28.08.2013 Views

Linear Algebra II (pdf, 500 kB)

Linear Algebra II (pdf, 500 kB)

Linear Algebra II (pdf, 500 kB)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

38<br />

(3) For v ∈ V1, v ′ ∈ V2,<br />

〈v ′ , f(v)〉 = 〈f(v), v ′ 〉 = 〈v, f ∗ (v ′ )〉 = 〈f ∗ (v ′ ), v〉 = 〈v ′ , (f ∗ ) ∗ (v)〉 ,<br />

and the claim follows.<br />

Now we characterize isometries.<br />

9.15. Proposition. Let V and W be inner product spaces of the same finite dimension<br />

over the same field. Let f : V → W be linear. Then the following are<br />

equivalent.<br />

(1) f is an isometry;<br />

(2) f is an isomorphism and f −1 = f ∗ ;<br />

(3) f ◦ f ∗ = idW ;<br />

(4) f ∗ ◦ f = idV .<br />

Proof. To show (1) ⇒ (2), we observe that for an isometry f and v ∈ V , w ∈ W ,<br />

〈v, f ∗ (w)〉 = 〈f(v), w〉 = 〈f(v), f f −1 (w) 〉 = 〈v, f −1 (w)〉 ,<br />

which implies f ∗ = f −1 . The implications (2) ⇒ (3) and (2) ⇒ (4) are clear. Now<br />

assume (say) that (4) holds (the argument for (3) is similar). Then f is injective,<br />

hence an isomorphism, and we get (2). Now assume (2), and let v, v ′ ∈ V . Then<br />

〈f(v), f(v ′ )〉 = 〈v, f ∗ f(v ′ ) 〉 = 〈v, v ′ 〉 ,<br />

so f is an isometry. <br />

9.16. Theorem. Let V be a finite-dimensional inner product space and f : V → V<br />

a linear map. Then we have<br />

im(f ∗ ) = ker(f) ⊥<br />

and ker(f ∗ ) = im(f) ⊥ .<br />

Proof. We first show the inclusions im(f ∗ ) ⊂ ker(f) ⊥ and ker(f ∗ ) ⊂ im(f) ⊥.<br />

So let z ∈ im(f ∗ ), say z = f ∗ (y). Let x ∈ ker(f), then<br />

〈x, z〉 = 〈x, f ∗ (y)〉 = 〈f(x), y〉 = 〈0, y〉 = 0 ,<br />

so z ∈ ker(f) ⊥ . If y ∈ ker(f ∗ ) and z = f(x) ∈ im(f), then<br />

so y ∈ im(f) ⊥ . Now we have<br />

〈z, y〉 = 〈f(x), y〉 = 〈x, f ∗ (y)〉 = 〈x, 0〉 = 0 ,<br />

dim im(f) = dim V − dim im(f) ⊥<br />

≤ dim V − dim ker(f ∗ )<br />

= dim im(f ∗ )<br />

≤ dim ker(f) ⊥<br />

= dim V − dim ker(f)<br />

= dim im(f) .<br />

So we must have equality throughout, which implies the result. <br />

Now we relate the notions of adjoint etc. to matrices representing the linear maps<br />

with respect to orthonormal bases.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!