particular sample [SPIE vol. 3773, 1999].<br />

Manuel Sánchez del Río<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (20 of 30)<br />

Weimar, Oct 4, 1999


Focusing properties (von Hamos geometry, 1932)<br />

TOP<br />

source<br />

S<br />

SIDE<br />

ω<br />

w<br />

Manuel Sánchez del Río<br />

ww<br />

ω' = ω + 2 τ sin θ Β<br />

SS<br />

image<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (21 of 30)<br />

❑ Mosaic crystals present a defocusing effect in the<br />

plane perpendicular to the diffraction plane<br />

❑ They present a parafocusing effect in the<br />

diffraction plane:<br />

• ❑ focusing of monochromatic radiation in M=1:1<br />

• ❑ Chromatic aberrations in the diffraction plane<br />

• ❑Aberrations produced by the beam penetration in the crystal bulk<br />

Weimar, Oct 4, 1999


Mosaic Crystals:<br />

are formed by a large number of small perfect crystallites of microscopical or<br />

submicroscopical sizes, which are oriented almost, but not exactly parallel to each other.<br />

Assumptions:<br />

1-The relative displacements of the crystallites are assumed large compared with the<br />

x-ray coherence width: No relationship between the scattering from various cristallites.<br />

2- Scattering planes are defined by the direction of their normal, and the distribution of<br />

the normals of the different crystallites is in good approximation gaussian with standard<br />

deviation κ<br />

3- κ is large compared with the Darwin width or width of the diffraction profile crystallite.<br />

θ D<br />

θ D<br />

Reflection Mode:<br />

focussing 1:1 in<br />

diffraction plane.<br />

Transmission Mode<br />

Manuel Sánchez del Río -17-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


0.4 deg fwhm<br />

Bragg case<br />

Mosaic Crystals diffraction profiles<br />

0.2 deg fwhm<br />

17 keV<br />

8 keV<br />

3 keV<br />

Diffraction profile in Bragg case:<br />

Manuel Sánchez del Río -18-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

r( Δ)<br />

a<br />

= ------------------------------------------------------------------------------<br />

1 + a + 1+ 2acoth(<br />

A 1 + 2a)<br />

Diffraction profile in Laue case:<br />

r( Δ)<br />

= sinh(<br />

Aa)<br />

exp(<br />

– A( 1 + a)<br />

)<br />

with:<br />

w( Δ)Qsp<br />

; 1<br />

a = ---------------------- =<br />

--<br />

μ μ<br />

A<br />

η sp<br />

μt<br />

= ------------sin<br />

θ B<br />

; = w( θ– θD)Qsp ;<br />

1<br />

---------- e<br />

2π<br />

Δ2 2κ 2<br />

– ⁄ ( ) ( Fx ⁄ vo) 2 λ 3<br />

---------------------------sin2θ<br />

B<br />

Q p = Qs cos2θ<br />

B<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


<strong>Ray</strong> <strong>tracing</strong> modeling with SHADOW<br />

k in , |k|=1<br />

y<br />

β<br />

θ D<br />

α<br />

φ<br />

Manuel Sánchez del Río<br />

z<br />

Ref: M. Sanchez del Rio et al. Rev. Sci. Instrum. 63 (1992) 932<br />

k out , |k|=1<br />

x<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (22 of 30)<br />

The geometrical model:<br />

1) Force the ray to be reflected by a crystallite following<br />

the Bragg law. The crystallite normal lies in a<br />

cone. The crystallite normal is selected by Monte<br />

Carlo considering the Gaussian distribution of crystallites<br />

2) Include penetration (secondary extinction) by a<br />

MFP model.<br />

The Physical Model:<br />

Reflectivity by theory of Bacon&Lowde<br />

3 energy lines resolved spatially<br />

Aberrations due to secondary extinction<br />

Weimar, Oct 4, 1999


0.2 mrad<br />

1 mrad<br />

side view:<br />

mosaic<br />

perfect<br />

10m 10m<br />

top view:<br />

mosaic<br />

perfect<br />

mosaic<br />

perfect<br />

Manuel Sánchez del Río -20-<br />

Experiments Division<br />

Programming Group<br />

Ferrara, March 11 1994<br />

12 cm<br />

0.5 cm<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Beam evolution in the ⊥ plane using the unfocused beam<br />

Ref: M. Sanchez del Rio et al. SPIE proceedings 3448 246 (1998)<br />

-0 cm 13 cm 60 cm 100 cm 200 cm<br />

E= 8 keV Detector = photographic film<br />

❑ Expected divergence ∆ = 2 τ sin θ B = 2 (0.25 deg) sin (13.4 deg) ~ 2 mrad<br />

❑ From fits up to 30 cm ∆ = 2.6 mrad<br />

❑ From fits up to longer distances ∆ >> 2.6 mrad. Problems originated by the film?<br />

Manuel Sánchez del Río<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (23 of 30)<br />

Simulation 200 cm<br />

∆ = 2.5 mrad<br />

Weimar, Oct 4, 1999


Parafocusing effect<br />

Simulation: 0.51 mm FWHM with τ=0.25 deg, t=0.5 mm<br />

Manuel Sánchez del Río<br />

BM F source<br />

X<br />

30 m<br />

20 cm 40 cm 60 cm 80 cm<br />

96 cm 100 cm 120 cm 140 cm<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (24 of 30)<br />

A<br />

B<br />

Monochromator<br />

9 mY<br />

C<br />

Secondary<br />

Source<br />

Z<br />

Mosaic crystal<br />

D<br />

E<br />

K<br />

Weimar, Oct 4, 1999


Topographic studies on Highly Oriented Pyrolithic Graphite<br />

Ref: A. Tuffanelli et al. SPIE proceedings 3773 (1999)<br />

Manuel Sánchez del Río<br />

40 µm<br />

E= 18 keV x<br />

<strong>Ray</strong> <strong>tracing</strong> of curved crystal optics (25 of 30)<br />

Weimar, Oct 4, 1999


string_1<br />

string_2<br />

chromoso<br />

me pool<br />

756.<br />

fitness -<br />

function<br />

Global optimisation of Optical Systems with SHADOW<br />

string_3<br />

string_4<br />

string_n<br />

Genetic Algorithms<br />

x[0]= 1234.5678 x[1]= 9876.5432 x[3]= 564738 ........<br />

str[0] = 1110010111000011010100010101001<br />

1111111111100000<br />

1111111111100000<br />

ready<br />

1111111111111<br />

000000000000<br />

mating<br />

✄<br />

Illustration of the Genetic Algorithm work cycle<br />

numbers are<br />

represented by<br />

bit-strings<br />

child-chromosome<br />

111111110000<br />

random<br />

number<br />

generator<br />

111111111110000000000<br />

mutation<br />

1. Select a new configuration - the higher the ’temperature’ the larger the range of the new parameters.<br />

2. Calculate the cost of the new config. (call the function to analyze with the current config.)<br />

3. Decide if you wanna accept this new config. by following rules:<br />

* if cost < last_accepted_cost => ACCEPT<br />

* if cost > last_accepted_cost => ACCEPT with a probability prob(tmp)<br />

5. Repeat procedure (either with the new or the old config.) until thermal equilibrium is reached<br />

6. If temp > 0 : Decrease temperature and restart loop<br />

The decreasing of the temperature is the most influential part of the system. It also is responsible for the speed and the<br />

accuracy of the system:<br />

Manuel Sánchez del Río -13-<br />

Experience at <strong>ESRF</strong><br />

SRI’95. Workshop 6, Oct.18<br />

cost(x1)<br />

Simulated Annealing<br />

x1<br />

cost(x1)<br />

accuracy ~ speed -1<br />

Principle of the Simulated Annealing method<br />

x1<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY


Theoretically calculated mirror profiles with cylindrical and elliptical shapes (top panel) and the intensity<br />

distribution at the image plane (bottom panel) for both elliptical (left) and cylindrical (right) cases. FM<br />

values are 9.91 106 for the elliptical and 8.33 105 for the cylindrical one.<br />

Some mirror profiles of table 4 after different gereations<br />

(top) and the intensity distribution of the best chromosome<br />

after 15000 generations(bottom).<br />

Manuel Sánchez del Río -14-<br />

Experience at <strong>ESRF</strong><br />

SRI’95. Workshop 6, Oct.18<br />

EUROPEAN SYNCHROTRON RADIATION FACILITY

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!